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Abstract

Strong story interactive narratives (IN) are stories that branch
based on participant actions where all branches conform to a
set of predefined constraints. However, participants in these
systems may create branches where the constraints no longer
hold. Strong story experience management, the process of
generating IN trees, can be viewed as a game where the expe-
rience management agent wins if the story constraints hold
during gameplay and loses if they are broken. In domains
where the player has incomplete information of the story
world, the experience manager can take action by shifting
the player between alternate states that are consistent with
the player’s observations in order to maximize the probability
that constraints will hold. This process is called superposition
manipulation. In this paper we present a method of estimat-
ing the number of goal states reachable from different states
in order to make informed decisions during superposition ma-
nipulation.

Introduction

Interactive narratives are branching stories whose events
change based on actions a player takes during gameplay.
Experience managers are agents that automatically generate
and control interactive narratives. Strong story experience
managers (Riedl and Bulitko 2013) are agents that generate
interactive narratives using a central data structure that con-
trols non-player character (NPC) behaviors. Strong story ex-
perience managers are beneficial when domain authors want
to preserve an amount of control over what events happen
during the interactive story. However, in order to retain au-
thorial control while generating interactive narratives, strong
story experience managers must solve the boundary prob-
lem (Magerko 2007) or narrative paradox (Louchart and
Aylett 2003). This problem arises when a player deviates
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from the author’s constraints and creates a branch where au-
thorial control no longer holds.

One way to retain authorial control when the player
breaks constraints is to perform perceptual experience man-
agement (Robertson and Young 2014a; 2015). Perceptual
experience management uses a model of player knowledge
to construct a perceptually realistic interactive narrative. A
perceptually realistic interactive narrative is one that appears
consistent to the player, but may be dynamically modified
and arranged by the experience manager. A perceptual expe-
rience manager can modify past story events and story world
update mechanics, as long as these modifications don’t con-
tradict what the player has observed in the story world. How-
ever, one drawback to these methods is they passively wait
until the player has nullified an authorial constraint to mod-
ify the story world. This passive approach may miss oppor-
tunities to steer the player into world states that avoid dead
end branches where author constraints no longer hold.

Superposition manipulation (Robertson and Young 2016)
addresses this problem by explicitly modeling all consistent
world states during perceptual experience management as a
superposition of possible worlds from the player’s perspec-
tive. Whenever the player makes an observation that differ-
entiates between two or more states in their superposition,
the model splits into two or more superpositions based on
whether they observe the statement to be true or false. At
that point, the experience manager must decide which of the
split superpositions to reveal to the player as existing in the
world. The experience manager should choose the superpo-
sition that maximizes the probability that the author’s con-
straints will continue to hold in the story world.

In this paper we use a data structure called an intention
dependency graph (Amos-Binks, Potts, and Young 2017) to
estimate the story plans consistent with author constraints
from a given superposition state in intentional planning do-
mains (Riedl and Young 2010). We use this information to



give utility estimates of different states when a superposition
is collapsed and use the estimates to choose which collapsed
superposition will be shown to the player in the story world.

Related Work

This paper presents a heuristic for choosing between super-
positions while performing perceptual experience manage-
ment. The experience management framework is grounded
in plan-based story generation (Young et al. 2013; Porte-
ous, Cavazza, and Charles 2010). Specifically, it operates
on plan-based stories driven by characters who act inten-
tionally toward their goals. The original system to perform
intentional planning was a least commitment (Weld 1994)
system called [POCL (Riedl and Young 2010). Since IPOCL
was first described, intentional planning has been achieved
in an off-the-shelf state space planner (Haslum 2012), a mul-
tiple agent framework (Teutenberg and Porteous 2013), and
a specialized narrative state space planner that supports con-
flict (Ware and Young 2014). This paper performs superpo-
sition manipulation on intentional planning domains.

Automated planning’s generative nature leads to a dis-
connect between the formulation of a domain-problem pair
and the resulting structure of the solutions. Obtaining sat-
isfying performance and results from a planner often re-
quires analyzing the properties of the planning problem in
advance of the actual planning process and is known as prob-
lem formulation. First efforts into problem formulation cen-
tered on capturing application context knowledge in a com-
mon representation (McCluskey and Porteous 1997), later
developed into the Planning Domain Description Language
(PDDL) (McDermott et al. 1998). Problem formulation has
also led to the development of the planning graph (Blum and
Furst 1997) and subsequent extensions (e.g. (Hoffmann and
Nebel 2001)) that increased search speed.

The intention dependency graph (IDG) (Amos-Binks,
Potts, and Young 2017) uses a modified planning
graph (Ware and Young 2014) to leverage a fundamental
property of intentional plans: that every action in a solu-
tion plan is part of one or more character intentions. While
a planning graph is being constructed, the IDG explicitly
keeps track of character intentions that depend on one an-
other. These dependencies are combined into exemplar tra-
jectories that consist of conjunctions of intentions, each ex-
emplar representing a class of solution plans. The exemplar
trajectories of an IDG enables us to estimate the number
of solution classes to a planning problem. As we describe
below, representing a superposition as a planning problem
would enable IDG construction, and in turn the IDG’s exem-
plar trajectories can be used to estimate the classes of wins.

The system presented in this paper is a strong story expe-
rience manager that uses planning (Riedl and Bulitko 2013).
Plan-based experience managers use a process called me-
diation to control interactive experiences. Mediation is a
plan-based process of creating branching story structures
from an exemplar narrative. The original mediation algo-
rithm was created for the Mimesis system (Riedl, Saretto,
and Young 2003) and used a least commitment planner. A
later algorithm called ASD (Riedl et al. 2008) focused on
a tiered replanning strategy for generating branches. The
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PAST system (Ramirez and Bulitko 2014) was built on ASD
and introduced player modeling to the mediation process
to tailor interactive stories for participants. The GME sys-
tem (Robertson and Young 2014b; 2014c) introduced a state
space model for mediation and a procedural content gener-
ation pipeline that automatically configured an interface for
the player from the underlying state transition model.

This paper presents a heuristic for choosing between
world models consistent with player observations in a per-
ceptual simulation. Perceptual simulations were first used
to reduce the processor load for large scale crowd simu-
lations in sandbox games (Sunshine-Hill and Badler 2010)
by retroactively creating alibis that explain away random-
ized NPC behavior. In narrative domains, perceptual simula-
tions are similar to the process of initial state revision (Riedl
and Young 2005; Ware and Young 2010), a process of dy-
namically modifying the initial state of a narrative planning
problem to better facilitate author goals, and late commit-
ment (Swartjes, Kruizinga, and Theune 2008), a method
of improvising new world states during emergent narra-
tive gameplay. A crowd-sourced narrative model called plot
graphs (Li et al. 2013) has also been used to generate al-
ibis for NPCs (Li et al. 2014). Methods called event revi-
sion (Robertson and Young 2013; 2014a) retroactively re-
plans past story events, and domain revision (Robertson and
Young 2015), which retroactively shifts between story world
mechanics, have been used to generate alternate story events
and world mechanics in interactive domains.

Superposition Manipulation

Superposition manipulation (Robertson and Young 2016)
combines adversarial gameplay, experience management,
and perceptual simulation in a framework that shifts users
between possible worlds in order to maintain authorial con-
trol over an interactive story world. The approach differs
from previous plan-based perceptual interactive narrative
simulations by proactively shifting players between alter-
nate possible worlds. Previous mediation-based perceptual
simulations wait until the player takes an exceptional ac-
tion (Riedl, Saretto, and Young 2003; Harris and Young
2009), or one that deviates from the current plot, before
searching through alternate possible worlds to maintain au-
thor constraints. The strength of superposition manipulation
is in its proactive maintenance of a model of all possible
worlds. Superposition manipulation transitions the player
between those world models whenever he or she makes an
observation that collapses the superposition model. This pa-
per characterizes the utility of possible world state superpo-
sitions with intention dependency graphs in order to choose
between them when a player makes a differentiating obser-
vation. Here we introduce the superposition manipulation
method and examine how a predictive model of state util-
ity can be used to shift the player between possible worlds
whenever a superposition is collapsed.

Adversarial Experience Management

Superposition manipulation views experience management
as an adversarial game played by the interactive storyteller



and a player. The Oz Project (Weyhrauch 1997; Mateas
1999) first viewed experience management through this lens
and is useful because it allows the system to quantify story
outcomes as good or bad. The experience manager “wins”
the game if a series of events plays out in the story world
that corresponds to a set of constraints given by an external
author. The manager “loses” if the constraints are broken.
A main assumption made when using adversarial experi-
ence management is that important experience features like
story states (e.g., a happy ending) or narrative structures
(e.g., conflict) can be modeled as a set of constraints on tra-
jectories through the story world. For example, all solutions
in this paper’s framework contain intentionally-driven char-
acter actions. Any trajectory where characters act in oppo-
sition to their desires is considered a “loss” by our system.
These states and features are called author constraints, and
adversarial experience management assumes that if the sys-
tem maintains these constraints over the course of an inter-
active story it results in a desired player experience. Con-
versely, it is assumed that if the system cannot maintain the
constraints, it results in an undesirable player experience.

State Utility

In an adversarial experience management framework, the
utility of any state is the probability that author constraints
will hold from that state until the end of the experience. In
our framework, this probability can be quantified given two
components: the set of possible trajectories from the current
state and the actions a participant will take in each trajectory.
The set of trajectories can be calculated by fully expand-
ing the game tree under the state. The actions a participant
will take may not be known ahead of time, but may be ap-
proximated with a model of choice preference (Yu and Riedl
2013), goal recognition (Cardona-Rivera and Young 2015),
and/or role assignment (Dominguez et al. 2016). This paper
assumes that players act according to a uniformly random
distribution, but this assumption is modular. A more robust
predictive model of player action can be inserted into this
framework and it will update its utility predictions.

Knowledge Model

Superposition manipulation operates on a model of player
knowledge. Like the predictive model of player action, the
player knowledge model is a black box that can be removed,
expanded, and re-inserted and the rest of the framework will
operate effectively. The current knowledge model is simply
that story characters observe every action and object they
are co-located with. According to our model, players be-
lieve that the effects of every action they observe obtain in
the state resulting from the action’s execution and players
believe every property that holds of each object they are co-
located with as soon as they co-locate.

Expanding and Collapsing State Superpositions

Instead of players existing in a single state, superposition
manipulation allows players to exist in a collection of states
consistent with their knowledge model. This collection of
possible current states is called the player’s state superposi-
tion. The superposition is expanded whenever a story world
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character takes an unobserved action. If the player exists in a
superposition of a single state and an unobserved story char-
acter has a choice between two actions, the player’s state su-
perposition will grow from one to two states. The two new
states will represent the two possible successor states created
for each of the story character’s two unobserved actions.

The state superposition collapses whenever a literal that is
true in some superposition states but false in other superposi-
tion states is observed by the player. At this point, the system
must decide whether it will show the player that the literal is
true or false. This observation, once made, will collapse the
superposition into the set of worlds where the literal is true
or the set of worlds where the literal is false. These two me-
chanics, expansion and collapse, allow superposition manip-
ulation to track the set of possible worlds that are consistent
with the player’s knowledge model at any point in an inter-
active story. The problem of superposition manipulation is
choosing how superpositions should collapse to maximize
the probability that author constraints are maintained.

Superposition Utility

The final component of superposition manipulation is deter-
mining the superposition to transition the player to when a
new observation collapses their superposition. This choice
should be made based on the superposition that offers the
highest utility of preserving author constraints. This utility
function can be calculated with four components: number of
winning goal states, number of losing dead end states, a pre-
dictive model of player action, and a process that determines
the utility of superpositions from its individual states.

This utility calculation depends on the composition of the
space below each state in the superposition, the space’s num-
ber of goal states vs. dead end states, and the actions a player
takes through each space during gameplay. A baseline ap-
proach for these calculations would be to fully expand every
node under each state in each superposition until either a
goal or a dead end was reached in each branch. A predic-
tive model of player action would then assign a probability
distribution on each set of choice options the player receives
under each state. One open problem is how to measure the
utility of a collection of superposed states without fully ex-
panding their underlying game trees. The next section intro-
duces a data structure that enables us to estimate the number
of reachable goal states below a single state.

Intention Dependency Graphs

In most domains, representing multiple states in opposing
superpositions requires an intractable amount of time and
space to fully expand game trees beneath states. To address
this limitation, we investigate the effectiveness of using a
heuristic function that can approximate the full utility func-
tion while taking less time and space. This paper uses a data
structure called an intention dependency graph to approxi-
mate superposition manipulation’s full utility function. This
section describes intention dependency graphs and how they
can be used to calculate the first (winning goal states) of the
four components of a superposition utility function.

An intention dependency graph (IDG) computes an esti-
mate of the number of different solutions to a story plan-



ning problem. As we describe in more detail below, it ac-
complishes this by explicitly keeping track of dependencies
between character goals. It is constructed separately from,
but during, the construction of another problem formula-
tion methodology, the planning graph used by Glaive (Ware
and Young 2014). Classes of solutions are characterized by
exemplar trajectories consisting of character goal conjunc-
tions.

A solution to a story planning problem differs from a clas-
sical planning solution on one key property. Every action in
a story planning problem must be causally linked to achiev-
ing at least one goal of some character agent. Thus, every
solution to a story planning problem will have a derived set
of character goals that the solution’s actions support. The
IDG leverages this property in two ways. The first is to en-
able efficient construction. Secondly, exemplar trajectories
capture conjunctions of character goals that characterize a
solution enabling a planner to focus its search. We discuss
each in turn in the following two sections.

IDG Construction

When a player character makes an observation, we must de-
cide how to collapse the superposition that is consistent with
the players knowledge model so we are best positioned for
a win. To determine this, each state within a superposition
is captured in its own story planning problem, consisting
of an initial state, goal state, domain, objects, and character
agents. Differences in superposition states are represented
as different initial states. We can then construct an IDG for
each story planning problem.

We construct the IDG in an efficient manner by extending
the modified planning graph developed for the Glaive story
planner (Ware and Young 2014). Modifying Glaive’s plan-
ning graph enables the IDG to be constructed at the same
time in a separate graph structure. Planning graphs provide
an efficient structure to estimate the remaining cost to a so-
lution. They alternate layers of propositions and actions to
represent a relaxed version of a planning problem by ignor-
ing steps’ delete lists. A first layer represents the proposi-
tions true in the initial state and then layers of applicable
actions and their effects are added until the goal conditions
are reached. The Glaive story planner extends the planning
graph to intentional planning by ensuring all actions added
to a plan graph are potentially motivated. That is, an action
is only added after it is confirmed to exist on an action se-
quence towards a character goal. This is confirmed through a
structure called a goal graph that captures action sequences
of a character acting towards achieving their goal. A charac-
ter goal is in the final layer of a goal graph and is preceded
by layers of actions, where each action is causally connected
to at least one action in the next layer. The result is a graph
structure with a set of possible action sequences to accom-
plish a goal. Before the plan graph is constructed, a goal
graph is constructed for each character goal in the planning
problem. When an action is added to the planning graph,
the IDG keeps track of the character goal that provides the
motivation. As new actions are added to the planning graph,
the IDG determines if other character’s goals were required
to establish the actions preconditions. Using the planning
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graph to determine the underlying dependencies between
character goals enables the IDG to obtain information about
the solution space without incurring the cost of generating
multiple plans.

To represent the IDG, we use a directed layered graph and
provide a formal definition:

Definition 1 (Intention dependency graph (IDG)). The IDG
of a planning problem ®, IDG(®), is a directed layered
graph represented by a tuple of three elements <V, Ef >
where V' is a set of n vertices vg, v1 ..., V5,2, V4 €ach with
a label, L(v;), consisting of a set of character goals and the
graph layer it is positioned in. F is a set of directed edges
between vertices, and f a vertex labeling function that takes
sets of character goals as input and outputs the union set.

Intuitively, a vertex is added to the IDG under two con-
ditions. The first is when an action has been added to the
planning graph that supports a new character goal being pur-
sued (e.g. v1,v2 in Figure 1). A second is when we learn
through the story planning graph that an existing character
goal depends on another character’s actions (v4). A new ver-
tex is added with the two character goals as labels. Edges are
added between vertices when a new dependencies is identi-
fied. The vertex that results is connected to the necessary
vertices in previous layers.

Exemplar Trajectories

The final layer of an IDG contains a single vertex (v, ) that is
connected to neighbor vertices in previous layers (Figure 1).
These vertices are referred to as exemplar trajectories and
are a second way that the IDG leverages intentional plans.

An IDG maintains explicit dependencies between char-
acter goals, represented by a vertex label consisting of a
list of character-goal pairs. When a vertex is connected to
vy, the character-goal pairs list represents a conjunction of
character-goal pairs that could solve the story planning prob-
lem. This property allows the IDG to partition the search
space into exemplar trajectories representative of plans with
the same character-goal pair. Exemplar trajectories can then
be used to direct a story planner to find solutions that differ
by character goals and still respect authorial constraints.

While obtaining an estimate of the solution space rather
than solving it explicitly has speed advantages, we lose some
accuracy. For the purpose of superposition manipulation, the
biggest limitation is that the planning graph does not use
mutex edges to capture precedence and interference relation-
ships between actions. This results in unreachable plans be-
ing considered in the planning graph and consequently over-
estimating the number of exemplar trajectories in the IDG.

We use the exemplar trajectories to inform an experience
manager of opportunities to proactively change the player’s
state and choose the appropriate superposition.

Superposition utility using IDGs

Our utility function to calculate the probability we reach a
goal state from superposition is based on the IDG exem-
plar trajectories. Recall that exemplar trajectories captured
by the IDG of a planning problem each represent a class of
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Figure 2: Room configurations after each of Merlin’s actions

solutions with the same character-goals. Exemplar trajecto-
ries can then used to direct an intentional planner to find
solutions in a specific part of the search space.

We calculate our utility function as the number of exem-
plar trajectories for each state within a superposition and the
chosen superposition as the argmaz in Equation 1,

v(SP) = argmaxz In(s)l,

speSP sEsp

ey

where SP is the set of superpositions being evaluated, 7 is
the exemplar trajectories of a superposition state s.

One constraint of this approach is that we do not estimate
the number of plans each exemplar represents.

Example

In this section we present a toy domain to illustrate the me-
chanics of IDG as a heuristic for choosing between com-
peting superpositions during a collapse after a new player
observation. The toy problem represents a procedurally con-
figured dungeon where a dungeon master places pre-created
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rooms together as a player explores the space. In the ex-
ample problem there are three pre-created rooms: Rooml,
Room?2, and Room3. The player, named Arthur, begins in
Rooml. The player’s intention and the author’s goal is for
the player’s character to arrive at Room3. There are two
doors in Room! and Room?2, a red door and a blue door.
All four doors are initially connected to a void, represented
in the planning problem as an open pit. The player has a key
for each room that opens one of its doors, red or blue, but
once the key has been used once it must be discarded. Once
the player has opened a door with a key they observe the
room the door leads to. To maintain the illusion that the dun-
geon is static, once a door has been opened no room can be
connected the other side. It is the job of the dungeon wizard
character, Merlin, to attach rooms to doors in order to lead
the player to Room3 while avoiding the situation in which
the player opens a door to a pit. Merlin has an intention to
connect all rooms to all possible doors, so he is free to act as
he pleases in order to achieve the author’s goal.

Merlin acts first. The four possible actions Merlin can
take are: {(place Merlin Rooml Room2 Blue-Doorl Pit
1),(place Merlin Rooml Room?2 Red-Doorl Pit 1),(place
Merlin Room2 Room3 Blue-Door2 Pit 2),(place Merlin
Room2 Room3 Red-Door2 Pit 2)}. The resuting configura-
tions are represented in Figure 2. Since Merlin is not located
in the room with the player’s character, all of his actions are
unobserved and a single superposition is created of four in-
dividual states that correspond to the successors of the four
enabled, unobserved Merlin actions. There is a state where
Room?2 is connected to Blue-Doorl, a state where it is con-
nected to Red-Doorl, a state where Room3 is connected to
Blue-Door2, and a state where Room3 is connected to Red-
Door2. At this point, the player faces a decision of opening
Blue-Doorl or Red-Doorl. For the purpose of our example,
the player chooses to open Red-Doorl.

When the player chooses to open Red-Doorl they will
make an observation of what room the door leads to. This
will split the superposition into two new superpositions. One
superposition (sp; ) contains a single state representing Mer-
lin executing a place action of Room2 behind Red-Door-1
so the player may observe Room2. Another superposition
(sp2) is a collection of three states where Merlin took place
actions resulting in Room?2 being placed elsewhere. At this
point, the IDG is constructed to assess the utility of each
possible superposition at level 1.

Recall from Equation 1 that our utility function is the to-
tal number of exemplar trajectories in a superposition. In
level 1 we need to determine the utility between of super-
position sp; and sps. Since sp; contains a single state, only
a single IDG is constructed to assess its utility. The IDG is
constructed from a planning problem that uses the result-
ing state after Merlin places Room2 behind Red-Door-1 the
initial state. The domain, goal state and objects are those
outlined in Figure 3. The IDG results in a single exemplar
trajectory where Merlin’s goal is to connect Room1-3 and
Arthur’s goal is to get to Room3, captured as a single win in
row 2, column 4 in Table 1.

The utility of spy is calculated from three states that re-
sult from three Merlin actions that lead to Arthur not ob-



Domain

open(?char,?door,?key,?loc)

place(?char,?from,?to,?door,?pit,?level)

Precons: ?char has ?key Precons: ?char is wizard
?char at ?loc ?from is entrance ?level
?door not open ?to is exit ?level
?door at ?loc ?to is not placed
?key opens ?door ?door is not open
Effects:  ?door is open ?from ?pit connected by ?door
?char not has ?key ?from ?to not connected by ?door
Agents:  ?char Effect: ?from ?pit not connected by ?door

?from ?to connected by ?door

?to is placed

move(?char,?from,?to,?door) Agent 2char

Precons: “?char at ?from
?door is open
?from ?to connected by ?door

Effect: ?char at ?to
?char not at ?from
Agents:  ?char

Problem

Initial State
Arthur is the player
Arthur at Room1
Arthur has Key1
Arthur has Key2
Arthur intends:
Arthur to be at Room3
Merlin is a wizard
Merlin intends:
Room1 connected to Room2 by Blue-Door1
Room1 connected to Room2 by Red-Door1
Room2 connected to Room3 by Red-Door2
Room2 connected to Room3 by Blue-Door2
Key1 opens Blue-Door1 and Red-Door1
Key2 opens Blue-Door2 and Red-Door2
Pit is a pit
Room1 is connected to Pit by Blue-Door1
Room1 is connected to Pit by Red-Door1
Room2 is connected to Pit by Blue-Door2
Room2 is connected to Pit by Red-Door2

Blue-Door1 is at Room1
Red-Door1 is at Room1
Blue-Door2 is at Room2
Red-Door2 is at Room2
Room1 is entrance 1
Room2 is entrance 2
Room2 is exit 1

Room3 is exit 2

Goal State
Arthur at Room3

Figure 3: A simplified representation of PDDL for the intentional planning domain and problem used for an example.

| Level [ Superposition | States | [1(sp)[ [ v(SP) |

1 Sp1 1 1
1 Sp2 3 0 5P
2 Sp3 1 1
2 Sp4 1 0 5Ps

Table 1: IDG results for each superposition

serving Room?2. Each state serves as the Initial State to three
planning problems, and an IDG is created for each planning
problem. No exemplar trajectories were found in the IDGs,
resulting in a utility of 0. For level 1, we apply our utility
function (Equation 1) over our set of superpositions (SP).
We find that while sp; only has one state associated with it,
it provides the possibility of a win (the IDG may overesti-
mate the wins) in the form of a single exemplar trajectory,
whereas despite having three states, sps has zero potential
wins, thus we proceed with sp; (column 5, Table 1).

In level two of our example, we have two superpositions
(sps and sp4) each with a single state. Once the states have
been translated to planning problems and the IDGs con-
structed, we see that sps and sp4 have one and zero exem-
plar trajectories, respectively (rows 4, 5 in Table 1). Since
sps has more possibilities of reaching the goal state, Equa-
tion 1 will choose it as the most desirable superposition to
be in.

Discussion and Future Work

This document describes how an IDG can be used to es-
timate the first of the four components that make up the
full superposition manipulation utility function. While using
wins alone for individual states is a good start and performs
better than a random baseline as a utility estimate, it lacks
information necessary to identify the optimal decision in all
situations. First, leaving losses out of the utility function can
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lead to the wrong decisions. For example, two states could
have a small difference in the number of winning states be-
neath them but a large difference in number of losing states.
If the first state, s1, has w number of wins and a second state,
S2, has w + 1 wins then according to the utility function in
this paper s2 is the better option. However, if s; has [ losses
and s» has [+ 1000 losses, then the ratio of wins to losses for
s1 1s much more beneficial than the ratio of losses for s5. In
this situation, this paper’s utility function would choose sa
when s, is the optimal choice. A more robust utility function
would calculate losses in addition to wins.

Second, omitting player decisions from the utility func-
tion can lead to the wrong decisions. For example, if sp;
has three outgoing actions the player can choose from where
one choice leads to a goal state but two choices lead to dead
ends and sp9 also has three outgoing actions the player can
choose from where two choices lead to a goal state and only
a single choice leads to a dead end, but this paper’s utility es-
timation and the win + loss utility function described in the
last paragraph will choose state sp2. However, both utility
functions assume the player is equally likely to choose any
of their possible actions but if the player reliably chooses
the action that leads to a goal state from sp; and the ac-
tion that leads to a dead end from spy both utility functions
will choose wrong. If the utility function uses a probability
distribution over the player’s possible actions it can make a
more informed decision. For example, if a predictive model
of player behavior assigned a 70% probability of the player
taking the winning edge in sp; and a 70% probability of
the player taking the losing edge in spy will lead to a util-
ity function that incorporates player choice model making a
correct decision when the previous functions did not.

Third, even a utility function that incorporates a predic-
tive player behavior model only gives the utility for single
states, not sets of states that represent superpositions. Once
utility calculations have been made for each individual state
within each superposition, a second round of decision mak-



ing must take place to determine which aggregate set of
states presents the best probability of reaching a goal state.
A full utility function should be able to synthesize utility in-
formation from individual states and make a full calculation
over sets of superposed states.

A last element of future work is that while the IDG pro-
vides a heuristic for collapsing superpositions in intentional
domains, the current superposition manipulation framework
does not support expanding intentional domains. Intentions
allow domain authors to specify the goals that characters
will pursue and thus the actions that can be added to a plan.
Observed actions in a superposition manipulation frame-
work are driven by an intentional planner, but unobserved
actions are used to expand superpositions. In order to pre-
serve the intentional planning constraint of only intention-
ally motivated actions being performed by NPCs, superposi-
tion manipulation must differentiate between intentional and
non-intential character actions when adding states to a su-
perposition and only adding intentional actions.
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