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Abstract

A procedure that uses phonetic transcriptions of words to pro-
duce a continuous vector-space model of phonetic sound sim-
ilarity is presented. The vector dimensions of words in the
model are calculated using interleaved phonetic feature bi-
grams, a novel method that captures similarities in sound that
are difficult to model with orthographic or phonemic informa-
tion alone. Measurements of similarity between items in the
resulting vector space are shown to perform well on estab-
lished tests for predicting phonetic similarity. Additionally,
a number of applications of vector arithmetic and nearest-
neighbor search are presented, demonstrating potential uses
of the vector space in experimental poetry and procedural
content generation.

Introduction
Research in psychology and psycholinguistics shows that—
with apologies to Saussure—the sign is not arbitrary: words
and sounds in language trigger synesthetic associations be-
yond pure denotation (Ramachandran and Hubbard 2001).
Although a consistent and universal system of sound sym-
bolism may not exist, patterns of sound inside a text never-
theless attract the the attention of those who encounter them,
and thereby become important touchstones in the interpreta-
tion and negotiation of meaning:

[C]entral words (in theme or imagery) strengthen the
importance of a sound repetition; and the sound pattern,
in its turn, focuses attention to the relations between
these words (in meaning, or imagery). [...] Focusing
patterns do not merely make important words conspic-
uous, or link disparate images, they may also reshuffle
the emphasis of importance of words in a text, thereby
imposing upon the poetic text an additional principle of
order: that of sound relations. (Hrushovski 1980)

Alliteration, assonance, consonance and rhyme are all
figures of speech deployed in literary writing in order to
create patterns of sound, whether to focus attention or to
evoke synesthetic associations. These figures are all essen-
tially techniques for introducing phonetic similarity into a
text, whether that similarity is local to a single word, or dis-
tributed across larger stretches of text. Indeed, the presence
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of phonetic similarity has long been considered a criterion
for classifying a text as “poetic,” and researchers have de-
ployed quantification of phonetic similarity for a wide range
of statistical analyses of literary style and quality (Skinner
1941; Altmann 1964; Roazzi, Dowker, and Bryant 1993;
Kao and Jurafsky 2012).

The research presented in this paper concerns not just how
to quantify phonetic similarity in a text, but also how to char-
acterize and manipulate it. Inspired by recent results in vec-
tor representations of semantics based on word distribution
(Bengio et al. 2003, Mikolov, Yih, and Zweig 2013, etc.)
which allow for semantic relationships to be expressed us-
ing vector operations, I present a method for embedding text
in a continuous vector space such that stretches of text that
are phonetically similar are represented by similar vectors.
This embedding affords not just a simple and consistent way
to calculate phonetic similarity but also allows for phonetic
relationships to be characterized as vector operations. In the
remainder of the paper, I explain the model itself and give
experimental results alongside several creative applications
of vector operations in a phonetic similarity space.

The source code for this procedure, along with code to
replicate the experiments is available online.1 Available in
the same location is a file containing pre-computed vectors
for the CMU Pronouncing Dictionary.

Background and related research
One of the earliest systems for calculating phonetic similar-
ity is Soundex, first used to classify and disambiguate per-
sonal names in studies of the United States Census in the
1930s (Stephenson 1974). Soundex-like systems that calcu-
late phonetic similarity based on orthography alone are used
in informatics applications such as information retrieval and
spell-check (Philips 1990; Tissot, Peschl, and Fabro 2014).
Approaches to quantifying phonetic similarity that specifi-
cally involve phonetic features have been used by linguists to
study synchronic language variation (Ladefoged 1969), di-
achronic language change (Nerbonne 2010), and sound pat-
terning in phonology (Mielke 2012).

Hahn and Bailey (2005) present a computational model
for word similarity that uses measures of edit distance with
sub-phonemic features weighted with regard to syllabic

1https://github.com/aparrish/phonetic-similarity-vectors/
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Phone Features
AA bck, low, unr, vwl
AE fnt, low, unr, vwl
AH cnt, mid, unr, vwl
AO bck, lmd, rnd, vwl
AW bck, cnt, low, rnd, smh, unr, vwl
AY cnt, fnt, low, smh, unr, vwl
B blb, stp, vcd
CH alv, frc, stp, vls
D alv, stp, vcd
DH dnt, frc, vcd
EH fnt, lmd, unr, vwl
ER cnt, rzd, umd, vwl
EY fnt, lmd, smh, unr, vwl

Phone Features
F frc, lbd, vls
G stp, vcd, vel
HH apr, glt
IH fnt, smh, unr, vwl
IY fnt, hgh, unr, vwl
JH alv, frc, stp, vcd
K stp, vel, vls
L alv, lat
M blb, nas
N alv, nas
NG nas, vel
OW bck, rnd, smh, umd, vwl
OY bck, fnt, lmd, rnd, smh, unr, vwl

Phone Features
P blb, stp, vls
R alv, apr
S alv, frc, vls
SH frc, pla, vls
T alv, stp, vls
TH dnt, frc, vls
UH bck, rnd, smh, vwl
UW bck, hgh, rnd, vwl
V frc, lbd, vcd
W apr, lbv
Y apr, pal
Z alv, frc, vcd
ZH frc, pla, vcd

Table 1: Arpabet phone to feature mapping.

structure. Bradlow et al. (2010) introduce a vector space
model for phonetic similarity, though the object of their
study is not individual words but entire languages and their
model parameters are drawn from a mixture of phonetic fea-
tures and suprasegmental characteristics.

In the realm of computational creativity and procedural
content generation, a great deal of research has used phono-
logical information to condition and constrain text gener-
ation techniques. Most common are poetry generators that
take lexical information about stress into account when gen-
erating metrically-constrained verse, or use phonological in-
formation to identify stretches of text that rhyme (see, e.g.,
Das and Gambäck 2014 for a good example of a generator
that uses both). Approaches that take into account phonetic
features beyond meter and rhyme, or use a continuous vec-
tor space to model phonetic similarity, are more difficult to
find. Hervás, Robinson, and Gervás (2007) use a measure-
ment of alliteration, calculated as a percentage of identical
phonemes across a stretch of text, as part of a “fitness func-
tion” in a poem-generating genetic algorithm. Bay, Bodily,
and Ventura (2017) use Euclidean distance between points
on the International Phonetic Alphabet chart to estimate sim-
ilarity between vowel segments in the service of detecting
slant rhymes, but do not use a similar vector space for other
types of phonemes.

Model

The overall goal is to create a vector space R for a
data set where individual observations are embedded such
that phonetically similar observations have similar vectors.
In order to do this, a function Prp(b) must be defined
that maps an observation b to a corresponding vector. It
must hold that for observations b1 and b2, the result of
similarity(Prp(b1), P rp(b2)) increases according to the
phonetic similarity of b1 and b2. For the purposes of the
method being described, valid observations for Prp(b) are
sequences of Arpabet phonemes.

The technique for accomplishing this mapping is de-
scribed in this section. At a high level, the technique can
be described as extracting interleaved bigrams of phonetic
features.

Phonetic features and context
Linguists have long recognized that certain pairs of
phonemes in spoken language have a greater degree of sim-
ilarity than other pairs. Patterns in allophony and diachronic
sound change suggest that certain properties of phonemes,
such as their manner and place of articulation, can be used
as dimensions for reasoning about this perceived similarity
(Austin 1957). Distinctive feature theory (Halle and Chom-
sky 1968) states that phonemes are discriminated from one
another solely based on a small set of properties (such as
[+/- voice] to distinguish voiced consonants from voiceless
consonants; [+/- round] to distinguish rounded vowels from
unrounded vowels), and that phonemes fall into categories
of similarity based on shared features. Several analyses of
similarity between languages and dialects have used quan-
tification of shared features as a measure of phonetic simi-
larity (Ladefoged 1969; Bradlow et al. 2010).

Drawing on this insight, it is clear that any embedding
for phonetic similarity should be based on a feature-level
analysis. For example, the words “back” (Arpabet tran-
scription /B AE K/) and “pack” (/P AE K/) are intu-
itively more similar to one another than they are to “hack”
(/HH AE K/), owing to the underlying similarity of the
phonemes /B/ and /P/ (which share both a manner and
place of articulation). Measurements of phonetic similarity
that draw primarily or solely on orthography or phoneme-
level transcriptions (Nelson and Nelson 1970; Philips 1990;
Hervás, Robinson, and Gervás 2007; Tissot, Peschl, and
Fabro 2014) fail to capture this intuition.

The method presented here assumes that each English
phoneme can be mapped to a set of corresponding phonetic
features. I use the mapping suggested in the specification
for X-SAMPA (Kirshenbaum 2001), adapted to the Arpabet
transcription scheme. The mapping of phonemes to features
is shown in table 1.

Kirshenbaum’s features are largely theory-agnostic, but
are based primarily on articulatory properties of the
phonemes (i.e., the physical configuration of the vocal tract
observed when producing the sound). However, articula-
tion of speech is not discrete, and individual features are
not atomic but are influenced in their manifestation by the
articulations that coincide with, precede and follow them
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(1)

Prp(BEG,R,IH,NG,END) = (F (BEG)× F (R)) ∪ (F (R)× F (IH)) ∪ (F (IH)× F (NG)) ∪ (F (NG)× F (END))

= ({beg} × {alv, apr}) ∪ ({alv, apr} × {fnt, smh, unr, vwl})
∪ ({fnt, smh, unr, vwl} × {nas, vel}) ∪ ({nas, vel} × {end})

= {(beg, alv), (beg, apr),
(alv, smh), (alv, fnt), (alv, unr), (alv, vwl),

(apr, smh), (apr, fnt), (apr, unr), (apr, vwl),

(smh, vel), (smh, nas), (fnt, vel), (fnt, nas),

(unr, vel), (unr, nas), (vwl, vel), (vwl, nas),

(vel, end), (nas, end)}

Figure 1: Example properties for the word “ring” /R IH NG/

(Lisker and Abramson 1967; Browman and Goldstein 1992;
Hillenbrand, Clark, and Nearey 2001). As an attempt to
model this fact, my procedure for phonetic similarity em-
bedding is based not on individual phonetic features but on
interleaved bigrams of features, as described below. (Us-
ing bigrams of features also helps to capture the sequencing
of phonemes, in accordance with the intuitive notion that
stretches of language are phonetically similar if their sounds
occur in similar or identical orders.)

Feature engineering
Each observation in the data set should consist of a sequence
of Arpabet phonemes. (These can be individual words, such
as the phonetic transcriptions found in the CMU Pronounc-
ing Dictionary, or transcriptions of longer stretches of text.)
The function Prp to give the set of properties for observation
b of length n is calculated like so:

Prp(b) = (F (p1)× F (p2)) ∪ · · · ∪ (F (pn−1)× F (pn))

where F (i) evaluates to the set of phonetic features cor-
responding to phoneme i (given in table 1) and pi is the
phoneme at position i in the observation.

Anchoring and order. As part of the feature extraction
process, two special pseudo-phonemes, BEG and END, are
added to each observation to respectively anchor the begin-
ning and ending of the observation. The pseudo-phoneme
BEG has one corresponding phonetic feature, beg, and the
pseudo-phoneme END has one corresponding feature, end.
Figure 1 shows an example feature extraction for the word
“ring” (transcribed in Arpabet as R IH NG).

In order to capture the similarity of words regardless of
ordering of phonemes (e.g., “tack” /T AE K/ and “cat”
/K AE T/ are considered to be similar words, despite the
mirrored order of their phonemes), the procedure calculates
properties for the reversed order of the phonemes in an ob-
servation as well. (For the sake of brevity, the properties ob-
tained from the reversed procedure are omitted from figure
1).

Dimensional reduction. The set of all properties in the
data set is the union of each observation’s properties. Af-
ter the set of properties for the data set is determined, the

number of times each property occurs in each observation is
recorded. The end result is a matrix of size (m×n) where m
is the number of observations and n is the number of unique
properties found. The value at location (i, j) in the matrix is
the number of times feature j occurs in observation i.

When using this method with all 133,852 entries in ver-
sion 0.7b of the CMU Pronouncing Dictionary, 949 unique
properties (i.e., 949 unique interleaved feature bigrams) are
found across the entire data set, yielding a matrix of size
(133852, 949). To make this number more manageable, the
PCA class from Scikit-learn (Pedregosa et al. 2011) is de-
ployed to perform a principal components analysis on the
matrix, reducing the number of dimensions to 50.

Applications and experiments
The resulting embeddings have several interesting character-
istics, illustrated by the experiments and poetic applications
given in this section.

Phonetic similarity
As a baseline for subsequent experimentation, the vector
space resulting from the method described above was eval-
uated for its ability to predict phonetic similarity, by using
methodology and data from Vitz and Winkler (1973). In the
experiments conducted by Vitz and Winkler, small groups
of L1 American English speakers were asked to score the
phonetic similarity of a “standard” word with a list of com-
parison words on a scale from 0 (no similarity) to 4 (ex-
tremely similar). Several experiments were performed with
different standard words and comparison words. Vitz and
Winkler compare the elicited scores to the results from their
own procedure for determining phonetic similarity (termed
“Predicted Phonemic Distance,” shortened here as PPD).

In my experiment, I calculated the cosine similarity be-
tween the vector corresponding to the standard word and the
vectors corresponding to each of the comparison words in
three of Vitz and Winkler’s experiments. Figure 2 shows the
result of this procedure with data from Vitz and Winkler’s
experiment 3 alongside their original results for that experi-
ment.2

2The scale for Vitz and Winkler’s “predicted phonemic dis-
tance” (PPD(w)) starts at 0 and goes up to 1. In order to maintain
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Figure 2: Scatter plots of vector space cosine similarity versus obtained average similarity (Vitz and Winkler 1973) (left) and
“predicted phonemic distance” versus obtained average similarity (right).

In experiment 3, cosine similarity from the vector space
outperforms Vitz and Winkler’s metric, with a correlation
of 0.958 (compared to 0.917 for PPD). Results for experi-
ment 2 are also favorable, with a correlation of 0.776 com-
pared to PPD’s correlation of 0.795. However, in results for
experiment 1, which concerns monosyllabic words, vector
space cosine similarity significantly underperforms, with a
correlation of 0.646 compared to PPD’s correlation of 0.941.
Overall, these results demonstrate that a vector space con-
structed according to the method described in this paper
reflect commonsense intuitions about phonetic similarity,
though the result for experiment 1 suggests that a fruitful
next step is to fine-tune the feature engineering for better
accuracy with short sequences of phonemes.

Arithmetic and analogy
For the following applications, the procedure described in
the Model section was used to calculate an embedding R for
all of the entries in the CMU Pronouncing Dictionary 0.7b
(Carnegie Mellon Speech Group 2014). A function V ec(t)
evaluates to the vector associated with token t, and a func-
tion Nn(v) returns the nearest neighbor in R of vector v.
Experimentation with these operations and vector arithmetic
revealed surprising phonetic relationships latent in the vec-
tor space, analogous to the semantic relationships observed
in word distribution vector spaces (Mikolov, Yih, and Zweig

consistency across charts, I have instead used 1−PPD(w) in fig-
ure 2. The correlation calculations also reflect this inversion (i.e.,
correlation numbers are positive rather than negative as they origi-
nally appeared in Vitz and Winkler).

No Operation Result
1 Nn(V ec(sub) + V ec(marine)) “submarine”
2 Nn(V ec(miss) + V ec(sieve)) “missive”
3 Nn(V ec(fizz) + V ec(theology)) “physiology”
4 Nn(V ec(curiously)− V ec(lee)) “curious”
5 Nn(V ec(wordsworth)− V ec(word)) “disregards”
6 Nn(V ec(ingredient)− V ec(reed)) “insignia”

Table 2: Sample sound arithmetic results

2013). In the applications below, nearest-neighbor lookups
were performed with the Annoy Python package (Bern-
hardsson 2017) using simple Euclidean distance as the dis-
tance metric.

As shown in table 2, vector addition and subtraction in R

model the analogous phonetic relationships between words.
Adding the vector of one word to the vector of another yields
a word in R that combines the phonetic features of both.
Likewise, subtracting the vector of one word from another
yields a word in R that has the phonetic features of the first
word but lacking the features of the second.

Items (1), (2) and (4) in table 2 show that some varieties
of regular English derivational morphology can be expressed
as vector operations in R. Items (3), (5) and (6), on the other
hand, show that the relationship between operands and the
resulting nearest neighbor can be approximate, capturing a
word that feels like the result of the operation, maintaining
as close an order of phonemes to the original as possible.

The use of vector arithmetic also shows that offsets be-
tween vectors can capture phonetic relationships between
classes of words. These relationships can be described in
terms of analogy: wa is to wb as wc is to wd, where wd is
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No wa wb wc wd

1 decide decision explode explosion
2 glory glorify liquid liquefied
3 bite bitten shake shaken
4 leaf leaves calf calves
5 foot feet tooth teeth
6 automaton automata criterion criteria
7 four fourteen nine nineteen
8 light slide lack slag
9 whisky whimsy frisky flimsy

10 could stood calling stalling

Table 3: Sample sound analogies (wa : wb :: wc : wd)

given using the following expression:

Nn(V ec(wb)− V ec(wa) + V ec(wc))

Table 3 shows a few sample results from such analogies.
As shown in items (1–7), vector offsets are able to capture
and reproduce English regular and irregular morphology on
phonetically similar items, to the extent that these morpho-
logical processes can be described using phonetics alone,
even when the morphology is non-productive (as in item 7).
Items (8–10) show that the analogical process can also oper-
ate on more “poetic” sound correspondences, finding pairs
of words whose phonetic relationship is similar to the re-
lationship between any other arbitrary pair, even when the
difference between the words is an individual feature, not an
entire phoneme.

Sound symbolism “tinting”
By representing each word as its corresponding vector in the
CMU Pronouncing Dictionary phonetic space R, an entire
text can be conceptualized as a vector of size (m,n) where
m is the number of words in the text and n is the dimen-
sionality of the vector space. The resulting text vector can
be manipulated using techniques analogous to those used to
manipulate audio or images. For example, in the same way
that an image can be digitally “tinted” by adding a constant
value to the red, green and blue components of each pixel,
a text can have its sound symbolism “tinted” by adding a
constant to the vector for each word in the text, and then
rewriting the text by finding the closest word in R for each
vector.

In many studies of synaesthesia and sound symbolism,
the word kiki is synesthetically associated with sharp, spiky
shapes, while the word bouba3 is synesthetically associ-
ated with round, oblong shapes (Ramachandran and Hub-
bard 2001; D’Onofrio 2014). Drawing on this research, I at-
tempted to rewrite Robert Frost’s celebrated poem The Road
Not Taken (Frost 1916) using sound symbolism tinting to
produce a “spiky road” version and a “round road” version.
Table 4 shows the result. The first column of the table shows
the original text, while the second column shows the result
of adding V ec(kiki)× 0.8 to each word, and the third col-
umn shows the result of adding V ec(babu) × 0.8 to each

3The word babu is substituted for bouba in this example, as
there is no entry for bouba in the CMU Pronouncing Dictionary.

Sweet hour of prayer, sweet hour of prayer it was the hour of
prayers. In the hour of parting, hour of parting, hour of meet-
ing hour of parting this. With power avenging, ... His towering
wings; his power enhancing, in his power. His power. Thus:
the blithe powers about the flowers, chirp about the flowers a
power of butterfly must be with a purple flower, might be the
purple flowers it bore. The petals of her purple flowers where
the purple aster flowered, here’s the purple aster, of the pur-
ple asters there lives a purpose stern! A sterner purpose fills
turns up so pert and funny; of motor trucks and vans, and after
kissed a stone, an ode after Easter. And iron laughter stirred,
O wanderer, turn; oh, wanderer, return. O wanderer, stay; O
Wanderer near. Been a wanderer. I wander away and then I
wander away and thence shall we wander away, and then we
would wander away, away O why and for what are we wait-
ing. Oh, why and for what are we waiting, why, then, and for
what are we waiting?

Figure 3: Sample random walk through lines of poetry in
Project Gutenberg, based on sound similarity.

word. In both the second and third columns, the underly-
ing vectors have been transformed back into words using
the Nn(v) function described above.

In this experimental application, no further attempt has
been made to normalize the grammaticality of the text post-
transformation, although every word found in the texts is a
“valid” English word (in the sense that it occurs in the CMU
Pronouncing Dictionary). Leaving aside for future research
the specific claim on the ability to induce sound symbol-
ism, I find the results of this experiment very promising.
Although the two transformed texts appear to be nonsense,
they are nevertheless immediately recognizable as variations
on the original in which consistent yet aesthetically distinct
phonetic transformations have been applied.

Random walks through poem space
The previous experiments and applications have used sin-
gle words as the embedded units in the vector space. How-
ever, any stretch of Arpabet phonemes can be embedded. As
an example of embedding longer sequences of phonemes, I
found embeddings for a large subset of all lines of poetry in
Project Gutenberg (http://www.gutenberg.org). For each line
in the poetry corpus, an Arpabet transcription composed of
the concatenated phonetic transcriptions of every word was
used as a single observation in the matrix. (Lines contain-
ing words that are not found in the the CMU Pronouncing
Dictionary were excluded from the embedding.)

The text in figure 3 is the result of performing a “random
walk” through the resulting vector space. Starting with a ran-
domly selected item from the vector space, the procedure
finds the nearest neighboring vector that hasn’t already been
selected, and appends the text of the corresponding vector to
the output. The procedure repeats, jumping from one nearest
neighbor to the next, until a text of a particular desired length
is reached. This radical composition technique results in a
text that smoothly moves from one pattern of sounds to the
next, evoking sound symbolism in uncanny ways. The pro-
cedure flattens semantic, syntactic and stylistic differences
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Baseline Nn(V ec(w) + V ec(kiki)× 0.8)) Nn(V ec(w) + V ec(babu)× 0.8))
Two roads diverged in a yellow wood
And sorry I could not travel both
And be one traveler long I stood
And looked down one as far as I could
To where it bent in the undergrowth

Then took the other as just as fair
And having perhaps the better claim
Because it was grassy and wanted wear
Though as for that the passing there
Had worn them really about the same

And both that morning equally lay
In leaves no step had trodden black
Oh i kept the first for another day
Yet knowing how way leads on to way
I doubted if I should ever come back

I shall be telling this with a sigh
somewhere ages and ages hence
two roads diverged in a wood and I
I took the one less traveled by
and that has made all the difference

To roads diverged in a yellow woodke
And sarti i gokey knotty keevil booth
And be one traveler long i stookey
And loci down one as far as i gokey
Tuckey kiwi eat bent in the undergrowth

Then kupek the other as keast as fichera
And having perhaps the becky claim
Geeky eat was keesee and wanted kiwi
Though as for that the kiki giguere
Heeg worn them keeley kabuki the safekeeping

And booth that morning equally lay
In teves know techie heeg teagarden blackie
Oh i khaki the thirsty for another ghee
Fekete knowing how way tiegs on tuckey way
I tiki if i shooed keever come bacchi

I shall be leckey keith withey a sigh
Somewhere keizai and keizai hence
To roads diverged in a woodke and i
I kupek the one leckey keevil bacchi
And that has pigue all the defrance

To roads barboursville in a yellow would
And bari i koba knob bava both
And bobby one bosler long i stobaugh
And jukebox doub one as fahd as i koba
To bowell it bondt in the bogard

Babu bocook the bother as bobst as fair
And having bopper the bobbette claim
Babic it zabawa basi and wambaugh bowell
Though as for bogacz the babu babu
Hob worn them bali abboud the same

And both bogacz booming equally lay
In bob’s know bobbette hob babar blob
Oh i bobcat the first for bother ba
Bobbette knowing baja way bob’s on to way
I bowed if i should ever kebab bob

I shall bobby babu bob with a seibu
Babu bobby’s and bobby’s hence
To roads barboursville in a would and i
I bocook the one babu traveled ba
And bogacz has baydhabo all the difference

Table 4: Sample sound symbolism tinting with Robert Frost’s The Road Less Taken.

in favor of phonetic cohesion, while retaining the local-level
grammatical coherence of the lines themselves.

Conclusion
I have described a method for embedding stretches of text in
a continuous vector space according to their phonetic simi-
larity. The procedure can be fruitfully applied to create vec-
tor spaces consisting of individual words or vector spaces
with larger stretches of text, such as lines of poetry. Vec-
tor spaces generated with this technique have been shown
to have useful and surprising properties related to their abil-
ity to represent phonetic relationships between words. They
have also been shown to be an effective and original tool
for unconventional manipulation and composition of poetic
language.

Potential applications
Phonetic similarity vector embeddings based on phonetic
features have the potential to be a useful tool for researchers
and practitioners in various fields.

One potential area is computational stylistics and aes-
thetics. The model of poetry quality in Kao and Jurafsky
(2012), for example, includes a variable for phonetic simi-
larity, defined as the presence of assonance and consonance.
However, their calculation was programmed to find identi-
cal phonemes, and only identical phonemes within a lim-
ited window (nine syllables). As a consequence, their anal-
ysis fails to account for how phonemes with shared fea-
tures are perceived as similar, and how phonetic similarity
functions not just between adjacent words but as a stylis-
tic attribute that structures an entire text (Fónagy 1961;
Hrushovski 1980).

An analysis of sound similarity in a text based on a vec-
tor embedding, on the other hand, can easily account for

these factors. Moreover, with a vector representation, rule-
based schemes for phonetic analysis can be supplanted with
potentially more powerful machine learning techniques for
classification, regression and clustering. A model with the
same goal as Kao and Jurafsky could (for example) com-
pute how the use of sound similarity in a poem is focused
or diffuse, or calculate a “phonetic footprint” for individ-
ual poems, authors and genres. Kao and Jurafsky ultimately
conclude that phonetic similarity “did not have significant
predictive value” in determining whether a poem was most
likely written by a professional or amateur poet, but I be-
lieve that a more nuanced characterization of sound similar-
ity with regard to poem quality could be reached using these
techniques.

Likewise, research in the field of computational creativ-
ity surrounding the generation of lyric and poetic text could
benefit from a robust vector representation of phonetic sim-
ilarity. For example, both Ghazvininejad et al. (2016) and
Malmi et al. (2016) use sophisticated vector-based repre-
sentations of semantics as part of the first pass of the text-
generation process, then use a system of rules to filter the
resulting text for words and lines that adhere to a meter and
have internal rhymes or end rhymes. At the very least, a pho-
netic vector embedding of words and lines could serve as a
way to narrow the search space in these procedures for fur-
ther rule-based filtering on rhyme and meter. A more am-
bitious application of phonetic vectors would be to concep-
tualize a poem as consisting of both a phonetic component
and a semantic component, or a combined representation of
both, and with these components apply vector operations to
transform the underlying semantics into a surface text that
exhibits the desired phonetic characteristics. (One potential
process for performing this kind of phonetic “style transfer”
is hinted at in the “sound symbolism tinting” application in
the previous section.)
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The original impetus for this research was to enable in-
novative ways, in the tradition of sound poets like Hugo
Ball and Kurt Schwitters, to “arrange words, not according
to their semantic meanings, but according to their phonetic
valences” (Bök 2009). I am particularly interested in using
this vector embedding model as a part of augmented and
mixed-initiative interfaces for writing. In the spirit of Amiri
Baraka’s “expression scriber” (Baraka 1965), I envision a
system in which poems can be composed expressively using
analog inputs to stretch, distort, sharpen and (dis)color the
sound of a text in real-time.

Limitations and future research

There are several important limitations to this research de-
scribed in this paper. The first is empirical verifiability.
While the model presented here was intended from the
beginning for aesthetic rather than “practical” ends (i.e.,
computer-generated poetry), evaluating the model on exist-
ing experimental data for phonetic similarity proved invalu-
able. As my research in this area continues, I plan to seek
out (or create) larger and more robust data sets for evaluat-
ing phonetic similarity and phonetic relationships between
words.

The number of dimensions (fifty) used in the dimension-
ality reduction process was determined through a process of
trial and error as a reasonable compromise between compu-
tational efficiency and maintaining the predictive integrity
of the vectors. The dimensionality reduction technique it-
self (Principle Components Analysis) was selected primarily
for its speed and convenience. (In particular, Scikit-learn’s
IncrementalPCA implementation made it possible to
prototype and implement the techniques in the paper on in-
expensive consumer hardware.) It is quite likely that more
sophisticated techniques for reducing dimensionality, such
as a manifold learning algorithm like Isomap (Tenenbaum,
De Silva, and Langford 2000), would yield superior results.
Future iterations of this research will establish a baseline of
phonetic similarity performance against which different di-
mensionality reduction techniques can be evaluated.

Another problem is the burden of feature engineering.
While the features in the model described in this paper per-
form admirably on experimental and poetic tasks, the model
can only be improved by “tweaking” the features. Ideally, a
machine learning algorithm would be able to learn features
for the similarity vectors in an unsupervised fashion. Re-
search in distributional learning of phonological rules (Cala-
maro and Jarosz 2015) and probabilistic rhyme detection
(Hirjee and Brown 2010) may provide a way forward in this
area.

Finally, the experiments and applications of the model in
this paper relied solely on words in the CMU Pronouncing
Dictionary. Ideally, the model would be able to cope with
out-of-vocabulary words and other stretches of text. One
possible first step in this task is to train a neural network
to learn similarity vectors for raw sequences of characters
based on the orthography of sequences already found in the
vector space.
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