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Abstract

Previous work on story planning has lacked a knowledge rep-
resentation for characters that make mistakes in the execution
of their actions. In particular, characters’ execution mistakes
that arise from errors in belief have not been modeled. In this
paper, we describe a state-space planning system and its be-
lief model, together called HEADSPACE, that generates sto-
ries that track and manipulates characters’ belief about the
story world around them. This model is used to produce ac-
tions in stories that are attempted but that fail. We show an
example story plan that contains failed-action content that
cannot be generated by typical planning-based approaches to
story creation.

Introduction

In stories, characters commonly attempt to perform actions
that fail (Lenhart et al. 2008). For example, when Han Solo
is racing to escape the Imperial fleet attacking Hoth in The
Empire Strikes Back (Kurtz et al. 1980) he pulls the lever to
make the jump to hyperspace, but an equipment malfunction
in the Millennium Falcon’s hyperdrive causes the action to
fail both immediately and dangerously.

In examples like this, the failures of character actions
aren’t simply emergent properties of a complex environment
and the limitations of agents operating within it. Rather, the
attempts and failures are designed intentionally by authors
for narrative effect, e.g., to build tension, to prolong efforts
around goal achievement, or to highlight to a reader the dis-
parities of knowledge and ability between characters within
the unfolding story world. These roles and others played
by action failure within stories are central to many narra-
tive functions. Consequently the development of principled
means to generate story lines with failed actions advances
the broader goal of automatically creating more natural and
compelling narratives.

In recent years, work on automated story generation has
shown success developing planning-based generative meth-
ods (e.g. (Young et al. 2013; Porteous and Cavazza 2009;
Coman and Munoz-Avila 2012)). Planning-based methods
for story generation offer a number of attractive features, in-
cluding guarantees of soundness and completeness and the
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natural representational fit between plan structures and the
goal-directed activity that characters undertake inside narra-
tives. Increasingly, however, researchers have identified lim-
ited expressive capabilities in previously developed plan rep-
resentations when used to characterize story line structure.
Knowledge representations that are adequate to produce
plans that control robot execution fall short in their charac-
terization of a range of features commonly found in stories.
Much work that has gone into plan-based story generation
(e.g. (Ware et al. 2014; Bahamón, Barot, and Young 2015;
Teutenberg and Porteous 2013)) has sought to retain as many
of the benefits of classical planning as possible while also
increasing the expressive range of narrative generators.

One limitation of planning approaches arises from their
inability to generate plans containing actions that fail. In the
work we describe here, we provide the design of an algo-
rithm for story generation that explicitly plans for charac-
ter actions that fail. The algorithm uses a knowledge rep-
resentation that provides context for this failure based on
the limitations of characters’ beliefs about the story world
around them (e.g, Han’s false belief that the Falcon’s hy-
perdrive was operational and could make the jump to light-
speed). We call the pairing of algorithm and its representa-
tion defined here HEADSPACE. The HEADSPACE algorithm
produces story structure that has many of the advantageous
properties found in other plan-based approaches and is more
parsimonious than previous approaches to story generation
that also address character belief dynamics.

As we describe below, the HEADSPACE system generates
stories where

1. agents may operate under mistaken beliefs that lead them
to attempt actions which fail, and these attempted actions
do not produce the expected effects

2. agents performing actions observe the success or failure
of their actions’ execution

3. agents revise their belief states in response to

• an observed failure
• both passive and active sensing actions

To facilitate the generation of plans that capture these con-
cepts, HEADSPACE draws a distinction between references
to conditions that are true in the physical world of the do-
main and conditions held (or not held) as beliefs of the char-
acters performing the actions.
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Related Work

To enrich impoverished plan representations, narrative plan-
ning research has incorporated additional constructs into the
planning process to support aspects of character decision
making. IPOCL (Riedl and Young 2010) adds the concept of
intention frames which group a set of actions of one charac-
ter in furtherance of a single goal. Extending IPOCL, Ware
and Young (2011) introduce a model of conflict wherein
characters may undertake actions which thwart the inten-
tions of other characters operating in the plan. Bahamón
and his collaborators (Bahamón, Barot, and Young 2015;
Bahamón and Young 2017) incorporate a model of charac-
ter personality which influences character behavior at choice
points in the narrative. Throughout these extensions to the
classical planning algorithm, the previous approaches have
assumed two things. First, they make no distinction between
the knowledge held by characters and that held by the plan-
ning system. Second, the algorithms are based on a long
tradition of planning research outside of narrative planning
where the soundness of planning algorithms is critical. In
typical AI planning, algorithms are shown to be formally
sound – that is, that every plan produced by the algorithm
is guaranteed to execute correctly. This is a highly desirable
property when producing plans for robot execution on a fac-
tory floor, but it is limiting when producing plans to drive
characters bumbling through a story world.

The initial work addressing disparities of knowledge be-
tween agents in a planning context was done by Pollack in
her work on the Spirit plan inference system (Pollack 1986).
This work in turn motivated Geib’s (1994) approach to for-
malizing intention in a plan generation system. As part of the
resulting ItPlanS planner, Geib and Webber (1993) draw the
distinction between an action’s preconditions and other con-
ditions that are necessary for an action’s execution (but are
not established by the planner should they not hold). Geib
also considers the importance of reasoning about action fail-
ure in the context of plan generation. Cavazza and his col-
laborators (2003) describe an approach to the generation of
story sequences where characters are unaware of some as-
pects of the world around them, including the harmful con-
sequences of some of their own actions.

Teutenberg and Porteous (2013) implement an HSP-style
state-space planner (Nebel and Hoffmann 2001) that pro-
duces story plans guided by a heuristic that incorporates in-
dividual characters’ intentions. Instead of using an approach
where a central planner generates intentions for all charac-
ters, the IMPRACTical planner delegates intentional reason-
ing to per-agent planning processes. A director agent coor-
dinates suggested actions to best advance a plan toward its
goal state.

In an extension to this work, Teutenberg and Porte-
ous (2015) create separate belief models for each of the
agent planners. Using a combination of observation axioms
and operator annotations, their system can create disparities
between the belief models of the agents and the world state.
Plan generation is directed based on actions supported by
beliefs of the enacting agent. This enables deceptive social
action, manipulation of the belief state of one agent by ac-
tions of another. Subsequently the manipulated agent can be

induced to act against its own interests because of the incor-
rect beliefs it holds.

The approach by Teutenberg and Porteous extends the ex-
pressive range of story planners to create stories in which
agents undertake actions motivated by intentions that arise
from false belief. In their work, they explicitly represent the
epistemic state of each character. However, in order for an
action to be included in a plan, the preconditions of the ac-
tion itself must both be believed to be true by the perform-
ing agent and must actually hold in the world at the time
the action is attempted. In situations where false beliefs of
an agent suggest that an action be undertaken whose pre-
conditions do not hold in the world, the suggested action is
disregarded. Their planning model prevents executable ac-
tions from occurring when characters lack the belief in the
actions’ preconditions. In contrast, we describe here a plan-
ning model that enables attempts at actions where the actions
are not executable but characters believe that they are.

An alternative approach to the planner-per-agent model
is one in which the planning problem is framed as a search
through belief space instead of search through state space. In
this approach, a state characterization is composed of belief
states which are sets of world states described by a given be-
lief model. This approach to plan generation was originally
explored through the use of partially observable Markov
decision processes; Bonet and Geffner (2000) developed a
real-time dynamic programming (RTDP) approach to find
preferred paths through the belief space. Bryce and collab-
orators (2006) provide several metrics upon which to base
heuristics for use in such a planner. None of these efforts,
however, have targeted story-line generation in the same
manner as the work described in the preceding paragraphs
(e.g., by adapting other domain-independent planning algo-
rithms to account for the structural properties of stories that
are distinct from conventional task representations).

Representation

HEADSPACE uses a PDDL-like (Ghallab et al. 1998) syntax
for representing schematized action types in which actions
are characterized in terms of preconditions – conditions that
must obtain in the world state in order for the action to exe-
cute – and effects – conditions in the world state that change
upon the action’s successful execution. For efficiency, we
follow the approach of Nebel and Hoffmann (2001) and oth-
ers and pre-compile schematized operators for a given do-
main into a set of ground operators representing every valid
ground instantiation of a domain’s act-types. We further dif-
ferentiate the knowledge representation by describing both
preconditions and effects related to the physical world and
others that obtain in the beliefs of the character performing
the action. In HEADSPACE, a world frame captures the sets
of ground literals that can be used to characterize the world,
as well as the set of symbols used to name the characters
capable of taking action in the world.

In the HEADSPACE knowledge representation, the set O
contains all the object constants for a given domain. There
is a distinguished type of object symbols called character,
character symbols are contained in a set C where C ⊆ O.
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Characters are distinguished from other objects by their abil-
ity to take action.

In HEADSPACE, a world frame captures the sets of ground
literals that can be used to characterize the world, as well as
the set of symbols used to name the characters capable of
taking action in the world.

Definition 1 (World Frame) A world frame is a tuple W =
〈GL,C〉 where GL is a set of positive ground literals and C
is a set of constants, each denoting a unique character. C
contains one distinguished character name E, which desig-
nates the environment.

A belief state characterizes the ground literals that a char-
acter believes to be true and false, as well as those whose
truth values that are unknown to the character.

Definition 2 (Belief State) Given a world frame W =
〈GL,C〉, a belief state for some character c ∈ C is a tuple
BSc = 〈B+

c , B−c , Uc〉 such that B+
c , B−c and Uc together

form a partition of GL, whereB+
c designates all the ground

literals that c believes to be true, B−c includes all the ground
literals that c believes to be false and Uc designates all the
ground literals that c does not believe to be true and does
not believe to be false.

A world state assigns truth values to every ground literal
in a world frame, and also provides belief state specifications
for every character in a world frame.

Definition 3 (World State) Given a world frame
W = 〈GL,C〉, a world state is a tuple w =
〈Tw, Fw, BSc1 , ...BScn〉 where Tw and Fw together
form a partition of GL, where Tw designates all the ground
literals that are true at w, Fw includes all the ground
literals that are false at w and each BSci designates the
belief state for character ci at w, where 1 ≤ i ≤ |C|.
Definition 4 (Epistemic Goal Specification) Given a
world frame W = 〈GL,C〉, an epistemic goal specification
for some character c ∈ C is a tuple EGc = 〈B+

c , B−c , Uc〉
such that B+

c , B−c and Uc contain only elements from GL
and have no common elements, where B+

c designates all
the ground literals that c should believe to be true, B−c
includes all the ground literals that c should believe to be
false and Uc designates all the ground literals that c should
not believe to be true and should not believe to be false.

Definition 5 (Master Goal Specification) Given a world
frame W = 〈GL,C〉, a master goal specification is a tu-
ple MGS = 〈Tw, Fw, EGc1 , ...EGcn〉 where each element
of the tuple is a set that contains only elements from GL,
Tw ∩ Fw = ∅, where Tw designates all the ground liter-
als that must be true at some goal state, Fw includes all the
ground literals that must be false at some goal state and each
EGci designates the epistemic goal specification that must
be true for character ci at the goal state, where 1 ≤ i ≤ |C|.

A ground operator is a complete specification of an ac-
tion in terms of the character performing the action, the con-
ditions that must be true or false in the world in order for
the action to execute, what the character performing the ac-
tion must believe about the world in order for her to take
the action, and how the action, once successfully executed,

changes the world and the beliefs of the performing charac-
ter.

Definition 6 (Ground Operator) A ground operator GOP
is a tuple GOP = 〈c,PRE-T,PRE-F,PRE-B+,PRE-
B−,PRE-U,EFF-T,EFF-F,EFF-B+,EFF-B−,EFF-U〉 such
that

• PRE-T,PRE-F,PRE-B+,PRE-B−,PRE-U,EFF-T,EFF-
F,EFF-B+,EFF-B−,EFF-U ⊆ GL

• PRE-T ∩ PRE-F=PRE-B+ ∩ PRE-B− ∩ PRE-U=EFF-
T∩ EFF-F ∩ EFF-B+ ∩ EFF-B− ∩ EFF-U= ∅

• c ∈ C.

Informally,

• c designates the character initiating (or performing) the
ground operator.

• PRE-T indicates the conditions in the world that must be
true in order for the operator to execute.

• PRE-F indicates the conditions in the world that must be
false in order for the operator to execute.

• PRE-B+ indicates the conditions that c must believe to
be true in the world in order for c to consider the operator
executable.

• PRE-B− indicates the conditions that c must believe to be
false in the world in order for c to consider the operator
executable

• PRE-U indicates the conditions that c must neither believe
to be true or false in the world in order for c to consider
the operator executable

• EFF-T indicates the conditions that become true in the
world state resulting from the operator’s successful exe-
cution

• EFF-F indicates the conditions that become false in the
world state resulting from the operator’s successful exe-
cution

• EFF-B+ indicates the conditions that c believes become
true in the world state resulting from the operator’s suc-
cessful execution

• EFF-B− indicates the conditions that c believes become
false in the world state resulting from the operator’s suc-
cessful execution

• EFF-U indicates the conditions that c neither believes are
true nor are false in the world state resulting from the op-
erator’s successful execution

We call the preconditions and effects that refer to liter-
als that are true or false in the physical world (i.e., PRE-T,
PRE-F,EFF-T and EFF-F) as material and those that specify
beliefs of the character (i.e, PRE-B+,PRE-B−,PRE-U,EFF-
B+,EFF-B−, and EFF-U), as epistemic. In HEADSPACE,
beliefs are always held by a particular agent, and only about
ground literals and their truth values in a particular world.
There are no nested beliefs, no existential or universal quan-
tification over beliefs and no implications defined over be-
liefs.

Following Riedl and Young (2010), the use of the envi-
ronment as the agent performing an action allows specific
types of intentional actions to be inserted into the plan with-
out the need to specify the action’s performing character as
one of those typically viewed as holding agency in a domain.

246



We call actions performed by the environment environmen-
tal actions and actions performed by characters other than
the environment character actions. To designate environ-
mental actions, we use a naming convention that prepends
an asterisk to the front of the action name, For instance,
the environmental action that involves striking a charac-
ter with a lightning bolt might be named *STRIKE-WITH-
LIGHTNING. For ground operators of environmental actions,
the variable c is not used to designate the character perform-
ing the action, but rather the character affected by the action.
All environmentally performed actions have empty PRE-B+

and PRE-B− sets and empty EFF-T and EFF-F sets.

Constructing Story Plans from Planning

Problem Specifications

Typical planning representations include a set of schema-
tized action operators characterizing the classes of actions
that can occur in a domain. In our approach, we take a set
of such operators and a set of object constants and gener-
ate a world frame and a set of ground operators from them.
This pre-processing is comparable to typical grounding pro-
cesses used by forward-state planning algorithms (e.g., those
of Nebel and Hoffmann (2001)).

A planning problem, then, is a tuple including a world
frame describing all possible ground literals and characters
in a domain, an initial world state characterizing the truth
values of all literals and the beliefs of all characters, a goal
state giving a partial description of a goal world and a set of
ground operators available for characters to execute in the
domain.

Definition 7 (Planning Problem) A planning problem is a
tuple PP = 〈WF,w0,MGS, GO〉 where WF is a world
frame, w0 is a world state defining the initial state of any
solution to the problem, MGS is a master goal specification
for the problem, and GO is a set of ground operators for the
domain.

An action, represented by a ground operator, is executable
in some state w just when all its material preconditions ob-
tain in w.

Definition 8 (Executability/Unexecutability) A ground
operator GOP = 〈c,PRE-T,PRE-F,PRE-B+,PRE-
B−,PRE-U,EFF-T,EFF-B+,EFF-B−,EFF-U〉 is executable
for character c (or in the case of environmental actions, for
the environment) in state w = 〈Tw, Fw, BSc1 , ...BScn〉 just
when PRE-T⊆ Tw and PRE-F⊆ Fw. We say that a ground
operator GOP is unexecutable for character c (or for the
environment) in state w just when it is not executable for c
in w.

An action is apparently executable in some state w for a
character c just when c’s belief state in w supports all of the
action’s epistemic preconditions in w.

Definition 9 (Apparent Executability/Unexecutability)
A character action’s ground operator GOP = 〈c,PRE-
T,PRE-F,PRE-B+,PRE-B−,PRE-U,EFF-T,EFF-B+,EFF-
B−,EFF-U〉 is apparently executable for some char-
acter c in state w = 〈Tw, Fw, BSc1 , ...BScn〉, where

BSc = 〈B+
c , B−c , Uc〉, just when PRE-B+⊆ B+

c ,PRE-
B−⊆ B−c and PRE-U⊆ Uc.

Definition 10 (Plan) A plan P for some planning problem
PP = 〈WF,w0,MGS, GO〉 is a sequence of k tuples
〈〈⊥, w0〉, ..., 〈ak, wk〉〉, where each ai ∈ GO, ⊥ indicates
a dummy null action placeholder, and each tuple 〈ai, wi〉
indicates the ith action in the plan (attempted in world state
wi−1) and wi the state that obtains after wi was attempted.

Definition 11 (Solution) A solution for some planning
problem PP = 〈WF,w0,MGS, GO〉 is a plan P for
PP where, for every tuple 〈ai, wi〉 in P , ai is ap-
parently executable in wi−1 and wi is the world re-
sulting from attempting ai in wi−1. and for a plan of
length k, wk supports MGS . Specifically, a world state
wk = 〈Twk

, Fwk
, BSc1 , ...BScn〉 supports a master goal

state MGS = 〈TMGS , FMGS , EGc1 , ...EGcn〉 just when
TMGS ⊆ Twk

, FMGS ⊆ Fwk
, and for each BSci =

〈B+
ci , B

−
ci , Uci〉 and EGcn = 〈B+

ciEG , B
−
ciEG , UciEG〉,

B+
ciEG ⊆ B+

ci , B
−
ciEG ⊆ B−ci , and UciEG ⊆ Uci .

Plan Generation

The HEADSPACE algorithm, shown in Algorithm 1 uses
forward-directed state-space search. Search starts at a given
initial state, and transition from a given state to its succes-
sor states is made through the ground operators that are
apparently executable by the characters in the given state.
Given a world frame W = 〈GL,C〉 and a world state
wi = 〈Twi , Fwi , BSc1 , ...BScn〉, the planner generates suc-
cessor states for wi as follows. First, the planner generates
the set of all apparently executable ground operators at wi,
designated AEwi

, by taking the union of all actions that ap-
pear executable in wi to each character ck, 1 ≤ k ≤ |C|.

For every executable action in AEwi , let its successor
state w′ be equal to modifying wi as follows:

Definition 12 (Execution Update) An execution update for
action a = 〈c,PRE-T,PRE-F,PRE-B+,PRE-B−,PRE-
U,EFF-T,EFF-F,EFF-B+,EFF-B−,EFF-U〉 executed by c in
world state w = 〈Tw, Fw, BSc1 , ...BScn〉 creates a new
world state w′ = 〈T ′, F ′, BS

′
c1 , ...BS

′
cn〉 as follows.

• T ′ = {Tw ∪ EFF-T}−EFF-F
• F ′ = {Fw ∪ EFF-F}−EFF-T
• For each BSci = 〈B+

ci , B
−
ci , Uci〉 in w, create BS

′
ci =

〈B+′
ci , B

−′
ci , U

′
ci〉 where

– B+′
ci = {B+

ci ∪ EFF-B+} − {EFF-B−∪ EFF-U}
– B−

′
ci = B−ci ∪ EFF-B−} − {EFF-B+∪ EFF-U}

– U
′
ci = {Uci ∪ EFF-U} − {EFF-B+∪ EFF-B−}

For two adjacent tuples 〈ai, wi〉 and 〈ai+1, wi+1〉 in a
plan P, when ai+1 is an executable action, we say that ai+1

was executed by ci+1 in wi, resulting in wi+1. For two adja-
cent tuples 〈ai, wi〉 and 〈ai+1, wi+1〉 in a plan P, when ai+1

is an unexecutable action, we say that ai+1 was attempted
by ci+1 in wi, resulting in wi+1.

When unexecutable actions are attempted by a character,
the actions fail. We call the manner in which the planner
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manages this kind of action failure the planner’s failure pol-
icy. In the current work, we define a relatively straightfor-
ward failure policy. First, with regard to action occurrence,
none of the attempted action’s effects obtain and no material
conditions in the world change. In effect, the action does not
execute. Second, with respect to failure detection, the char-
acter executing the failed action immediately detects that it
fails, but no other character detects the failure. Third, with
respect to local attribution, the character executing the failed
action assumes that the failure was due neither to execution
error nor to an error in the definition of the ground opera-
tor. Rather, the character assumes that the failure was due
to one or more of the action’s epistemic preconditions not
holding in the action’s world state. Formally, an epistemic
update occurs when an action is attempted but fails:

Definition 13 (Epistemic Update) An epistemic update
for action a = 〈c,PRE-T,PRE-F,PRE-B+,PRE-B−,PRE-
U,EFF-T,EFF-F,EFF-B+,EFF-B−,EFF-U〉 that is at-
tempted in world state w = 〈Tw, Fw, BSc1 , ...BScn〉
creates a new world state w′ = 〈T ′, F ′, BS

′
c1 , ...BS

′
cn〉 as

follows.

• T ′ = Tw

• F ′ = Fw

• For each BSci = 〈B+
ci , B

−
ci , Uci〉 in w:

– when ci = c

∗ Create BS
′
ci = 〈B+′

ci , B
−′
ci , U

′
ci〉 where

· B+′
ci = B+

ci−PRE-B+

· B−
′

ci = B−ci−PRE-B−

· U
′
ci = Uci ∪ PRE-B+∪ PRE-B−∪ PRE-U

– otherwise
∗ Create BS

′
ci = 〈B+

ci , B
−
ci , Uci〉

With respect to global attribution, the character doesn’t
attribute additional causal failure to the world. Finally, with
respect to an epistemic response, the character comes to not
believe all of the epistemic preconditions of the action.

In this initial definition of HEADSPACE, we use a simple
best-first search approach, though the specification of the al-
gorithm here is meant primarily to demonstrate the function-
ing of the belief update and executability criteria rather than
to advance specific planning heuristics.

Example

Domain Description

To demonstrate the range of belief dynamics and the inter-
action between belief and execution in HEADSPACE, we de-
fine a simple Western story domain we call the Break Out
domain. Ground operators for the domain are shown in Fig-
ure 1, although space limitations required that we list only
those ground operators from the domain that are used in the
particular plan we examine.

The Break Out domain example makes use of seven oper-
ators. They are DRAW-GUN, where a character draws a gun
from a holster at his or her waist, FIRE-AT-LOCK, where
a character fires a gun she’s holding at the lock of a door

Algorithm 1 HEADSPACE algorithm. For Planning problem
PP = 〈WF,w0, G,GO〉 and plan heuristic ranking func-
tion H, call HEADSPACE(WF,H, 〈〈⊥, w0〉〉, G,GO).

HS(〈GL,C〉,H,Plans,MGS,GO)
Using heuristic ranking function H, rank all plans in Plans. Let
P be the highest ranked plan in Plans.
if P is a solution then

Return P
else

Let w be wk, the world state in kth (final) tuple in the plan P
Let AE = ∅
for all c ∈ C do

Let AE = AE ∪ all apparently executable actions for c in
wk

end for
for all a ∈ AE do

if a is executable by c in wk then
Let w′ be the world state resulting from c executing ac-
tion a in world state w

else
Let w′ be the world state resulting from c attempting
action a in world state w.

end if
Append 〈a,w′〉 to the end of P
Let Plans = Plans ∪ P

end for
Call HEADSPACE(WF,H,P lans,G,GO)

end if

in order to break (and unlock) the door’s lock, CHECK-
CYLINDER, where a character opens the cylinder of a (re-
volver) gun that she’s holding in her hand, in order to de-
termine if the gun is loaded, LOAD-GUN, where a character
takes bullets from her gun belt and loads a gun that she’s al-
ready holding in her hand, OPEN-DOOR, where a character
opens an unlocked door that she’s standing near, TRAVERSE,
where a character walks through an open door into an adja-
cent room, OBSERVE-LOCAL+, where a character observes
the location of an object that’s in the same location as the
character, and OBSERVE-HOLDING+, where a character ob-
serves what she is currently holding in her hand.

For the example below, an informal sketch of the planning
problem’s initial state sets a character, Dolores, locked in a
jail cell that has only one exit: a door that’s locked. Fortu-
nately, Dolores’ compatriot has just tossed a gun belt con-
taining a holstered six-shooter through the cell window, and
she has already picked up the belt and strapped it on. The
goal for the story is for Dolores to be in the hallway outside
her cell.

The plan for the story is shown in Figure 2. In the story
plan, Dolores intends to shoot the door’s lock to damage it,
then open the door and escape her cell. The plan in Figure 2
shows the actual execution of the story fabula. In world state
w0, Dolores believes that her gun is loaded and in her hol-
ster, and the door to her jail cell is locked and closed. Her
beliefs at w0 are correct except for the fact that her gun is
unloaded. Dolores first draws her gun, then pulls the trigger,
intending to shoot the door’s lock, thus unlocking it. Because
the gun isn’t loaded, the action fails. At this point, Dolores
realizes that the action failed, and becomes uncertain about
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DRAW-GUN(D,GN) FIRE-AT-LOCK(D,GN,JC,DR) CHECK-CYLINDER-(D,GN) *OBSERVE-HOLDING+(D,GN)
PRE-T: Has(D,GN) PRE-T: Loaded(G) PRE-T: Holding(D,GN) PRE-T: Holding(D,GN)
PRE-N: Holding(D,GN) Holding(D,GN) PRE-F: Loaded(GN) EFF-B+: Holding(GN)
PRE-B+: Has(D,GN) At(D,JC) PRE-B+: Holding(D,GN)
PRE-B−: Holding(D,GN) At(DR,JC) EFF-B−: Loaded(D,GN) *OBSERVE-LOCAL+(D,DR,JC)
EFF-T: Holding(D,GN) PRE-B+: At(D,JC), At(DR,JC) PRE-T: At(D,JC)
EFF-B+: Holding(D,GN) Holding(D,GN) TRAVERSE(D,DR,JC,H) At(DR,JC)

EFF-F: Locked(DR) PRE-T: At(D,JC) EFF-B+: At(DR,JC)
LOAD(D,GN,AM) EFF-B−: Locked(DR) Conn(DR,JC,H)

PRE-T: Holding(D,GN) PRE-F: Closed(DR) *OBSERVE-LOCAL+(D,D,JC)
Has(D,AM) OPEN-DOOR(D,DR,JC) PRE-B+: At(D,JC) PRE-T: At(D,JC)

PRE-F: Loaded(GN) PRE-T: At(D,JC) At(DR,JC) At(D,JC)
PRE-B+: Holding(D,GN) PRE-F: Open(DR) Open(DR) EFF-B+: At(D,JC)

Has(D,AM) Locked(DR) EFF-T: At(D,H)
PRE-B−: Loaded(GN) PRE-B+: At(D,JC) EFF-F: At(D,JC)
EFF-T: Loaded(GN) PRE-B−: Locked(DR) EFF-B+: At(D,H)
EFF-B+: Loaded(GN) EFF-F: Locked(DR)

Open(DR)

Figure 1: Ground Operators used in the Break Out Planning Domain. Here, object constants have been abbreviated to preserve
space. Throughout, we use D for Dolores, GN for her gun, JC for the jail cell where she is imprisoned, H for the hallway outside
the jail cell, DR for the door between the jail cell and the hallway, AM for the gun’s ammo. In this domain, doors are At both
of the rooms that they connect.

just those beliefs that were involved in the failed action’s
preconditions.

In the resulting state, w2, all of the epistemic precondi-
tions for Dolores’ execution of Action 2 (the first FIRE-GUN
action) have been asserted as unknown in her belief model.
Dolores then passively senses the location of the door to her
jail cell (Action 3) and her own location (Action 4), and then
passively senses that she’s holding her gun in her hand (Ac-
tion 5). She then actively seeks new beliefs about the gun’s
ammo status by checking the gun’s cylinder (Action 6). As a
result of Action 6, Dolores believes in w6 that her gun is un-
loaded. In Action 7 she takes bullets from her gun belt and
loads the gun, then in Action 8 she fires at the lock again.
Succeeding this time, the door is now unlocked. Since Do-
lores believes correctly in w9 that the door is unlocked, she
opens the door (Action 9) and walks out to escape her cell
(Action 10).

Discussion and Future Work

The HEADSPACE planning algorithm provides an initial def-
inition of a knowledge representation and planning algo-
rithm to generate plots containing actions that fail due to
characters’ false beliefs. When specifying the representation
and its use, however, we identified a number of larger issues
around the generation of plans containing failed actions that
remain to be explored.

From a plan generation perspective, this work exposes a
significant difference in the construction of heuristic func-
tions for HSP-like domain-independent planners and plan-
ners operating in narrative domains. Conventional planners
use heuristic functions that are optimized to search for
shortest-length plans and do so by searching through a re-
laxed domain model where some harmful interactions be-
tween actions are ignored. Because characters often do not
select optimal courses of action in stories, efficient gener-
ation of plans that contain these narrative features requires
methods for search that are informed by narrative’s unique

structural needs (similar to the approach taken by Ware and
Young (2014)).

Our current method for updating characters’ belief states
after failed beliefs have at least four limitations that we are
currently addressing in near-term work. First, when an ac-
tion fails, the performing character transfers all precondi-
tions of the failed action into the unknown partition of their
belief state. This has the effect, for instance, of Dolores
doubting her location and the door’s location after the gun
fails to go off. A more informed credit assignment algo-
rithm could do better at picking which preconditions should
be called into question upon failure of an action.

Second, characters other than the ones performing actions
do not become aware of the actions’ success or failure. All
characters have the same opportunity to sense the world after
actions occur, and can thus maintain correct beliefs about the
current state of the world, but can’t avail themselves of the
inferences about epistemic preconditions that arise from the
failure of an apparently executable action.

Third, because preconditions and effects do not make ref-
erence to actions, characters currently do not become aware
of actions as they execute (or are attempted). In future work,
we will extend the language around beliefs to include refer-
ences to action execution.

Finally, beyond the representation and reasoning about
belief and action, we are actively extending HEADSPACE to
characterize character intentions and the interaction be-
tween a character’s beliefs, desires and intentions within a
story (Young 2017).
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2. FIRE-AT-LOCK(D,GN,JC,DR)

1. DRAW-GUN(D,GN)

3. OBSERVE-LOCAL+(E,D,D,JC)

4. OBSERVE-LOCAL+(E,D,DR,JC)

6. CHECK-CYLINDER(D,GN)

7. LOAD-GUN(D,GN,AM)

8.FIRE-AT-LOCK(D,GN,JC,DR)

9. OPEN-DOOR(D,DR,JC)

10. TRAVERSE(D,DR,JC,H)
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Figure 2: A solution plan for the Break Out domain, show-
ing the sequence of world states and actions attempted and
performed by Dolores. Green actions are successfully per-
formed actions. Red actions are ones that are attempted but
that fail because their non-belief preconditions are not all
met in the world state where they are attempted.
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