The AIIDE-17 Workshop on
Experimental Al in Games
WS-17-19

Leveraging Multi-Layer Level Representations for
Puzzle-Platformer Level Generation

Sam Snodgrass, Santiago Ontaiion
Drexel University
3141 Chestnut St
Philadelphia, PA 19104
sps74@drexel.edu, so367 @drexel.edu

Abstract

Procedural content generation via machine learning
(PCGML) has been growing in recent years. However, many
PCGML approaches are only explored in the context of linear
platforming games, and focused on modeling structural level
information. Previously, we developed a multi-layer level
representation, where each layer is designed to capture
specific level information. In this paper, we apply our multi-
layer approach to Lode Runner, a game with non-linear paths
and complex actions. We test our approach by generating
levels for Lode Runner with a constrained multi-dimensional
Markov chain (MdMC) approach that ensures playability
and a standard MdMC sampling approach. We compare
the levels sampled when using multi-layer representation
against those sampled using the single-layer representation;
we compare using both the constrained sampling algorithm
and the standard sampling algorithm.

Introduction

Procedural content generation (PCG) studies the algorith-
mic creation of content (e.g., levels, textures, items, etc.),
often for video-games. PCG via machine learning (PCGML)
(Summerville et al. 2017) is the use of machine learning
techniques to create a model from which to sample con-
tent. Recently there has been increased interest in PCGML
for video game levels (Guzdial and Riedl 2016; Dahlskog,
Togelius, and Nelson 2014; Summerville and Mateas 2016;
Snodgrass and Ontainén 2016b). However, in most cases
PCGML techniques have been used to generate linear plat-
former levels (e.g., Super Mario Bros. levels), and typically
only capture structural level information. We previously de-
veloped a multi-layer representation in order to capture more
varied information from the training levels (Snodgrass and
Ontafiéon 2017). We tested this approach in the domain of
linear platformer level generation, but we believe this ap-
proach can be used to model and generate levels in more
complex domains, because of its ability to more deeply rep-
resent domains. Therefore, we explore the use of this multi-
layer technique in Lode Runner, a puzzle-platformer game
that requires complex paths to complete levels, and allows
for level destruction to open up more paths.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

125

The remainder of the paper is organized as follows. We
first formulate the specific problem we are trying to ad-
dress. We then give background on recent PCGML tech-
niques. Next, we discuss our multi-layer representation,
multi-dimensional Markov chain approach, and our playa-
bility constraint for non-linear paths. We then describe our
experimental set-up and present our results. We close by
drawing our conclusions and suggesting future work.

Problem Statement

In this paper we address the problem of generating playable
levels in domains that require complex paths. We do this
through the use of a multi-layer level representation and
modeling approach and a constrained sampling algorithm.
Specifically, we model the game Lode Runner using a struc-
tural layer, a player path layer, and a section layer in order
to more accurately capture the intricacies of the domain.

Related Work

Procedural content generation via machine learning
(PCGML) is the algorithmic creation of content using
machine learning models trained on some form of training
data (Summerville et al. 2017). This section discusses
PCGML approaches.

There are several PCGML approaches for level gener-
ation; we discuss a few recent approaches below. Sum-
merville and Mateas (2016) employed long short-term mem-
ory recurrent neural networks to generate Super Mario Bros.
levels accounting for player paths via level annotations.
Guzdial and Reidl (2016) used Bayesian networks to gener-
ate levels, also for Super Mario Bros. implicitly accounting
for player interactions through model parameters approxi-
mated by observing player movements in videos. Notice,
that though these methods model more than just the struc-
tural information of the level, the way the information is
included is not easily extensible to other types of informa-
tion. There are other PCGML level generation approaches
(Dahlskog, Togelius, and Nelson 2014; Hoover, Togelius,
and Yannakis 2015; Shaker and Abou-Zleikha 2014), but no-
tice that the majority of approaches have only been tested in
the domain of linear platformer level generation.

Input Level

mg/mimmm
mg.a/mmim

M

.mu’a&%'umm

gcmmimmioimmag[mmmm|cmm
gcmmmmigmmag(mmmm|cmm
gcmmimmic|%/% %(mmmmcmm
gmmimmig/mmg(mmmMmm|gmm
o % #mmommgmimmmcalm
n-m:rmmu-mm:r.mmmu-mm
gmyg/mmiommag(mmmm|cmm
cmoligemmmmmm|'|ocmm
cmgl' mommmmmm|'|cmm
gcmml{' mgimmmmmm'|cmm
gmmi' mommg(mmmMm'|/mmm
gmmi'img/mmao/mmm|'immm
aml mgimmeg/mimm|'|mmm
gmmi'imgmmug|{mm®g|T|T T|T
gmmi' mommg(mmegmmmm
omuo#lss/sssmmommmm
gmommmmmao(mimam(mmm
gmyglammmmg|mmgmimmm
gmoimmimimmeg|#(# % mimmm
gcmog/mmmmmag|mmeagmmmm
o # #imimmimimgimimgimimm|m

gmgogmmmimmyug
gmgogmmmmmyg

WNocmglamommo|#/s % %/smm
o mommo|mmmmmmt|cmm
Clemm imglmmeglecle ol lemm
=~ lgmm[iimc|mmc|clcaicmm

Qgmmliimo

1
c
(@)
—
—
Q

<
o
=

X
X
X
X
X

e Belxedx |
o ek X X

i
VXXX XX XX

dxlxIx] [
el %
s T Ik
s Db

WIW WIWININININ SR
NINININIo[o|a|a|w|ninin
NINININIO o |a|ajwn|ninin
NINININ[O oo |0 |0 jnin|n
NINININIo[o|a|a|w|ninn
NINININIO ool junjuninin

all |t
x|

XXX

Vel Il s [[
VIRIX XXX XXX (X[X
VXXX X XXX (X[X

x| g
[
ix Ix
[

X
X

BERERE
[HERIRE
Vx|
Vx|
Vgl
Vx|
x|

Player

er Path Layer

Tnin|nimim|mm|glololglalololo
mimininimimimmiololololololol0
nimininimimimim|glolololalololo

Tinin|nimim|mm|glolalalanlolo

Tinininimim|mim

Sa(d(s|wiwlwwnNivNpp[p|p
slalsinlwlwlwlwhnvivnielblpls
SlalsinlwlwlwlwhNvivnielslpls
Da(snlwlwlwwhNvNEEEe
Sa(d(s|wwlwwnNivNp(p[p|p

0P El®{>I>I>I>OIOIOIO
@@ |(@|>[>|>[>O|o[0]|O
OOl olo/>I>I>I>olololo

. lololo|ol>|sl>>lolololo
QO o> >Iplolololo
:jmmmmbbb)oooo

Layer

Figure 1: This figure shows a Lode Runner level (top-left) represented using a structural layer (top-right), a player path layer
(bottom-left), and a section layer (bottom-right). Color is added for clarity.

Methods

In addition to the approaches above, there are a few ap-
proaches that leverage multiple layers of representation. We
previously explored a hierarchical approach that used clus-
tering to find common structures in levels (Snodgrass and
Ontanon 2015). The domain was then modeled at multiple
levels, and new levels were sampled at increasing resolution.
Notably, we applied this approach to Lode Runner with little
success (i.e. sampling very few usable levels). Summerville
and Matteas (2015) explored a hierarchical approach to dun-
geon generation, by modeling the layout of the dungeon and
the structure of the rooms separately. Notice, however, that
both of these approaches focus on only the structural ele-
ments of the levels.

To more faithfully and deeply represent and model levels,
we recently developed a multi-layer approach that is able to
capture structural information, and other level information
(such as player paths) in a general format (Snodgrass and
Ontandn 2017). We previously used this approach to gener-
ate linear platformer levels, but in this paper we show that it
is usable in more complex domains, such as Lode Runner.

In this section we discuss our multi-layer representation
introduced in (Snodgrass and Ontafién 2017), explain how
we train and sample from an MdMC with a multi-layer rep-
resentations, and introduce a playability constraint.

Multi-layer Level Representation

We represent a level using a set of layers, L
{l1,12,...,1,,}, where each [; is a two-dimensional matrix of
tiles with dimensions & x w. Each layer has a separate set of

126

tile types, T;, with meanings defined by the layer.

Figure 1 shows a Lode Runner level (top-left) represented
using three layers: a structural layer (top-right), represent-
ing the placement of objects in the level; a player path
layer (bottom-left), representing the path a player may take
through the level; and a section layer (bottom-right), repre-
senting different sections of the level;. We refer to the struc-
tural layer as the main layer, because it is the layer that pro-
vides the tile types we will use during level sampling.

Though this is a straightforward concept, it opens up
the possibility for more faithful and deep level represen-
tation than is possible with previous representations which
only capture structural information (Guzdial and Riedl 2016;
Snodgrass and Ontafién 2016b) and occasionally player path
information (Summerville et al. 2016a). For example, in this
paper in addition to a structural and a player path layer, we
use a section layer which signifies different sections of the
level. Notice that these are only two possible additional lay-
ers. Others can include a difficulty layer, which could cap-
ture the progression of difficulty as you progress through it,
or an enemy path layer which captures the behavior of the
enemies.

Markov Chain-based Level Generation

We now explain how we train and sample from our model.
We first introduce multi-dimensional Markov chains, before
discussing our training and sampling approaches.

Markov Chains Markov chains (Markov 1971) model
stochastic transitions between states over time. A Markov
chain is defined as a set of states, S = {s1, $2, ..., S, }, and

the conditional probability distribution (CPD), P(S;|Sz—1),
representing the probability of transitioning to a state S, €
S given the previous state, S, _1 € S. The set of previous
states that influence the CPD are the network structure.

Multi-dimensional Markov chains (MdMCs) are an ex-
tension of higher-order Markov chains (Ching et al. 2013)
that allow any surrounding state in a multi-dimensional
graph to be considered a previous state. In our case,
the multi-dimensional graph includes previous tiles in the
current layer as well as from other layers. For exam-
ple, the CPD defined by nsls in Figure 2 (right) can be
written as P(Sz,y|Sa:71,y7 Sa;yfly Sazfl,yfla Qw,ya Rw,y>,
where S, @), and R the set of states in the various layers. No-
tice, that the set of states are also the set of tile types for each
of the layers. Further, in this case S is the set of states (and
tile types) for the main layer (i.e. the layer we wish to gen-
erate through sampling). By redefining what a previous state
can be in this way, the model is able to more easily capture
relations from multi-dimensional training data, as shown in
our previous work (Snodgrass and Ontafién 2016b).

Training In this section we discuss how we estimate a
conditional probability distribution (CPD) with a single-
layer multi-dimensional Markov chain (MdMC), and then
how we estimate a CPD with our multi-layer MdMC.
Training a single-layer MdMC requires: 1) the network
structure and 2) training levels. The network structure spec-
ifies which of the surrounding states the value of the current
state depends upon. This set of surrounding states and their
values is referred to as the “previous tile configuration” or
“previous configuration.” Using the network structure and
training levels, the conditional probability distribution, P,
of each tile given each previous configuration is calculated
according to the frequencies observed in the training data.
Training a multi-layer MdMC requires a network struc-
ture, and training levels represented in multiple layers. The
conditional probability distribution, P,,, is computed much
the same way as for the single-layer approach. The main
difference between training a single-layer and multi-layer
MdMC is that the network structure of the multi-layer
MdMC may contain states from other layers, allowing P, to
learn dependences across multiple layers of representation.
Figure 2 shows network structures that can be used to train a
single-layer MdMC (left) and a multi-layer MAMC (right).

Sampling In this section we describe how we sample new
levels: first, using a single-layer MAMC; then a multi-layer
MdMC, and finally a constrained sampling extension.

To sample a new level using a single-layer MdAMC, we
need desired level dimensions, h X w, and the conditional
probability distribution, P, trained as above. The new level
is then sampled one tile at a time starting, for example, in
the bottom left corner and completing an entire row before
moving onto the next row. For each position in the level,
a tile is sampled according to P and the previous configura-
tion. While sampling, we use a look-ahead and fallback pro-
cedure. The look-ahead procedure works as follows: when
sampling a given tile, the process generates a number of tiles
ahead to make sure that with the tile that has been selected,
we will not reach an unseen state (a combination of tiles

127

Height Layer || Path Layer

©
©

nsly:

BN
Gh6

Structural Layer
P8y [Scryr Seyr Sctyers

Rx,y’ X,

P8y ey S

-1 P(Sx,y | SY-I,y' Sv,y-l’ S50
Figure 2: This figure shows the network structures used by
the single-layer MdMC (left), and a network structure used
by the multi-layer MAMC. Note, that each nsl; follows the
same pattern as the corresponding ns;, but the multi-layer
network structures retain the dependencies from the other
layers in each network structure.

that was not observed during training, and that we, thus, do
not have a probability estimation for). If the sampled tile
will result in an unseen state, then a different tile is sam-
pled. The fallback procedure comes into play when unseen
states are unavoidable according to the looklook-aheadahead
procedure. Instead of training a single MAMC model with a
single network structure, we train a collection of MdMCs
(with increasingly simple network structures). When sam-
pling a new tile, the most complex model is used first, and
if it cannot generate a tile satisfying the look-ahead, then we
fallback to a simpler one. For the single layer model, net-
work structure nss falls back to nso, then to ns, and finally
nsg, which is the raw distribution of tiles observed during
training. Notice, this fallback approach is analogous to the
backoff models used for n-grams (Katz 1987). More infor-
mation on the look-ahead and fallback procedures as they
apply to MdMC:s can be found in (Snodgrass and Ontafidn
2016b).

Sampling a level using a multi-layer MdMC functions the
same as the single-layer method, but with one adjustment:
because the trained distribution, P,,, only models the prob-
ability of tiles in the main layer, and previous configurations
contain states from the other layers, the other layers must
be defined before sampling or computed during. We define
the non-structural layers prior to sampling. Notice, Figure 2
(right) only shows nsl3 for the multi-layer model. However,
the multi-layer network structures follow the same pattern as
the single-layer network structures, but retain the dependen-
cies from the other layers. For example, nsly would depend
on the tiles to the left and below in the structural layer (as
in nssy), as well as on the tiles at the current position in the
section and player path layers. The fallback order for the
multi-layer and single-layer models are the same.

Lastly, in order to ensure playable and well-formed levels,
we employ an extension to the above sampling approach,
which accepts constraints (such as ensuring playability, or
forcing the number of enemies to be in a certain range) and
enforces them through a resampling process. Below we dis-
cuss the constrained sampling algorithm in more detail.

Algorithm 1 shows the Violation Location Resampling or
VLR algorithm(Snodgrass and Ontafién 2016a). This algo-
rithm takes the desired dimensions of the output map and

Algorithm 1 ViolationLocationResampling(w, h, C')
1: Map = MdMC([O0, 0], [w, h])
2: while (3" . c(Map).cost) > 0 do
3: forallce Cdo

4 for all ([x1,11], [x2,y2]) € c(Map).sections do
5: forall ¢; € C do

6: coste, = ¢;(Map[xy,y1][xe, ys2]).cost
7: end for

8: repeat

9: m = MdMC([z1, y1], [v2,y2])

10: forallc; € C'\ cdo

11: if cost., > c;(m).cost then

12: GoTo line 9

13: end if

14: end for

15: until ¢(m).cost < cost,

16: Map[zy, y1][x2,y2] = m

17: end for

18: end for

19: end while
20: return Map

a set of constraints, C, and returns a map satisfying those
constraints. Each constraint returns a cost associated with
the map and sections of the map that can be resampled to
reduce that cost. The algorithm begins by sampling a new
main layer, Map, using the multi-layer sampling approach
described above (line 1). Next, if any constraints return a
nonzero cost in the main layer (line 2), then for each con-
straint, ¢ € C (line 3), the algorithm iterates over the sec-
tions of the main layer which have a nonzero cost (line 4). It
then records the cost of the current section according to each
constraint (lines 5-7). The algorithm then samples a new sec-
tion, m, of the same dimensions as the current section (line
9), until the cost of m is lower than the previous cost for
¢, and it does not increase the cost of any other constraint
(lines 8-15). This process of finding violated sections and
improving their costs is repeated until the total cost of Map
is O (line 2).

Playability Constraint

Lode Runner is a puzzle-platforming game that often re-
quires complex paths through levels, and allows actions that
temporarily change the level geometry which may open
additional paths. Because Lode Runner allows for more
complex actions and requires non-linear paths, determining
where the playability of a level breaks down is more diffi-
cult. Notice, in linear games, such as Super Mario Bros., we
can simply determine how far into a level an agent is able
to reach, and then resample that section until it is passable;
in Lode Runner determining the appropriate sections to re-
sample is not as straightforward. We can easily determine
whether a level is playable by checking that a path exists
that passes through each gold, however, in addition to sim-
ply checking whether a level is playable, we also need to be
able determine where in the level playability breaks down.
We frame this playability problem as one of adding edges

128

to a graph in order create strongly connected graphs, as we
explain below.
We determine the sections to resample in several stages:

1. Select positions in the level for which passage is impor-

tant. We selected positions containing gold (which must
be collected to complete the level), and boundaries be-
tween sections, as defined by the section layer.

2. Create a graph where each node is a position selected

above. Connect two nodes with a directed edge if a path
exists between the positions in the level that does not pass
through the other positions. We determine if such a path
exists with a specialized Lode Runner agent.

3. Find the strongly connected components of the graph

with, for example, Tarjan’s algorithm (Tarjan 1972).

4. Create a directed acyclic graph (DAG) treating each

strongly connected component as a node, and adding
edges between nodes in the DAG when the strongly con-
nected components have edges between them.

5. If all of the gold pieces are within one strongly connected

component, then the level is playable, and no sections
need to be resampled. Otherwise, continue with the re-
mainder of the steps.

6. Find the sets of nodes in the DAG that have an in-degree

of 1, called X, or an out-degree of 1, called Y.

7. If | X| > |Y|, return for resampling all sections which:

a) are a part of the strongly connected component repre-
sented by the node in X, and b) contain a gold.

By resampling sections with gold that are bottlenecks in
the graph, we are able to increase traversability through the
level, thus making the gold more easily reachable.

Notice, that this approach can be used to check for paths
between arbitrary points in a level. The only domain-specific
element is the agent which finds paths between positions, but
this can be replaced with any agent that is able to determine
if one position is reachable from another in some domain.

Experimental Evaluation

We test our approach by sampling levels for the classic video
game, Lode Runner. Our goal is to determine whether the
multi-layer approach is able to more reliably and easily gen-
erate playable levels than the single-layered approach, and
if providing a play path layer allows for more control over
the output levels. Additionally, we evaluate whether the vi-
olation location resampling algorithm is necessary when us-
ing the multi-layered approach. The remainder of the sec-
tion discusses our chosen domain in more detail, describes
the experimental set-up, and reports the results of our exper-
iments.

Domain

Lode Runner is a puzzle-platforming game which requires
complex non-linear paths, and lets the player modify the
structure of the levels. To complete a level in this domain,
the player must collect all of the gold pieces placed in the
level. In our experiments we use 10 levels from Lode Runner

X
|

VIXIX X X[
1 IR ERE
|

VXXX IX XXX]!

IR K |

PO XXX IX XXX [!
| K

VXXX IX X IX XXX [
| BN ENERE

rlolalalalr [l |

XXX X
| |

|
|
|
|
s L

VXIXCIXCIX XX XX XXX XXX
XXX XX XX e

| vl |

XX IXIX[X/|a|o

lxdx Ix x|
volse | | [[[]

Figure 3: This figure shows the player path layer used with
the levels generated with “Multi P6.”

on the NES. These levels could be found in the video-game
level corpus (Summerville et al. 2016b).

Level Representation

In this section we describe the layers of our training levels.

Structural Layer The structural layer captures the place-
ment of objects, enemies, and items throughout the level.
This layer is represented by an array, where each cell takes
its value from a set of 10 tile types representing elements in
the level, such as ladders, gold, enemies, etc. Figure 1 (top-
right) shows the structural layer of a Lode Runner level.

Section Layer The section layer captures positioning in-
formation about the level. This layer essentially splits the
level into several sections to allow for more focused training
within each of the sections. For our experiments, we use a set
of 20 tiles to represent the section layer. We split each level
into 5 x 4 and 6 x 4 (width x height) tile sections, depend-
ing on the positioning within the level. We chose these sizes
based on preliminary experiments. Figure 1 (bottom-right)
shows the section layer of a Lode Runner level.

Player Path Layer The player path layer captures the path
a player took through the level. This layer is represented
with 4 tile types: — represents a position the player did not
pass through; d represents a position where the player per-
formed the “dig left” action, temporarily destroying a piece
of breakable ground to the left and below the player; D rep-
resents a position where the player performed the “dig right”
action; X represents a spot the player moved through with-
out taking either dig action. We extracted these paths from a
video of a player completing the levels'. Figure 1 (bottom-
left) shows the player path layer of a Lode Runner level.

Experimental Set-up

In order to explore the effectiveness of modeling our chosen
domain with the multi-layered approach, we train 2 mod-
els: a multi-layer model using all three layers described pre-
viously, and a single-layer model using only the structural

'www.youtube.com/watch?v=VwxLChxi§WA

129

layer. The single and multi-layer models require several pa-
rameters to be set before training and sampling.

e Single-layer MdMC: This requires setting a look-ahead,
and a set of network structures to be used during training,
sampling, and for the fallback. In our experiments, we use
a look-ahead of 3. For the network structures, we use nss
as the main network structure. During sampling, nss falls
back to nso which falls back to ns; which falls back to
nso. Network structures can be seen in Figure 2 (left).

e Multi-layer MAMC: This requires setting a look-ahead,
and a set of network structures to be used during train-
ing, sampling, and for the fallback. Any layer not being
sampled (i.e. non-structural layers) must be provided at
the time of sampling or computed during; we provide the
non-structural layers prior to sampling. For our experi-
ments, we use a look-ahead of 3. For the network struc-
tures, we use nsl3 as the main network structure. Dur-
ing sampling, nsl3 will fall back to nsly which will fall
back to nsly; which finally falls back to nsly. Recall, the
nsl; network structures follow the same pattern as the
ns; network structures, but always retain dependencies on
the other layers. During sampling, we provide the section
layer from Figure 1 (bottom-right), and sample 50 levels
with each player path layer from the training levels.

We use each trained model paired with the violation loca-
tion resampling algorithm as well as the standard MdMC
sampling algorithm. For the VLR algorithm, we enforced
the playability constraint as described previously.

We sampled 500 levels with the single-layer and multi-
layer model paired with each sampling approach (VLR
and standard sampling). We are interested in determining
whether the multi-layer approach allows us to more easily
sample usable levels for complex domains. Therefore, we
record the playability of all levels sampled using the stan-
dard sampling approach. Additionally, we compare how eas-
ily the multi-layered approach generated playable levels as
compared to the single-layer approach when using the VLR
algorithm. We determine this by setting a limit on the num-
ber of sections that can be resampled (100 sections), and
recording how many levels are unfinished as well as the av-
erage number of sections resampled per finshed level for
each model. Lastly, we are interested in whether the multi-
layer approach gives the user more control over the sampled
levels. This is determined by computing the percentage of
gold pieces placed in the level that appear on the provided
player path. We compare this percentage for the multi-layer
approach against the average over all player paths for the
single-layer approach as a baseline.

Results

Table 1 shows the results of sampling levels with both the
multi-layer and single-layer models paired with the violation
location resampling algorithm. Each “Multi” represents the
50 levels sampled using the path layer from one of the train-
ing levels. The first column (Average) is the average num-
ber of sections resampled counting only the sections resam-
pled in levels that did not hit the limit of resampled sections.
The second column (Std. Dev.) is the standard deviation of

Table 1: Multi-layer vs. Single-layer VLR Comparison
Sections Resampled

Model Average Std. Dev. Unfinished
Multi PO 14.250 21.289 12%
Multi P1 23.267 27.522 10%
Multi P2 33.028 31.658 28%
Multi P3 20.281 25.213 36%
Multi P4 20.629 20.550 30%
Multi P5 45.677 27.849 38%
Multi P6 35.118 29.555 66%
Multi P7 30.452 30.811 38%
Multi P8 38.882 33.689 32%
Multi P9 13.625 19.377 4%
Multi All 18.334 18.474 29.4%

Single 17.359 20.712 27.0%

the number of sections resampled, again only counting com-
pleted levels. The final column (Unfinished) shows the per-
centage of levels that were abandoned during sampling be-
cause they resampled too many sections. Note, the values for
“Multi All” are the weighted averages based on the number
of completed levels for each path layer.

We see in Table 1 that the single and multi-layer ap-
proaches are both able to reliably generate playable levels,
on average, using the VLR algorithm. In fact, there is no
statistically significant difference between the average num-
ber of sections resampled (when p = 0.1, using a T-test),
or between the average number of unfinished levels (when
p = 0.1 with a chi-square test). However, despite their sim-
ilar performance on average, notice that the choice of path
can have a large impact on the VLR’s ability to sample lev-
els, as can be seen in the “Multi P6” row of the table. Fig-
ure 3 shows the “Multi P6” path. Notice it contains several
groups of movements and dig actions together in the path
than the path shown in Figure 1 (bottom-right), which is the
“Multi PO” path, which makes it more difficult to replicate.

Figure 4 shows a level sampled using the multi-layer ap-
proach (top) and with the single-layer approach (bottom),
both sampled with the VLR algorithm. We annotated a pos-
sible solution to each level. Note that red X’s represent sec-
tions of ground that need to be destroyed by the player to
complete the level.

Table 2 shows the percentage of playable levels sam-
pled with both the multi-layer and single-layer models
paired with the standard sampling approach. As above, each
“Multi” represents the 50 levels sampled using the path layer
from one of the training levels, and “Multi All” represents
the percentage playable over all the levels sampled with the
multi-layer model. On average, we see the single-layer ap-
proach is able to sample significantly more playable lev-
els (with p = 0.1, using a chi-square test). However, we
see the performance of the multi-layer approach heavily de-
pends upon the player path layer used during sampling. For
instance, when a path includes a lot of digging actions and
clumped sections of movements (as in “Multi P6” in Figure
3) the model has a more difficult time capturing the struc-
tural patterns surrounding the movements, and thus creates

130

Figure 4: This figure shows a level sampled using the multi-
layer approach (top) and a level sampled using the single-
layer approach (bottom), both with the VLR algorithm. The
levels have been annotated with solutions, where red X’s in-
dicate ground that must be destroyed.

Table 2: Multi-layer vs. Single-layer Standard Comparison

Model Percent Playable
Multi PO 30%
Multi P1 10%
Multi P2 18%
Multi P3 10%
Multi P4 20%
Multi P5 4%
Multi P6 6%
Multi P7 4%
Multi P8 6%
Multi P9 24%
Multi All 13.2%

Single 32.6%

fewer playable levels.

Table 3 shows the percentage of golds in the sampled lev-
els that are placed on the provided player path. We believe
this metric gives an approximation of how well the sam-
pled levels adhere to the provided path, and therefore how
much control providing a path gives the user. For the single-
layer approaches we computed the average percentage of
gold pieces placed on each of the paths to act as a baseline.
Notice, that when using the multi-layered approaches an av-
erage of over 90% of the gold pieces appear on the provided
path, compared to the maximum of 46.06% with the single-
layer baseline. This shows that by providing a player path

Table 3: Multi-layer vs. Single-layer Gold on Path

Path Singlestd Multig g SingleVLR Multiy 7 g
PO 3817% 98.15% 40.22% 31.28%
P1 37.46% 100.00% 38.58% 100.00%
P2 31.29% 96.16% 33.45% 95.78%
P3 39.23% 99.67% 39.45% 99.71%
P4 39.67% 91.81% 37.99% 91.12%
P5 46.06% 98.49% 46.95% 99.58%
P6 35.71% 98.16% 35.68% 98.16%
P7 40.56% 95.68% 41.71% 98.14%
P8 21.81% 100.00% 23.11% 100.00%
P9 44.18% 97.43% 44.71% 97.49%

Avg. 37.42% 97.55% 38.19% 91.13%

layer, the multi-layer approach is able to sample a level with
a solution similar to that provided path. A notable excep-
tion is with the VLR approach paired with PO. It is unclear
why this particular path with multi-layer VLR approach per-
forms so poorly, while it performs similar to other paths in
the standard sampling approach, and in terms of the other
metrics used.

Our results show that while the single-layer and multi-
layer approaches perform similarly in terms of sampling
time (sections resampled, levels finished) when using the
VLR algorithm for generation, and the single layer approach
even outperforms the multi-layer approach in terms of playa-
bility when using a standard sampling algorithm, the multi-
layer approach provides the user with much more control
over the type of levels created by the system, as evidenced
by the placement of the gold pieces relative to the provided
path. This suggests that the multi-layer approach can be of
benefit when the user desires specific types of outputs from
the system.

Conclusions and Future Work

In this paper we explored the application of our multi-layer
level representation to the puzzle-platformer Lode Runner.
We found that while the violation location resampling algo-
rithm does much of the heavy lifting, in terms of ensuring
usable levels are created, leveraging the multi-layer repre-
sentation and providing a player path gives the user more
control over the sampled levels than the with the single-layer
approach. In the future, we would like to explore more di-
verse layers, such as difficulty layers, enemy behavior lay-
ers, and more informative section layers (perhaps via clus-
tering). We would also like to continue exploring more com-
plex domains, such as Metroid or Mega Man.

References

Ching, W.-K.; Huang, X.; Ng, M. K.; and Siu, T.-K. 2013.
Higher-order Markov chains. In Markov Chains. Springer.
141-176.

Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. Proceedings of the 18th Interna-
tional Academic MindTrek.

131

Guzdial, M., and Riedl, M. 2016. Game level generation
from gameplay videos. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.

Hoover, A. K.; Togelius, J.; and Yannakis, G. N. 2015. Com-
posing video game levels with music metaphors through
functional scaffolding. In First Computational Creativity
and Games Workshop. ACC.

Katz, S. 1987. Estimation of probabilities from sparse data
for the language model component of a speech recognizer.
IEEE transactions on acoustics, speech, and signal process-
ing 35(3):400-401.

Markov, A. 1971. Extension of the limit theorems of prob-
ability theory to a sum of variables connected in a chain.
In Dynamic Probabilistic Systems: Vol. 1: Markov Models.
Wiley. 552-577.

Shaker, N., and Abou-Zleikha, M. 2014. Alone we can do
so little, together we can do so much: A combinatorial ap-
proach for generating game content. In Tenth Artificial Intel-
ligence and Interactive Digital Entertainment Conference.

Snodgrass, S., and Ontanon, S. 2015. A hierarchical MdMC
approach to 2d video game map generation. In Eleventh
Artificial Intelligence and Interactive Digital Entertainment
Conference.

Snodgrass, S., and Ontafién, S. 2016a. Controllable proce-
dural content generation via constrained multi-dimensional
markov chain sampling. In 25¢th International Joint Confer-
ence on Artificial Intelligence.

Snodgrass, S., and Ontafién, S. 2016b. Learning to generate
video game maps using markov models. /EEE Transactions
on Computational Intelligence and Al in Games.

Snodgrass, S., and Ontafién, S. 2017. Procedural level gen-
eration using multi-layer level representations with MdMC:s.
In Computational Intelligence and Games (CIG), 2017
IEEE Conference on.

Summerville, A. J., and Mateas, M. 2015. Sampling Hyrule:
Multi-technique probabilistic level generation for action role
playing games. In Eleventh Artificial Intelligence and Inter-
active Digital Entertainment Conference.

Summerville, A., and Mateas, M. 2016. Super Mario as a
string: Platformer level generation via LSTMSs. Proceedings
of st International Joint Conference of DiGRA and FDG.

Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M. O.
2016a. Learning player tailored content from observation:
Platformer level generation from video traces using Istms.
In Twelfth Artificial Intelligence and Interactive Digital En-
tertainment Conference.

Summerville, A. J.; Snodgrass, S.; Mateas, M.; and On-
tandn, S. 2016b. The VGLC: The video game level corpus.
In Proceedings of the 7th Workshop on Procedural Content
Generation.

Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgard, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017. Procedural content generation via machine learning
(PCGML). arXiv preprint arXiv:1702.00539.

Tarjan, R. 1972. Depth-first search and linear graph algo-
rithms. SIAM journal on computing 1(2):146-160.

