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Abstract

Animacy is the characteristic of being able to independently
carry out actions in a story world (e.g., movement, commu-
nication). It is a necessary property of characters in stories,
and so detecting animacy is an important step in automatic
story understanding. Prior approaches to animacy detection
have conceived of animacy as a word- or phrase-level prop-
erty, without explicitly connecting it to characters. In this
work we compute the animacy of referring expressions using
a statistical approach incorporating features such as word em-
beddings on referring expression, noun, grammatical subject
and semantic roles. We then compute the animacy of corefer-
ence chains via a majority vote of the animacy of the chain’s
constituent referring expressions. We also reimplement prior
approaches to word-level animacy to compare performance.
We demonstrate these results on a small set of folktales with
gold-standard annotations for coreference structure and an-
imacy (15 Russian folktales translated into English). Folk-
tales present an interesting challenge because they often in-
volve characters who are members of traditionally inanimate
classes (e.g., stoves that walk, tree that talk). We achieve an
F1 measure 0.90 for the referring expression animacy model,
and 0.86 for the coreference chain model. We discuss several
ways in which we anticipate these results may be improved
in future work.

Introduction

Characters are an indispensable element of narrative. Most
definitions of narrative acknowledge the central role of char-
acter: Monika Fludernik, as just one example of many, de-
fines a narrative as “a representation of a possible world
...at whose centre there are one or several protagonists of
an anthropomorphic nature ...who (mostly) perform goal-
directed actions ...” (2009, p. 6). Thus, if we are to achieve
the long-term goal of automatic story understanding, it is
critical that we be able to automatically identify a story’s
characters, distinguishing them from non-character entities
such as props, locations, or other referents.

One first step toward character detection is animacy de-
tection, where animacy is the characteristic of being able
to independently carry out actions in a story world (e.g.,
movement or communication). All characters are necessar-
ily animate—although not all animate things are necessarily
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characters—and so detecting animacy will immediately nar-
row the set of possibilities for character detection.

Prior work has conceived of animacy as a word-level phe-
nomenon, marking animacy as an independent feature on
each individual word (e.g., Orasan and Evans 2007, Bow-
man and Chopra 2012, Karsdorp et al. 2015). However, char-
acters and other entities are expressed in texts as corefer-
ence chains made up of referring expressions (Jurafsky and
Martin 2007), and so we need some way of computing an-
imacy on the chains directly. One way of doing this is to
combine word-level animacy markings—say, using major-
ity vote—into animacy for referring expressions and coref-
erence chains. We take this method as a baseline approach.
Alternatively, we can attempt to compute animacy directly
on the referring expressions and then use majority vote of
referring expression-level animacy to compute animacy of
coreference chains. This is the approach we pursue here,
which we find has better performance.

Although detecting animacy might seem to be straightfor-
ward, it presents a number of subtleties. For example, some
theorists have proposed closed lists of linguistic expressions
that should be automatically considered to indicate animate
entities, such as titles, animals, or personal pronouns (e.g.,
Quirk et al. 1985, Yamamoto 1999). However, stories can
arbitrarily introduce characters that would not be animate in
real life, for example, walking stoves or talking trees. Fig-
ure 1 shows an example sentence from a Russian fairytale
which contains three animate chains, one of which is a tree
that talks: trees would not be normally be considered ani-
mate according to canonical lists of animate entities. There-
fore some context sensitivity in detection is needed.

In this work our task is to predict the animacy of refer-
ring expressions and coreference chains in stories. This is
a preliminary study, and we only use a small corpus of 15
folktales to demonstrate the feasibility of the approach. We
first annotated animacy on coreference chains directly, and
then propagated these markings to the referring expressions.
Using these annotations we then trained a support vector ma-
chine (SVM) classifier for the animacy of referring expres-
sions themselves, and compared two methods for comput-
ing the animacy of a coreference chain using those values.
Majority voting performed best in this context, and it out-
performs a baseline that computes referring expression an-
imacy by majority vote over the word-level animacy mark-



Animate Chain (using a normally inanimate class)

I I I I I | |
There was[the apple tree] "P\pple tre«% [apple tre%, ﬁittle mother] hide!" begged. "If you eat/my wild apple "ate

Animate Chain

Inanimate Chain

Inanimate Singletons

quickly. The apple tree covered.witFlbranchei and|leave: | and|the geese|flew by.

Animate Singleton

Figure 1: Example text containing animate and inanimate coreference chains. Colored boxes represent referring expressions,

while links between them signify coreference. Animate chains

are shaded green, while inanimate chains are shaded red. The

text is drawn from Story #113 The Magic Swan Geese (Guterman 1975, p. 350), and has been slightly modified for clarity.

ings. Overall we built three different models for animacy de-
tection. The first is the referring expression model, on which
the second model for coreference chains builds. We also
built a third model for word-level animacy, which is used
for our baseline comparison.

The paper is organized as follows. We first describe how
we carried out the annotation of the data, and then de-
scribe the experimental setup, including features extracted,
the training of the SVM, and how the different models were
configured. We next present our results and discuss their sig-
nificance. We finally outline related work which served as
the inspirations and comparisons for this study, and conclude
with a list of our contributions.

Data

Our data was a small corpus of Russian folktales that we
assembled in the context of other work (Finlayson 2017). We
started the project seeking to use existing data, as there have
been a number of studies of animacy detection already (as
we discuss in Related Work, below). However, no prior data
in English was readily available to use. The best performing
prior work was Karsdorp et al. (2015 which was done on
a corpus of 74 stories comprising 74,504 words in Dutch.
Orasan and Evans (2007) did their work in English but their
data was not readily available.

Our corpus contains 15 tales, originally collected in Rus-
sian in the late 1800’s but translated into English in the
mid-twentieth century. Table 1 summarizes counts of var-
ious aspects of the annotated data. The corpus contains
gold-standard annotations for token and sentence bound-
aries, parts of speech (Penn Treebank II Tagset; Marcus,
Marcinkiewicz, and Santorini 1993), referring expressions,
and coreference chains (as well as other layers of annota-
tion).

We annotated these tales for coreference- and word-
level animacy. The annotation was done by the first two
co-authors. Disagreements were discussed and corrected
to generate a gold-standard annotation. Agreement for the
coreference-level was 0.99 F; and 0.99 Cohen’s kappa coef-
ficient (x), which represents near-perfect overall agreement
(Landis and Koch 1977). The animacy of referring expres-
sions were directly calculated from the animacy of the coref-
erence chains: if a coreference was marked as animate, all
of its constituent referring expressions were also marked an-
imate.

Referring Coref.

Token Expressions Chains
Total 23,291 6,631 1,633
Animate 3,896 4,288 344
Inanimate 19,395 2,343 1,289
Unique Items
Animate 291 798 -
Inanimate 2221 1459 -
Total 2,199 2,231 -
Tokens Noun Pronoun Adjective

Animate 1,658 (43%) 2,252 (58%) 38 (1%)
Inanimate 2,220 (11%) 401 (2%) 862 (4%)

Table 1: Counts of various aspects of annotated data, in-
cluding total number of animate and inanimate tokens, refer-
ring expressions, and coreference chains, with breakdowns
of number of unique items and part of speech in each class.

We also annotated every word in the corpus for ani-
macy directly (marking each word as either animate or not).
Agreement was 0.97 F; and 0.97 Cohen’s kappa coefficient
(k), which represents near-perfect overall agreement (Landis
and Koch 1977). This annotation was performed following
two rules. First we marked as animate all nouns that would
refer to animate entities in real life (such humans or ani-
mals, as discussed in Quirk et al. 1985, pp. 314 & 345). We
also marked gendered pronouns as animate, e.g., he, she, his,
hers, etc. We also marked adjectives suggesting animacy as
animate, e.g., alive, vital, kindlier, etc., whereas adjectives
implying inanimacy, such as dead in the noun phrase dead
horse, were marked inanimate.

Second, we marked as animate any words directly refer-
ring to entities that acted animately in a story, regardless of
the default inanimacy of the words. For example, we marked
stove animate in the case of a walking stove, or free animate
in the case of a talking tree. This also covered proper names
that might normally be marked as inanimate because of their
ostensible class, such as those underlined in the next exam-
ple:
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Referring Expression Class

Explanation

a princess, the dragon, the tsar Animate  Normally animate entities

walking stove, talking tree Animate Normally inanimate entities that are animate in context
“those who do not know what it is” Inanimate Discourse acts, when marked as referents

Kieyv, this world, every house Inanimate  Normally inanimate objects

dead horse Inanimate  Normally animate entities that are inanimate in context
her eyes, his hands , horse tail Inanimate  Inanimate parts of animate entities

Word

princess, dragon Animate  Nouns denoting animate entities

he, she, his, her Animate  Personal pronouns referring to animate objects

kind [princess], stronger [dragon] Animate  Adjectives that suggest animacy

Morning, Evening, [talking] stove ~ Animate =~ Nouns denoting usually inanimate objects that are animate in context
Kiev, world, house Inanimate Nouns denoting inanimate entities

it, that, this Inanimate  Personal pronouns referring to inanimate objects

Table 2: Examples of annotation of coreference- and word-level animacy. At the word level, only an adjectives suggesting
animacy or nouns referring to an animate object are marked animate. Everything else (including verbs, adverbs, determiners,

and so forth) are marked inanimate.

All of them were born in one night—the eldest in the
evening, the second at midnight, and the youngest in
the early dawn, and therefore they were called Evening,
Midnight, and Dawn. (Tale #140, Guterman 1975, p.
458)

A summary of examples for animate and inanimate words
is given in Table 2.

Experimental Setup
Features

We explored seven different binary and vector features to
train our classification models, some of which are drawn
from prior work.

1. Word Embeddings (WE): We computed word embed-
dings in 300 dimensions for all the words in the stories using
the skip-gram architecture algorithm (Mikolov et al. 2013).
We used the DeepLearning4] library (2017), and configured
the skip-gram model with a minimum word frequency of 3,
layer width (dimensions) of 300, a seed of 42, a window size
of 5, and trained for 10 iterations. We explored a few differ-
ent combinations of these parameters, but found that these
settings produced the best results. This is a vector feature
drawn from Karsdorp et al. (2015), and is primarily relevant
to classifying word-level animacy.

2. Word Embeddings on Referring Expressions
(WER): We calculated word embeddings in 450 dimensions
for just the words within the referring expressions, again us-
ing the skip-gram approach as above, except with a mini-
mum word frequency of 1. Again, this is a vector feature.
450 dimensions worked better for this feature (rather than
300), which we discovered after doing a small amount of
parameter exploration.

3. Composite Word Embedding (CWE): We computed
a composite word embedding for the neighborhood of each
word, adding together the word embedding vectors for three
words before and three words after the target word (exclud-
ing the target). This is also a vector feature, and is again
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partially drawn from Karsdorp et al. (2015). The idea of
this feature is that it estimates the similarities of the context
among all animate words (or all inanimate words) as well
as the dissimilarities of animate from inanimate, and vice
versa.

4. Parts of Speech (POS): By analogy with the other em-
beddings, we computed an embedding over part of speech
tags in 300 dimensions, with the same settings as in feature
#1 (WE). This feature models the tendency of nouns, pro-
nouns, and adjectives to refer to animate entities.

5. Noun (N): We checked whether a given referring ex-
pression contained a noun, and encoded this as a boolean
feature. This feature explicitely captures the tendency of
nouns to refer to animate entities.

6. Grammatical Subject (GS): Animate references tend
to appear as the grammatical subjects of verbs (Ovrelid
2005). We used dependency parses generated by the Stan-
ford dependency parser (Manning et al. 2014) to check if a
given referring expression was used as a grammatical sub-
ject relative to any verb in the sentence, and encoded this as
a boolean feature.

7. Semantic Subject (SS): We also computed whether or
not a referring expression appeared as a semantic subject to
a verb. We used the semantic role labeler associated with the
Story Workbench annotation tool (Finlayson 2008; 2011) to
compute semantic roles for all the verbs in the stories. We
then checked whether a given referring expression contained
an ARGO for a verb (an exact match was not required), and
encoded this as a boolean feature.

Classification Models

We implemented our classification models using SVM
(Chang and Lin 2011), with a Radial Basis Function Ker-
nel. We varied the features used to train the different models
as shown in Table 3. We trained each model using cross vali-
dation, and report macroaverages across the performance on
test folds.



Inanimate Animate
Model Feature Set Acc. | & Prec. Rec. F, K Prec. Rec. F,
Word Karsdorp et al. 2015 | - - 098 099 099 | - 094 091 093
WE, CWE, POS 9% | 0.87 098 098 098 | 0.87 091 0.88 0.90
Baseline MFC 37% | 0 0.38 1.0 05510 0 0 0
Baseline Maj. Vot. 75% | 0.53 059 099 0.74 | 0.53 099 0.62 0.76
WER 2% | 049 058 099 0.73 1049 098 057 0.72
N 80% | 0.56 0.85 060 0.70 | 0.56 0.80 093 0.86
GS 80% | 0.56 0.85 060 0.70 | 0.56 0.79 093 0.86
Referring SS 76% | 0.51 0.67 074 0.70 | 0.51 0.83 0.78 0.80
Expressions | WER, GS 84% | 0.64 089 066 0.76 | 0.63 082 095 0.88
WER, SS 87% | 0.72 087 079 0.82 ] 0.70 087 091 0.89
N, GS, SS 80% | 0.56 0.84 060 0.70 | 0.56 0.79 093 0.86
WER, N, GS 84% | 0.64 088 0.67 0.76 | 0.64 082 095 0.88
WER, N, GS, S 87% | 0.73 085 080 0.83 |0.71 088 090 0.89
WER, N, SS 86% | 0.70 0.83 0.77 0.80 | 0.68 0.87 091 0.90
Coreference Maj. vote (all) 79% | 048 093 0.80 0.86 | 048 050 0.76 0.61
Maj. vote (long only) | 84% | 0.68 0.86 0.78 0.82 | 0.68 0.82 0.89 0.86

Table 3: Result of different Animacy Models (Bolded according to when our F; measure is higher). MFC stands for “Most
Frequent Class”, and the other abbreviations stand for features as indicated in the text.

We have three models for animacy: referring expressions,
coreference chains, and words. For our referring expres-
sion animacy model, we explored different combinations
of the features: word embedding over referring expressions
(WER), noun (N), grammatical subject (GS), and semantic
subject (SS). We configured the SVM withy =1, C = 0.5
and p = 1, which were chosen after a small amount of pa-
rameter space exploration. The first two values are relatively
low in the range for these parameters, which is appropriate
for a balanced class situation. We measured the performance
of the classifier using 10-fold cross validation.

We calculated two baselines for referring expression ani-
macy. The first is the majority class baseline (inanimate is
the majority class). The second combines word-level an-
imacy predictions generated by our word animacy model
(discussed below) via a majority vote.

For the coreference chain animacy model, we imple-
mented two majority vote approaches for combining the re-
sults of the referring expression animacy model to obtain a
coreference animacy prediction. First, we computed the ma-
jority vote considering all referring expressions in a corefer-
ence chain. In the case of ties, the chain was marked inani-
mate. Because short coreference chains were responsible for
much of the poor performance, we also calculated the per-
formance of majority voting excluding chains of length four
and below.

To compare with prior work, we also implemented a word
animacy model, adapting an existing system with the best
performance (Karsdorp et al. 2015). That model used fea-
tures based on word N-grams, parts of speech, and word
embeddings. Similarly, we implemented our classifier using
word embeddings over words (WE), combined word em-
beddings (CWE), and parts of speech (POS). The SVM was
configured with v = 5, C' = 5000 and p = 1, which were
chosen after a small amount of parameter space exploration.
The first two values are relatively high in the range for these
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parameters, which is appropriate for a unbalanced class situ-
ation. We measured the performance with 20-fold cross val-
idation. This model performed very close to the prior state
of the art with our small data set. Our model achieved F}
of 0.98 for the inanimate class, where the state of the art
achieved 0.99. On the other hand, our model achieved an
Fy of 0.90 for the animate class, where the state of the art
achieved 0.93.

Results & Discussion

We evaluated our models by measuring accuracy, preci-
sion, recall, F;, and Cohen’s kappa (k) relevant to the gold-
standard annotations. Table 3 summarizes the results for
both the animate and inanimate classes. In the case of refer-
ring expression animacy we omit some combinations of fea-
tures (e.g., WER & N) that produced especially poor results.
We obtained the best result using three features: word em-
beddings over referring expressions (WER), noun (N) and
semantic subject (SS). For the coreference animacy model,
majority vote does not work as well as expected, with an
overall F} of 0.61 when calculated over all chains. This
poor performance relative to the word and referring expres-
sion animacy models is due largely to under-performance on
short coreference chains (those with four referring expres-
sions or fewer). This suggests that in future work we need to
concentrate our effort on solving the short chain issue. We
discuss this in more detail below.

Nevertheless, there is no prior work that reports animacy
classification results directly for referring expressions and
coreference chains, and so these results set the initial foun-
dation for animacy classification of these objects.

Error Analysis & Future Work

A detailed error analysis of the results revealed at least four
major problems for the classifier that we will focus on in



future work: short chains, quotations, agency selection re-
strictions, and proper names.

Determining the animacy of short coreference chains is
apparently a challenging task for our system. As the length
of a chain tends toward a single referring expression, the
coreference classifier performance should converge to the
referring expression classifier performance. However, for
chains between two and four referring expressions long, the
majority voting approach seems to fall short. We suspect this
is because many referring expressions are themselves quite
short, and can contain false alarms: e.g., our system clas-
sifies “his hands” as animate because of the animate word
“his” in the expression. We believe one approach to solving
this problem is more data, and explicitly incorporating the
animacy of heads of noun phrases as features.

The second problem is that many quotes are full of ani-
mate words, e.g., "the fate of the tsar ’s daughter to go to the
dragon” is a phrase that is itself a referring expression in one
story, and should be inanimate according to our animacy an-
notation rule but the classifier detects it as animate because
it finds three animate words "tsar”, “daughter” and ’dragon”
in that quote. This will require some rule-based processing
to address.

A third problem is that although animacy correlates with
semantic subject position, it is not strictly implied by it.
Consider the difference between “The bird flew across the
field” (implies that the bird is animate) and “The ball flew
across the field” (the ball is inanimate). To address this
problem, we plan to incorporate animacy selectional restric-
tions as training features, where the selectional restrictions
are drawn from existing lexical resources (e.g., VerbNet;
Schuler 2005). This will allow us to distinguish between se-
mantic roles which imply animacy and those which do not.

Finally, in the folktales we see names whose surface form
are identical to inanimate entities, e.g., Evening, Midnight,
or Dawn, as mentioned previously. Addressing this will re-
quiring integrating named entity recognition into the system.

Related Work
Animacy Detection in English

Evans and Orasan (2000) first explored animacy classifi-
cation as a means to improve anaphora resolution. Their
approach involves the identification of WordNet hypernym
branches that should be always marked animate. They took
this work forward by using a supervised machine learning
(ML) method to mark unseen WordNet senses by their an-
imacy (Ordsan and Evans 2001). They also explored both
rule-based and machine-learning-based for animacy classi-
fication of nouns (Orasan and Evans 2007). The rule-based
method uses the unique beginners in WordNet for classifica-
tion, while the machine learning method uses a multiple-step
procedure to determine noun animacy. First, they use a sta-
tistical chi-squared method to determine the animacy of a
sense (even for those not previously found in the annotated
corpus, but which are hyponyms of a node which has been
classified). For nouns whose sense was not known, they used
machine learning for classification. They performed both in-
trinsic evaluation (achieving F of 0.94 for animate class on
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one of the two corpus they use), but also extrinsic evaluation
by measuring the impact of animacy detection on the perfor-
mance of the MARS anaphora resolution system and a word
sense disambiguation algorithm.

Bowman and Chopra (2012) conceived of animacy and
inanimacy classification as a multi-class problem applied
directly to noun phrases (NPs), using a maximum entropy
classifier to classify NPs as human, vehicle, time, animal,
etc, with an overall accuracy of 85%. Each class was consid-
ered ultimately animate or inanimate, meaning that a binary
animacy classification could be derived from the marking.
They achieved an overall accuracy of 94% for the binary an-
imacy classification, but do not report F-measure statistics.

Animacy Detection in Other Languages

Ngklestad (2009) implemented animacy detection for Nor-
wegian nouns, levering this along with Named Entity Recog-
nition (NER) to improve the performance of anaphora reso-
lution. They explored various ways to use data from the web
to extract lists of animate nouns as well as to check the an-
imacy value of a particular noun. For example, if the noun
co-referred frequently with han (he) and hun (she), then it
was characterized as animate. This is basically a rule-based
method using queries to figure out the animacy of nouns.
This method achieves an accuracy of 93%. The main prob-
lem with this approach, from our point of view, is that using
data from the web makes the problem too general: you only
measure the typicality of animacy, not the animacy of an
item in context. In the case of folktales, we have unusual an-
imate entities (talking stoves) that will on the whole be seen
by the web as inanimate.

Bloem and Bouma (2013) developed an automatic ani-
macy classifier for Dutch nouns, by dividing them into Hu-
man, Nonhuman and Inanimate classes. They use the k-
nearest neighbor algorithm with distributional lexical fea-
tures, e.g., how frequently the noun occurs as a subject of the
verb “to think” in a corpus, to decide whether the noun was
predominantly animate. Prediction of the Human achieved
87% accuracy, and the large inanimate class was predicted
correctly 98% of the time. But, again, this work focuses on
individual noun phrases, not coreference chains, and is con-
cerned with the default animacy of the expression, not its
animacy in context.

Another implementation of word-level animacy for Dutch
was performed by Karsdorp et al. (2015) on folktale texts.
Because this work was the highest performing word-level
system, many of our features were inspired by their ap-
proach. They used lexical features (word forms and lemma),
syntactic features (dependency parse to check which word
is nsubj or nobj), morphological features (POS tags), and
semantic features (word embedding using skip-gram model
to vectorize each word). They implemented a Maximum En-
tropy Classifier to classify words according to their animacy
and obtained a good result of 0.93 F} for the animate class,
by just using the words + POS + embedding features.

In sum, all the prior work has been for word level ani-
macy (usually nouns, sometimes noun phrases). In contrast,
we focus on characterizing the animacy of referring expres-
sions and coreference chains directly, which is a necessary



step for reliably detecting characters in stories.

Contributions

We built a system for animacy classification of referring ex-
pressions and coreference chains to move towards automatic
character detection within stories. Our work provides several
contributions. First, we annotated 15 Russian folktales trans-
lated into English for animacy information at the word-level
and coreference-chain level. Second, we implemented an
SVM classifier using features inspired by previous work to
predict the animacy of referring expressions directly, achiev-
ing good performance of 0.90 F}. Finally, we used a ma-
jority voting approach to obtain the animacy of coreference
chains. The overall performance of this approach was poorer
than expected, at 0.61 F}, but error analysis suggested sev-
eral potential ways forward to improving that performance,
in particular, focusing on the animacy classification of short
chains (i.e., chains with four or fewer referring expressions).
Measuring the performance of the majority voting approach
on long chains (five or more referring expressions), revealed
a much better performance of 0.86 F.
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