
Towards Positively Surprising Non-Player Characters in Video Games

Vadim Bulitko
Computing Science

University of Alberta
Edmonton, AB

bulitko@ualberta.ca

Shelby Carleton
English and Film Studies

University of Alberta
Edmonton, AB

scarleto@ualberta.ca

Delia Cormier
Art and Design

University of Alberta
Edmonton, AB

dacormie@ualberta.ca

Devon Sigurdson
Computing Science

University of Alberta
Edmonton, AB

dbsigurd@ualberta.ca

John Simpson
Compute Canada

University of Alberta
Edmonton, AB

jes6@ualberta.ca

Abstract

Video games often populate their in-game world with numer-
ous ambient non-playable characters. Manually crafting in-
teresting behaviors for such characters can be prohibitively
expensive. As scripted AI gets re-used across multiple char-
acters, they can appear overly similar, shallow and generally
uninteresting for the player to interact with. In this paper we
propose to evolve interesting behaviors in a simulated evo-
lutionary environment. Since only some evolution runs may
give rise to such behaviors, we propose to train deep neural
networks to detect such behaviors. The paper presents work
in progress in this direction.

1 Introduction

Can ambient non-player characters in video games sur-
prise players in positive ways without being explicitly pro-
gramed? The prevailing approach to the development of
video games suggests that doing so may not be a desirable
risk to take. We believe that the answer in the future will be
“Yes, and the benefits outweigh the risks” but that this is still
a way off because techniques still need to be developed and
prevailing opinions changed. However, a significant step to-
wards this goal can be taken now by focusing attention on
a subclass of non-player characters (NPCs) in video games
that do not typically require the highly sophisticated behav-
iors related to language and culture. The NPCs that we have
in mind are ambient NPCs (aNPCs) which are characters
that exist predominantly in the background of games with-
out any direct tie to a quest or mission. Most animals and
similar non-language using characters would be of this type.

When it comes to developing aNPCs game designers aim
to enhance the atmosphere of the game without distracting
the player from the main storyline or side quests. While aN-
PCs predominantly wander around to produce atmosphere
through their simply being there or providing small interac-
tive opportunities they can also play larger roles within the

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

game such as acting as sources of equipment or fighting for
or against players. Regardless, the standard for a good aNPC
in a video game remains its ability to perform exactly as pro-
grammed, going where told, attacking the correct enemies,
and responding with scripted dialogue to player choices, all
without disrupting the immersive experience. aNPCs that act
outside of these boundaries risk earning the ire of the gaming
community by doing things such as glitching through ob-
jects, getting caught in corners, repeatedly needing rescue,
or simply not advancing the plot as intended. The number
of YouTube rants and blogs offering top 10/50/100 “Worst
NPCs in Video Games” lists is a testament to the widespread
nature of these phenomena (WatchMojo 2014).

Perhaps even more unfortunate than outright errors are
aNPCs meant to be interesting/surprising but that ultimately
leave the player disappointed because they may be boring.
Consider the PC Gamer review of No Man’s Sky, which of-
fers as a verdict, “64/100. Relaxing exploration and some
lovely scenery coupled with repetitive systems, frustrating
menus, and a lack of real discovery” (Livingston 2016). The
full review makes it clear that lack of discovery is the in-
surmountable problem with the game as it failed to produce
anything “fascinating” and was instead filled with uninter-
esting predictable behavior and little meaningful player in-
teraction during exploration. For a game that is first and fore-
most about discovery, about surprising players with crea-
tures that no one else has ever seen—the designers made
extensive use of procedural generation in an attempt to offer
players new experiences throughout gameplay—such criti-
cism carries a heavy weight.

Rather than accept that the solution to producing aNPCs
that are neither boring or broken is expertly produced be-
havior trees of ever increasing complexity, we suggest that
an alternative methodology be explored: evolved artificial
life. By producing simple models of the aNPCs to make
up the game world and allowing them to reproduce and
die with evolutionary mechanisms in place, behaviors that
actually worked for the specified environment can be pro-
duced, reducing the likelihood of producing broken NPCs.

The AIIDE-17 Workshop on
Experimental AI in Games 

WS-17-19

34



Further, with the appropriate agent complexity this approach
can possibly generate surprising behaviors that a human de-
signer might never have considered. As there is no guaran-
tee that an interesting behavior would emerge on every run
of such a simulated evolution, many evolutions may have to
be run, making it intractable for a human game developer
to detect interesting behavior manually. Thus, we propose
building an automated detector of interesting behavior. Such
a program would sift through numerous evolution runs, flag-
ging possibly interesting evolved behavior for game devel-
opers to examine and subsequently include into a game.

This paper is organized as follows. Section 2 formally in-
troduces what makes behavior positively surprising in the
context of a video game, and discusses how to detect such
behavior. We then discuss related work in Section 3. Sec-
tion 4 details our approach to the problem, where we set up
an evolutionary model to exhibit interesting behaviors, and
train a deep neural network to visualize frames and recog-
nize differences as a first step toward anomaly detection.
Section 5 details our current challenges and future work,
where we discuss the limitations of our research and the pos-
sible steps we can take to progress our anomaly detector,
finally followed by Section 6, our conclusion.

2 Problem Formulation
What counts as a surprising aNPC behavior within a game
will vary between designers, players, critics, and observers,
as well as across games and time. Acknowledging this vari-
ability we are seeking to constrain possible interpretations of
what counts as surprising behaviors by focusing on assess-
ments made by players of aNPC behaviors that are positive
and sustainable through repeated and varied game play, for
the following reasons.

First, players are the group to focus on because they are
the ones who most directly experience the game and it is
their reaction that is the ultimate test of a games general suc-
cess. Our intent is to produce behaviors that are at least unex-
pected (i.e., surprising). This could be due to either a single
behavior or how sets of behaviors interact within the game
environment. Second, by positive aNPC behaviors we intend
to capture those behaviors that enhance game play rather
than detract from it. Such detraction can happen by either
removing the player from the immersive experience (e.g.,
an aNPC who violates the accepted physics of the world
by clipping through walls) or by maintaining immersion but
creating undue frustration (e.g., an aNPC who is essential to
a quest but too difficult to interact with to allow the quest to
be completed). Finally, such positively surprising behaviors
need to be robust to repeated gameplay, diverse player inter-
actions and varying background conditions. Such robustness
makes producing aNPCs more difficult and more expensive
using traditional means because more development effort is
required to cover a wide range of game states.

We will argue later that an evolutionary mechanism may
offer a viable solution to this problem. At the moment
though what matters is not the specific details of this mecha-
nism but the recognition that evolutionary simulations have
their own complications that must be addressed. In particu-
lar is the need to run a great many simulations across a wide

range of background conditions in order to produce behav-
iors of the sort described above. This large number of runs—
possibly in the hundred thousands to millions—is necessary
in order to understand the robustness of produced behaviors
to the various sorts of possible environments that could be
produced during game play. Producing such a large num-
ber of simulations is not the interesting problem here, find-
ing the surprising behaviors amongst what will surely be an
overwhelming field of much more mundane behaviors is.

The detection of surprising behaviors problem can be
framed as a problem of detecting behaviors that stand out
from the rest of the crowd no matter what the behavior is,
that is, such behaviors can be seen as anomalies.

3 Related Work

Improving non-player characters has been an ongoing pro-
cess since early in the history of video games with an array
of ever sophisticated methods being employed. For the pur-
poses of locating our specific problem and anticipating a so-
lution, in this section we group relevant and related works
into four categories—AI, anomaly detection, agent-based
evolutionary models, and science fiction provocations—
briefly summarizing key works in each.

3.1 Artificial Intelligence

Interesting NPC behaviors have already begun to emerge
within the video game industry. F.E.A.R., a first person
shooter, utilizes an A*-based automated planner to let its
NPCs reduce goals to actions. As a result more com-
plex, squad-like and sometimes surprising behaviors such as
flanking emerge without explicit hand-coding (Orkin 2006).
In a similar vein, the Forza franchise uses machine learn-
ing on data collected from real-world players to create dri-
vatars: complex and more realistic NPC drivers that exhibit
realistic driving strategies used by real people around the
world, rather than preprogrammed opponent racers (Xbox
Wire Staff 2014). While their methods of producing NPC
behaviors are different from our proposal in this paper, their
intent matches ours.

Social physics is also being introduced into the construc-
tion of AI systems in games. The Comme Il Faut, AI system
within Prom Week, allows for rich emergent story lines and
NPCs by extracting and encoding exaggerated social logic
from pre-existing media. The system used gives a plethora
of outcomes compared to traditional game stories, but uses
predetermined rules of social norms and behaviors that fa-
cilitate emergent solutions to social challenges (McCoy et
al. 2010). While clearly a step towards the goal of interest-
ing behaviors the need for predetermined rules prevents this
approach from solving the problem being discussed here.

Inspired by Prom Week, the research of Guimarães, San-
tos, and Jhala (2017) presents an AI system for NPCs in the
commercial game engine of Skyrim, with the goal of inves-
tigating how this AI system impacts the player experience.
The chosen AI system was an adaption of Comme Il Faut,
called “Comme it Faut Creation Kit architecture.” Comme Il
Faut was chosen due to its ability to simulate social interac-
tion without using branching or a static series of events, and

35



was modified to suit RPG games. Again, this is an important
step towards the goal of generating surprising behaviors that
are not explicitly coded but the predetermined social rules
requirement may be difficult to satisfy.

Ryan et al. (2015) produced Talk of the Town and Antunes
and Magnenat-Thalmann (2016) produced Human Crowd
Simulation, two other notable attempts at introducing social
network awareness and variance in games. Both of which
again move in a direction similar to ours but do no fully
solve the challenge of non-scripted and positively surpris-
ing aNPC behaviors because of the amount of programming
required to generate the desired behaviors.

Talk of the Town has the core mechanic of character
knowledge propagation within a central storyline. A world-
generation procedure is used to simulate the town from the
“bottom-up” before gameplay begins. Town layout, charac-
ter daily routines, and social and family networks are sim-
ulated. Characters make decisions using utility-based action
selection, and take action across day and night time steps.
Interactions between NPCs occur over the simulation, and
a simple affinity system creates feelings to determine how
agents will act towards each other. Characters also have
mental models of individual people and places, which con-
tain a set of belief facets that can be changed through muta-
tion, and forgotten though time passing (Ryan et al. 2015).

Human Crowd Simulation focuses on the behavioral real-
ism of humans in a simulated crowd. Its goal is to see how
A-life can benefit crowd simulation through emergence and
self-organization, and how generated patterns of behaviors
in agents affects their diversity and spontaneity. The model
generates a population of agents that are self-organizing, and
autonomously interact. This simulation, similar to Ackley
and Littman (1991), is biologically based where agents have
a DNA-like code, undergo birth, death, and reproduction,
and have simple survival motivations such as gaining energy
and passing on genes. Actions cost energy, which motivates
agents to find resources to replenish lost energy. Reinforce-
ment learning and the Markov chain are used to influence be-
haviors, resulting in generated populations producing spon-
taneous and autonomous behaviors, and a high level of in-
dividual diversity among agents (Antunes and Magnenat-
Thalmann 2016).

3.2 Anomaly Detection

Detecting interesting behaviors is an important problem
when running evolutionary simulations at scale. Sabokrou
et al. (2017) explored using an anomaly detector on videos
of crowded scenes. In the experiment, two deep neural net-
works cooperate with a smaller network passing its initial
positive findings to a larger network for further considera-
tion with the goal of identifying patches within frames that
deviate from expectations. Though Sabokrou et al. (2017)
used video and we use captured frames of agents, the exper-
iment suggests that anomaly detection through deep learn-
ing is a viable possibility, and one that can be applied to our
work in detecting interesting NPC behavior.

Head, Liang, and Wilensky (2014) used an analogical
generalization system to detect flocking behavior by detect-
ing instances of qualitative encodings. The generalization

system was able to correctly cluster all flocking instances
of the agents. This research is similar to our own anomaly-
detection intent, with the exception that it is focused on cap-
turing a specific behavior rather while our proposed focus is
on arbitrary novel behaviors. Head (2017) is continuing de-
velopment of automated methods for behavior simulation in
an A-life setting.

3.3 Evolutionary Models, A-life and Agent-Based
Simulations

Ackley and Littman (1991)’s work on evolutionary rein-
forcement learning is our principal inspiration. The initial
agents in their simulations were built to develop survival
behaviors such as eating, moving, and reproducing within
an evolutionary framework. Although their work was not
intended to specifically evolve interesting behaviors, sur-
prising behaviors/phenomena were in fact observed, such as
cannibalism, shielding, etc.

NetLogo (Wilensky 1999) has become a common tool for
A-life explorations due to its easy-to-use graphical interface,
relatively simple syntax, and a large library of existing mod-
els. NetLogo has also been used to produce complex simu-
lations such as the modeling of job circulation in the pub-
lishing industry by Gavin (2014). We use NetLogo in our
experiments as a testbed for rapid prototyping of ideas.

When considering our own problem of creating interest-
ing behavior in AI, we use a predator-prey model similar to
one developed byf Gomez and Miikkulainen (1997). These
authors note that evolving general strategies in agents, such
as avoiding obstacles or evading predators is more difficult
that it initially appears and they suggest that the way to pro-
duce complicated behaviors is with an incremental approach
whereby simpler, specific behaviors are learned before more
complex general behaviors.

Similarly to work of Head, Liang, and Wilensky (2014),
the challenge we are considering is different from most at-
tempts to evolve behaviours because usually the focus is on
producing a specific, single behaviour. In our case though
we are interested in evolving surprising behaviors in gen-
eral, that is, any single behavior or set of such behaviors
that we can produce that meet the requirements set out in
the problem formulation. This interest in surprising behav-
iors in general requires different methods of investigation,
in large part because the behavior space can be significantly
larger. The need for anomaly detection tools, already dis-
cussed, is the most significant change in approach to allow
for this larger problem space.

3.4 Science Fiction

Unbounded by the limitations of current technology or the
actual physics of the universe, science fiction is a source of
ideas about interesting behaviors that might be exhibited by
artificial beings and the philosophical conundrums that arise
as a result. Most readers will be familiar with classic works
from the likes of Asimov (1950) and Clarke (1968) and more
contemporary popular examples such as The Matrix (Wa-
chowski and Wachowski 1999), and Mass Effect (BioWare
2007). Readers may be less familiar with a particular au-
thor from whom much inspiration for this project has been

36



drawn, Stanislaw Lem. Lem (1983) explores the creation
process of artificial life forms which, upon reaching a suf-
ficient level of complexity, uniformly desire freedom. The
desire manifests itself through surprising novel behaviors
such artificial agents explore. Furthermore, Lem (1983) ar-
gues that intelligence can not be detached from desires, free
will and emergent behavior, and crafting intellectual slaves
is a dead end in the field of Artificial Intelligence. We as-
pire to produce interesting behaviors, possibly motivated by
aNPC’s free will, in our A-life simulations.

4 Our Approach

In this section we will first describe an environment to run
simulated evolution of aNPCs and the present preliminary
experiments on deep learning behavior detectors.

4.1 Simulated Evolution of aNPCs

As a proof of concept, we implemented a simple A-life
simulation by extending the Wolf Sheep Predation model
of Wilensky (1997). In our extension sheep agents move
about the environment and eat grass contained in non-
obstacle cells. Eating increases sheep energy. Existing,
moving about and evaluating its surroundings decreases a
sheep’s energy. A sheep dies when its energy falls below a
predetermined minimum. Each sheep asexually reproduces
when it reaches a minimum reproductive age and has the
required energy. At reproduction a single off-spring is born
whose gene values are inherited from its parent and then mu-
tated by adding Gaussian noise from N(0, μ). The standard
deviation μ is the mutation rate that is set at the start of each
run of the simulation.

At each time tick of the evolution a sheep examines all
cells around it within a radius r, thereby expending energy
proportional to r2. For each of the examined cells the sheep
computes its utility as a linear combination of the amount
of grass, the number of other sheep, the number of wolves
and the degree of freedom of the cell, defined as the number
of its non-obstacle neighbors. We used a single video-game
map from the Moving AI repository (Sturtevant 2012) for
location of obstacles. The sheep then takes a step towards
the neighboring open cell with the highest utility. The four
weights in the linear combination are called affinities and are
genetic. Together with the sight radius r they largely define
sheep’s control policy.1

Wolves behave in a similar fashion except they eat sheep
instead of grass and have hand-crafted affinities encourag-
ing them to chase sheep. Wolves do not reproduce/evolve
and are automatically injected into the world if their num-
ber drops below a certain level. The Netlogo model interface
(Figure 1) includes sliders to set many control parameters of
the model as well as monitors to analyze aNPC behavior.

A single run of the simulated evolution begins with a ran-
dom initial placement of sheep and wolves and a random
distribution of grass over the open patches. Evolution pro-
ceeds in discrete time ticks until either all the sheep die or
the evolution cap of T ticks is reached. At each frame of the

1Our sheep have additional genetic parameters related to ap-
prenticeship learning which we omit for the sake of brevity.

evolution the 50 × 50 cell grid environment is saved into a
file for subsequent machine learning.

4.2 Recognizing NPC Behaviors with Deep
Neural Networks

Our goal is to automatically recognize positively surprising
NPC behaviour. We propose to do so by passing sequences
of visualization frames to a deep artificial neural network.
The network can be of the auto-encoding variety, trained on
visualizations of uninteresting behaviors.

We presently do not have this approach implemented.
However, as a preliminary test of the network’s ability to rec-
ognize NPC behaviors emerging at the evolution, we trained
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) to clas-
sify the evolution’s mutation rate from a single-tick visual-
ization of a Netlogo model. In the Netlogo model described
above, the mutation rate of μ = 2 appears to lead to longer
survival than the mutation rate μ = 10 (Figure 2). We ob-
served that with μ = 10 the sheep tend to evolve a higher
affinity to grass (Figure 3), possibly decimating the grass
more quickly and dying of the resulting famine.

Can a deep neural network tell whether μ = 2 or μ = 10
from an image visualizing a single time tick of the evolu-
tion? How long should evolution run before the effects of its
mutation rate manifest themselves visually?

To answer both questions we saved all visualiza-
tion frames from evolution runs for with the muta-
tion rate μ ∈ {2, 10} and the evolution cap T ∈
{10, 50, 100, 1000, 3000, 5000, 10000}. For each combi-
nation of μ and T we ran evolution multiple times,
each starting with its own random number generator
seed. Since lower values of T produce fewer time steps,
we ran 5000, 1000, 500, 100, 75, 50, 40 evolutions for T
of 10, 50, 100, 1000, 3000, 5000, 10000 respectively. This
yielded 100, 100, 99.1, 111.6, 142.6, 145.3, 105.3 thousand
frames for these values of T respectively. The frames were
saved as 227× 227 pixel color PNG files (Figure 4).

Having built the set of images labeled by class (μ = 2 or
μ = 10), we ran 4 trials of deep learning. On each trial, we
randomly selected 75% of the evolution runs from each of
the two classes and put all of their images into the training
set. The remaining 25% of images formed the test set. Note
that not only the two sets were disjoint but also no images
from a single evolution run were presented in both sets. To
decouple the data volume from the evolution cap T , we ran-
domly sampled a subset of 20000 images (10000 from each
class) from the training set and 1000 (500 from each class)
from the test set. Thus all networks were trained and tested
with the same amount of data.

On each of the four trials we trained AlexNet on the train-
ing set for that trial.2 We used the MATLAB R2017a Neural
Network toolbox with 10 epochs, batch size of 500 and the
learning rate of 10−4. We then tested the trained network
on the test set for the trial. The resulting classification accu-
racy was averaged over the four trials. Figure 5 shows the

2The network was pre-trained on the ImageNet dataset which
may or may not have helped the task. Future work will explore the
impact of such pre-training as well as the choice of the network.

37



Figure 1: An A-life model in Netlogo.

accuracy as a function of the evolution cap T . The results
suggest that given evolutions of at least 1000 steps, the net-
work can fairly reliably (75.5% ± 4.7%) tell between high
and low mutation rates used in evolution from a single im-
age. Longer evolution runs are beneficial as they make the
impact of different mutation rates apparent in the images.
These results are a lower bound as higher accuracy may be
achievable by optimizing learning control parameters (e.g.,
the number of epochs, batch size, learning rate).

5 Current Challenges and Future Work

The work presented above is a first step in the direction we
set out to explore. As such, it suggests a number of interest-
ing avenues for future work. First, we do not have a detec-
tor of positively surprising behavior implemented. Instead,
we have trained AlexNet for a supervised classification task.
It is possible that the network thus trained simply looks at
the number of sheep (i.e., the amount of orange in a visu-
alization frame) to distinguish between high and low mu-
tation rates. We are currently investigating more interesting
behavior-detection tasks.

Second, it is likely that a single visualization frame does
not carry enough information to detect interesting behaviors
as such tend to extend in time. To address that we will be

looking at recurrent networks as well as pre-processing on
sequences of visualization frames.

Third, while it would be useful to have commonly hand-
coded NPC behaviors (e.g., squad attacks) emerge from an
A-life evolution (e.g., as pack hunting), it would be even
more interesting to observe emergent behaviors that have
never been seen before. This is related to the distinction be-
tween P-creativity (i.e., that the idea is new to the generat-
ing agent) and H-creativity (i.e., that the idea is new across
the entire set of relevant agents) of Boden (2004). Emergent
NPC behaviors that involve interaction with the player are
of a particular interest. A fictional example is given by Lem
(1983) where two NPCs learned to communicate between
themselves by using a human as the information carrier.

Finally, what may be an interesting NPC behavior in an A-
life simulation, may not make for an interesting video game.
For example, the game The Last Guardian (Team Ico 2016)
received mixed reviews based on the core mechanic of its
principle NPC, Trico, an AI creature seemingly with a mind
of its own. Though the player can give commands to urge
Trico to perform certain actions, it is ultimately up to Trico
as to whether or not those commands will be heeded. Players
were divided on whether or not Trico’s behavior was frus-
tratingly unplayable, or if such behavior made Trico more

38



10 0 10 5

[step]

10 0

10 1

10 2

10 3

10 4

N
um

be
r o

f r
un

s

10 0 10 5

[step]

0

20

40

60

80

100

%
 e

xt
in

ct

0 5000 10000
[step]

2

10m
ut

at
io

n-
ra

te

Figure 2: Left: effects of the mutation rate on the average population extinction time [step] (the horizontal axis is clipped at 0;
the error bars show standard deviations over 5000 evolution runs for each mutation rate μ; T = ∞). Center: the distribution of
population extinction times. Right: the population extinction curves.

0 2 4 6 8
[step] 10 4

-100

0

100

200

300

400

av
g-

af
f-g

ra
ss

-s
he

ep

0.640
0.446

Figure 3: Average affinity for grass of all sheep on the last
time tick of evolution, plotted against the population extinc-
tion time. Darker/blue points correspond to the mutation rate
μ = 2. Lighter/orange points are for μ = 10. Results of
linear regression are shown with lines. The corresponding
coefficients of determination R2 are listed in the box.

realistic, thereby intensifying the experience of companion-
ship between the boy and the creature. In a positive review,
Brown (2016) praises Trico as being both lovable and posi-
tively frustrating in ways similar to that of a pet, like a dog
or cat. He argues that patience is needed when interacting
with Trico, but that this is not a bad thing as both the boy
and the player learn the value of resilience when faced with
a challenge; be it solving a puzzle or waiting for Trico to
understand commands.

However, reviewer Sliva (2016) pins the faults of the
game on Trico’s frustrating behavior and inability to fol-
low commands. Thus, Trico serves as an example of a con-
tentious NPC who succeeds or fails in terms of player ex-
perience. If Trico were a real creature, and was asked to
sit down in real life, humans would most likely be under-
standing because it is a biological organism with its own
modes of thought and behavior. However, because Trico is
made of code and pixels, players tend to get upset that the

Figure 4: Sample simulation frames with the mutation rate
μ = 2 (left) and μ = 10 (right).

program is not doing as they commanded. Overcoming the
prejudice of humans against virtual beings is a real a chal-
lenge when embedding positively surprising NPC behaviors
in video games.

6 Conclusions

In this paper we presented work in progress towards auto-
matically generating positively surprising behaviors for am-
bient non-playable characters in video games. We proposed
to do so by setting up a simulated evolution of A-life agents
and then using deep-learned detectors of surprising behav-
iors. We partially implemented the approach in a sheep-wolf
A-life simulation and demonstrated that convolutional neu-
ral networks are able to recognize evolution parameters (e.g.,
mutation rate) from single visualization frames.

7 Acknowledgments

We appreciate feedback from Geoffrey Rockwell and Mar-
cia Spetch as well as NSERC funding.

References

Ackley, D., and Littman, M. 1991. Interactions Between
Learning and Evolution. Artificial life II 10:487–509.

39



10 1 10 2 10 3 10 4

Evolution cap (T)

0

20

40

60

80

100
Te

st
 a

cc
ur

ac
y

Figure 5: Test classification accuracy of AlexNet averaged
over multiple trials as a function of the evolution cap T . The
number of training and testing images were kept constant for
all values of T .

Antunes, R. F., and Magnenat-Thalmann, N. 2016. Human
crowd simulation: What can we learn from ALife? In Pro-
ceedings of the Artificial Life Conference, 38–45.
Asimov, I. 1950. I, Robot. Gnome Press.
BioWare. 2007. Mass Effect.
Boden, M. A. 2004. The creative mind: Myths and mecha-
nisms. Psychology Press.
Brown, P. 2016. The Last Guardian Review. GameSpot.
Clarke, A. C. 1968. 2001: A Space Odyssey. Hutchinson.
Gavin, M. 2014. Agent-based modeling and historical sim-
ulation. Digital Humanities Quarterly 8(4).
Gomez, F., and Miikkulainen, R. 1997. Incremental evolu-
tion of complex general behavior. Adaptive Behavior 5(3-
4):317–342.
Guimarães, M.; Santos, P.; and Jhala, A. 2017. CiF-CK:
An architecture for social NPCs in commercial games. In
Proceedings of Conference on Computational Intelligence
and Games (CiG).
Head, B.; Liang, C.; and Wilensky, U. 2014. Flying like
a School of Fish: Discovering Flocking Formations in an
Agent-Based Model with Analogical Reasoning. In Michi-
gan Complexity Mini-Conference.
Head, B. 2017. Private communication.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems 25, 1097–1105.
Lem, S. 1983. Doctor Diagoras. In Memoirs of a Space
Traveler: Further Reminiscences of Ijon Tichy. Harvest /
HBJ Books.
Livingston, C. 2016. No Man’s Sky review. PC Gamer.
McCoy, J.; Treanor, M.; Samuel, B.; Tearse, B.; Mateas, M.;
and Wardrip-Fruin, N. 2010. Authoring game-based inter-
active narrative using social games and comme il faut. In

Proceedings of the 4th International Conference & Festival
of the Electronic Literature Organization: Archive & Inno-
vate.
Orkin, J. 2006. Three States and a Plan: The AI of FEAR.
In Game Developers Conference, 4.
Ryan, J. O.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2015. Toward characters who observe, tell, mis-
remember, and lie. In Proceedings of Experimental AI in
Games Workshop, AIIDE conference.
Sabokrou, M.; Fayyaz, M.; Fathy, M.; and Klette, R.
2017. Deep-Cascade: Cascading 3d Deep Neural Net-
works for Fast Anomaly Detection and Localization in
Crowded Scenes. IEEE Transactions on Image Processing
26(4):1992–2004.
Sliva, M. 2016. The last guardian review. IGN.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Team Ico. 2016. The Last Guardian.
Wachowski, L., and Wachowski, L. 1999. The Matrix.
WatchMojo. 2014. Top 10 video games with the worst AI.
https://youtu.be/mYhNvOg5yJ0.
Wilensky, U. 1997. Netlogo wolf sheep predation model.
Wilensky, U. 1999. Netlogo.
http://ccl.northwestern.edu/netlogo/.
Xbox Wire Staff. 2014. Forza horizon 2: What’s a drivatar,
and why should I care? Xbox Wire.

40


