
An Analysis of Model-Based Heuristic Search
Techniques for StarCraft Combat Scenarios

David Churchill
Memorial University, St. John’s, A1B 3X5, Canada (dchurchill@mun.ca)

Zeming Lin, Gabriel Synnaeve
Facebook AI Research, New York, 11205, USA (zlin@fb.com, gab@fb.com)

Abstract

Real-Time Strategy games have become a popular test-bed
for modern AI system due to their real-time computational
constraints, complex multi-unit control problems, and im-
perfect information. One of the most important aspects of
any RTS AI system is the efficient control of units in com-
plex combat scenarios, also known as micromanagement. Re-
cently, a model-based heuristic search technique called Port-
folio Greedy Search (PGS) has shown promising performance
for providing real-time decision making in RTS combat sce-
narios, but has so far only been tested in SparCraft: an RTS
combat simulator. In this paper we present the first integra-
tion of PGS into the StarCraft game engine, and compare its
performance to the current state-of-the-art deep reinforcement
learning method in several benchmark combat scenarios. We
then perform the same experiments within the SparCraft sim-
ulator in order to investigate any differences between PGS per-
formance in the simulator and in the actual game. Lastly, we
investigate how varying parameters of the SparCraft simulator
affect the performance of PGS in the StarCraft game engine.
We demonstrate that the performance of PGS relies heavily
on the accuracy of the underlying model, outperforming other
techniques only for scenarios where the SparCraft simulation
model more accurately matches the StarCraft game engine.

Introduction and Background
AI researchers have often used games as a test-bed for evalu-
ating the performance of their artificial intelligence systems.
Recently, advances in deep learning techniques, combined
with heuristic search, have led to the defeat of professional
players of Go and No Limit Texas-Hold-em Poker by the
AlphaGo (Silver et al. 2016) and DeepStack (Moravčík et
al. 2017) programs, heralding the end of human dominance
in traditional two-player games. As their next challenge,
many AI researchers have chosen to tackle Real-Time Strat-
egy (RTS) video games, which present more complex prob-
lems than traditional board games, with properties such as
real-time computational constraints, simultaneous multi-unit
control, and imperfect information (Ontanón et al. 2013).
Unit micromanagement in RTS games (“micro”) is the

problem of making decisions on how to most effectively con-
trol the specific movements and actions of units, usually in

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a combat-related context, and is a key aspect of competitive
play. The properties of RTS game combat make it a partic-
ularly challenging problem, involving the simultaneous real-
time control of dozens of units with varying properties. Each
unit on the battlefield can be controlled individually, leading
to an exponential number of action combination possibilities
that must be chosen from by a player at a given state.
A number of heuristic search based approaches for RTS

combat have been introduced in recent years, such as Alpha-
Beta Considering Durations (ABCD), UCT Considering
Durations (UCT-CD), and Portfolio Greedy Search (PGS).
(Churchill and Buro 2013) demonstrated that PGS outper-
forms other search-basedmethods inmedium and large-scale
combat scenarios, and is currently the top performing heuris-
tic search based method for RTS game combat. As PGS is
based on heuristic search, it relies on a forward model of the
environment, and its only published results so far have been
in simulation, not the StarCraft game engine.
In this paper we will present the first experiments which

use PGS to control units in the StarCraft game engine, and
explore possible issues related to its reliance on an abstract
simulator as a forward model. We will compare its perfor-
mance to the current state-of-the-art technique in deep rein-
forcement learning as well as several baseline scripted play-
ers. By performing these experiments in both the real Star-
Craft game engine as well as in simulation, we can highlight
any differences in results and attempt to draw conclusions
about the feasibility of such model-based approaches in real
RTS game engines. We begin by first introducing each of the
StarCraft combat techniques we will use in our experiments,
followed by a description of the combat scenarios used to test
them. We then present the results of three separate experi-
ments and discuss our findings.

RTS Unit Micro Scripts
The simplest and most common technique for unit micro in
retail RTS games is to use hard-coded scripted behaviours.
We define a scripted player to be one that implements a static
series of scripted rules, similar to a finite state machine or
simple decision tree, but does not perform any sort of forward
look-ahead evaluation or learning. In this paper we will use
the following common scripts as baseline players to compare
the performance of PGS and a reinforcement learning policy:

The AIIDE-17 Workshop on
Artificial Intelligence for Strategy Games

8

WS-17-18

c AttackClosest - If a unit is within the attack range of an
enemy unit, it will attack the closest enemy unit and wait
in the same position until it has reloaded to attack again.
If it is not within attack range of any units, it will move
toward the closest enemy unit.

w AttackWeakest - AttackClosest, but will attack the enemy
unit which has the lowest current hit points.

k Kiter - AttackClosest, but moves away from an enemy unit
while reloading instead of standing still. This behaviour
is very effective when used with long ranged attackers vs.
short ranged attackers and is known as ’kiting’.

h HoldPosition - AttackClosest, but units will never move
from their initial positions

n NoOverkill - Adds a condition to a script that no unit will
be assigned to attack an enemy unit which has already been
assigned predicted lethal damage on this time step.
For brevity, future references to these scripts in this paper

may use the character abbreviation listed before the script
name. These scripts can also have their behaviours com-
bined, for example the scriptwcknwould be “attackweakest
enemy unit with highest priority, then closest, kite when
reloading, with no overkill”.

Portfolio Greedy Search
RTS combat game scenarios are difficult for traditional
heuristic search techniques to solve, due to the exponential
number of possible action combinations to choose from at
any state. Portfolio Greedy Search is a heuristic search tech-
nique specifically designed for decision making in games
with large action spaces. Instead of searching all possible ac-
tion combinations for units at a give state, PGS reduces the
action space generating unit actions from a set of scripted be-
haviours which we call a portfolio. Unlike search algorithms
such as Minimax or MCTS, PGS does not build a game tree
to search an exponential number of action combinations, but
instead uses a hill-climbing approach to reduce the number
of actions searched to a linear number. State evaluations in
PGS are carried out via game playouts. A full description of
the PGS algorithm is available in (Churchill and Buro 2013),
but a brief outline is as follows:
1. PGS takes as input an initial game state and a portfolio of
scripts, chosen to cover a range of tactical possibilities.

2. A single script is chosen as the initial seed script for both
players, and is assigned to control each unit of the corre-
sponding player, we call this a unit-script assignment.

3. For each unit a player controls, PGS iterates through each
script in the portfolio and assigns it to the current unit.

4. A playout is performed to evaluate the current unit-script
assignment, simulating the result of combat using the cur-
rent unit script assignment for some number of turns.

5. The best combination of unit-script assignments is chosen
as the one which has the maximum playout value.

6. Steps 3-5 can then be repeated any number of times for
both players, improving via self play.

7. When a time limit is reached, the actions produced by the
final unit-script assignment are returned.

SparCraft Combat Simulator
As PGS performs playout evaluations to decide on which ac-
tions to perform, it requires a forward model of the environ-
ment in order to function. The BWAPI programming inter-
face allows for reading the memory of StarCraft and issu-
ing actions to the game, but it does not allow us to directly
copy or manipulate local game state instances, which is re-
quired for the PGS forward-model. Therefore, in order to
perform PGS on combat scenarios in StarCraft, we must use
a system which enables us to efficiently simulate the game’s
combat engine. The model we will use to carry out PGS is
SparCraft (Churchill 2016a), a StarCraft combat simulation
library written in C++. Specifically designed to be a test-bed
for RTS combat algorithms, it models StarCraft combat sce-
narios in a manner that balances accuracy of simulation with
speed of computation, and has the following features:

• It models all StarCraft unit types that are able to attack and
move, along with all of their properties such as hit points,
weapon damage, speed, and attack range.

• Units in SparCraft are able to perform the following ac-
tions: Move to a given (x,y) pixel location, Attack a target
enemy unit, and Hold Position for a given duration.

• SparCraft states can be fast-forwarded to the next time step
in which a unit is able to act, allowing it to skip many game
frames and save significant computation.

• SparCraft actions have set durations, and must be carried
to completion with no interruption. For example, a unit
must carry out a Move action to its destination and cannot
take any other action or stop until it is completed.

• SparCraft does not currently model fog of war, unit accel-
eration, or spell casting.

• Importantly, SparCraft does not model unit collisions.
This greatly reduces the accuracy of the simulation in
comparison to the StarCraft game engine, but was neces-
sary to be fast enough to facilitate heuristic search. If unit
collisions were simulated, SparCraft would also require
a multi-agent path-finding system similar to the StarCraft
game engine, which would be computationally expensive,
and difficult to accurately engineer.

StarCraft Engine Interface
SparCraft is interfaced with the StarCraft game engine by
incorporating it into UAlbertaBot, an open source StarCraft
AI agent (Churchill 2016b). In order for SparCraft and PGS
to produce actions that can be carried out in the StarCraft
game engine, the following process occurs at each time step
of a given battle:

1. The current StarCraft game state is read within UAl-
bertaBot via BWAPI and translated into a corresponding
SparCraft game state.

2. The PGS algorithm and all combat simulations are run
within the SparCraft combat simulator.

9

3. When the PGS time limit is reached, the resulting Spar-
Craft actions are returned to UAlbertaBot, translated into
their corresponding BWAPI actions, and are issued to the
units in the StarCraft game engine via BWAPI.

Deep Reinforcement Learning Player
We now give a brief overview of the deep reinforcement
learning model of (Usunier et al. 2017) applied to StarCraft
micromanagement, and how it was trained.
The actions each unit can take are: movement in the 8

compass directions around the unit, no-op, and all the attack
actions to any of the enemy units, totaling 9+#units. Units
take actions every 9 game frames, chosen by cross validating
between 5 and 17. Each unit takes its action “in turn” in the
same frame, such that the n-th unit’s action is conditioned on
the state and the n−1 actions that have already been chosen.
The units’ ordering is randomly sampled each time.
Themodel is a neural network that takes a tuple (actor unit,

attack|move, target position) as input and outputs a score. We
have as many of these tuples as there are possible actions for
each unit. The state is converted into a set of numerical fea-
tures by viewing it as a graph where the units are nodes and
the edges denote targeting. Each unit is represented by: its
hit points, shield, cooldown, previous command type, type of
the current command, attack damage, type, armor, whether it
is an enemy, its position relative to the acting unit, distances
between the actor and its previous target, and between the
actor and the current target. Each such input tuple is fed into
a 2 layer neural network. Then, the output of this network is
“pooled” to reduce it to a fixed size state embedding vector,
via concatenating the average and the max over all dimen-
sions. The state embedding vector is then concatenated with
a learned vector representing the type of the action, and is
fed to another 2 layer neural network. This outputs a scalar
that encodes the score of the action for the given unit in the
current state.
The model is trained via an episodic on-policy algorithm.

After each battle, the weights are updated w.r.t. what was pre-
dicted in the immediate last battle. The reward signal over an
episode is proportional to the total damage inflicted minus
the total damage incurred along the episode, normalized for
the number of units. The algorithm performs deterministic
exploration, by adding noise to the model — not by sam-
pling in the actions distribution. For each battle, Gaussian
noise (one vector per battle) is added to the parameters of the
last layer of the neural network, allowing to compute a zero-
order (ZO) estimate (Kiefer, Wolfowitz, and others 1952) of
the policy gradient, and updating the weights of this layer. A
heuristic is used to compute an approximation of the gradi-
ent to backpropagate to the rest of the network. More details
are provided in the original paper (Usunier et al. 2017).

TorchCraft
For all the experiments from (Usunier et al. 2017), in-
cluding scripted players and the graph-based deep model
trained through reinforcement learning, we used TorchCraft
(Synnaeve et al. 2016), which connects Torch (Collobert,
Kavukcuoglu, and Farabet 2011) to StarCraft. It enables

deep learning research on StarCraft by making it easy to con-
nect (through ZeroMQ) one training process to several game
instances, and to decouple the process with the game simu-
lation from the one with the neural network inference. Cur-
rently, TorchCraft provides C++, Lua, and Python clients,
and a compression-enabled state serialization format.

Experiments
Three different experiments were carried out: the first to
compare the performance of the combat solutions discussed
in the previous sections, the second to compare the results of
PGS in simulation vs. in the StarCraft engine, and the third
to show effects related to varying the parameters of the Spar-
Craft simulation. These experiments used each of the pro-
posed methods to control units within a number of different
combat scenarios. Before detailing each experiment, we will
first describe the scenarios in which they will take place.

Combat Scenarios
The combat scenarios used were hand-crafted to represent
battles of varying complexity, using several types of units
with a range of properties, each posing unique tactical chal-
lenges in order to be successful. The scenario categories are:
mXvY - Player controls X Terran Marines (slow, ranged,
ground unit) vs. Y enemy controlled Terran Marines.

wXvY - Player controls X Terran Wraiths (fast, ranged, fly-
ing units) vs. Y enemy controlled Terran Wraiths. Fly-
ing units do not incur unit collision, and so more tactical
movement can occur than in the mXvY scenario.

dXzY - Both players control X Protoss Dragoons (strong,
ranged, ground unit) and Y Protoss Zealots (slow, strong,
ground unit). In this scenario, sending the Zealots to the
front lines to absorb damage while the Dragoons attack
from long range is most effective.

Experiment 1: StarCraft Combat
Each of the combat scenarios were implemented in StarCraft:
Broodwar via a custom map file in which the following se-
quence of events occur in order:
1. Two sets of identical units for each player spawn in sepa-
rate groups, initially spaced far enough apart such that no
units can attack each other.

2. Enemy controlled units approach and attack the player us-
ing StarCraft’s built-in Attack-Move command.

3. The player’s group of units is controlled via their chosen
combat algorithm, with commands given via BWAPI.

4. When any player reaches 0 units, the winner is recorded
and steps 1-3 are repeated.
For Experiment 1, the following specific scenarios were

used: d2z3,m5v5,m15v16, and m15v17. For each of these
scenarios, a total of 9 players were tested, playing 1000 bat-
tles each against the custom map’s AttackClosest scripted
player: 3 scripted players implemented BWAPI / StarCraft
(c, wc, wcn), 1 deep reinforcement learned policy player im-
plemented in TorchCraft, 4 scripted players implemented in

10

SparCraft (c, wchn, wckn, wcn), and the Portfolio Greedy
Search player (PGS). Scripted players were implemented in
BWAPI / StarCraft as well as SparCraft in order to highlight
any differences in performance that may arise from the con-
version of states / actions from StarCraft to SparCraft and
vice-versa. Each player also employed a ‘protected’ com-
mand mode that blocks issuing actions that would have in-
terrupted an ongoing attack animation, which is a common
occurrence in BWAPI / StarCraft AI development.

Experiment 2: SparCraft Simulated Combat
In addition to performing each of the combat scenarios in
Experiment 1 in the StarCraft game engine, each battle us-
ing SparCraft players was also carried out entirely within the
SparCraft simulator. At the start of each battle in Experiment
1, before any actions were taken in the StarCraft game en-
gine, the battle was simulated entirely within SparCraft and
the results were recorded. Enemy unit behaviour was con-
trolled within SparCraft via the AttackClosest script, as this
was the most similar behaviour to the enemy units in the cus-
tommap in Experiment 1. This experiment was performed in
order to highlight the differences between the expected out-
come of the SparCraft simulation and the results in the actual
StarCraft game engine.

Experiment 3: SparCraft Parameter Variations
One of the main issues with model-based search methods
such as PGS is that their result may be very sensitive to the
accuracy of the model in which they are simulated. In or-
der to demonstrate this issue, we performed two experiments,
each which played PGS in the same setup as Experiment 1,
however in each experiment a different parameter of the Spar-
Craft combat simulation engine was varied. The two param-
eters that varied were:

• Move Penalty - In the StarCraft game engine, if a unit is
moving in a given direction and then chooses to attack a
unit in the opposite direction, it must first play an anima-
tion in which it turns to face the enemy unit before firing.
Since simulating this turning would add additional com-
putation to the SparCraft engine, it instead abstracts the
concept by introducing a Move Penalty in which a unit
must wait a specific number of frames after moving be-
fore it is able to attack. In this experiment, Move Penalty
values from 0 to 16 StarCraft game frames were tested.

• Range Addition - In the StarCraft game engine, differ-
ent types of units have varying attack ranges measured in
pixels, and a unit can attack a target unit only if any por-
tion of the target unit’s rectangular bounding box is within
its attack range. To avoid this bounding box computation,
SparCraft abstracts the concept by adding a given number
of pixels to the attack range of each unit, simulating the
extra distance required. Range Addition values between 0
and 64 StarCraft game pixels were tested. This parameter
is particularly important, because a slight difference in at-
tack range between SparCraft and StarCraft may result in
a unit being given a move command instead of an attack
command, leading to a significant loss in damage output.

PGS Search Environment / Parameters
All experiments involving PGS were performed single-
threaded on an Intel(R) Core(TM) i7-6800k CPU @
3.40GHz running Windows 10. A total of 32GB DDR4
3000mhz RAM was available, however the maximum
amount of RAM that used by PGS during the experiments
wasmeasured at less than 10MB. PGS andUAlbertaBotwere
implemented in C++ using BWAPI, and compiled using Vi-
sual Studio 2017 Enterprise Edition. The parameters used
for Portfolio Greedy Search in all scenarios for Experiment
1 and 2 were as follows:
• Search Time Limit: 10ms
• Improvement Iterations I: 1
• Response Iterations R: 0
• Playout Evaluation Max Turns: 100
• Enemy Seed Script: c (AttackClosest)
• Script Portfolio Used: [wcn, wckn, wchn]

wcn - Attack enemy units with priority weakest then
closest, with no overkill
wckn - wcn, but kites enemy unit while reloading
wchn - wcn, but units hold position and do not move

The 10ms time limit was chosen to simulate real-time per-
formance within a StarCraft AI agent in a competition set-
ting, where bots are allowed a total of 50ms of computation
per frame. Higher time limits of up to 40ms were tested,
but did not significantly increase performance in the Star-
Craft game engine, as simulation accuracy appeared to bot-
tleneck performance. The Script Portfolio was constructed
such that all three major tactical unit movements are present:
straight line movement toward and away from enemy units,
as well as holding position. Each of the scripts in the Port-
folio were tested in Experiment 1 and 2 along with PGS to
demonstrate whether the PGS algorithm was able to outper-
form each of the scripts by combining their behaviours. PGS
parameters for Experiment 3 were identical to the ones for
Experiments 1 and 2, with a lowered time limit of 5ms down
from 10ms (since many more games had to be played). For
Experiments 1 and 2, SparCraft parameters for all scenarios
used a MovePenalty of 8 frames, and a RangeAddition of 32
pixels, which were determined empirically via the results of
previous experimentation similar to Experiment 3.

Results and Discussion
Experiment 1 and 2
The results of Experiment 1 and 2 can be seen in Table 1, and
show the scores of all of the implemented players over 1000
battles in their corresponding scenarios, with score equal to
player wins + draws/2. We will discuss the results of each
scenario individually:
d2z3 - In this scenario, each player controls 2 ranged Dra-
goon units and 3melee Zealot units, with the optimal strat-
egy involving positioning the Zealot units on the front
lines while the Dragoons attack from behind. The best
result for Experiment 1 in this scenario were obtained by

11

Experiment 1: StarCraft Game Engine Experiment 2: Simulation
Scripted Players TorchCraft SparCraft Players SparCraft Players

Scenario c wc wcn ZO RL c wchn wckn wcn PGS c wchn wckn wcn PGS
d2z3 .67 .83 .50 .90 .13 .25 .35 .39 .72 0.5 0.0 0.0 1.0 1.0
m5v5 .94 .96 .83 1.0 .42 .79 .08 .53 .88 0.5 0.0 0.0 1.0 1.0
m15v16 .81 .10 .68 .79 .55 .08 .01 .26 .22 0.0 0.0 1.0 1.0 1.0
w15v17 .20 .02 .12 .49 .10 .06 .88 .23 .94 0.0 0.0 1.0 1.0 1.0

Table 1: Experiment 1 and 2 scores (wins + draws/2) over 1000 battles for each of the scenarios, for all methods and for scripted
baselines. Scores in columns under the Experiment 1 header are for battles in the StarCraft game engine. Scores in columns
under the Experiment 2 header are for battles carried out entirely within the SparCraft combat simulator vs. an AttackClosest
scripted player. The best result for each scenario in Experiment 1 is in bold.

the RL policy, followed by the wc script, then by PGS.
Of particular interest for this scenario is the vastly bet-
ter performance of the BWAPI scripted player c (Attack-
Closest, column 1) and the same scripted player imple-
mented via SparCraft (column 7). Upon visual inspection
of the battles there appear to be two reasons for this differ-
ence, both caused by abstractions in the SparCraft simula-
tion. The first reason is due to the notoriously erratic be-
haviour of Dragoons in StarCraft, which often have issues
with path-finding, moving small distances, and attacks be-
ing canceled if improperly timed. As SparCraft does not
simulate these behaviours accurately, it sometimes issued
move commands which interrupted and canceled the Dra-
goon’s attacks, despite having several measures in place
to attempt to stop this. The second issue was due to Spar-
Craft not modeling unit collisions, it would command the
player’s Zealot units to walk through an enemy unit to at-
tack a lower health target, and get stuck. Despite this, PGS
outperformed of all of its individual portfolio scripts, in-
dicating that the search did in fact work well.
The results for Experiment 2 can be seen in the last 5
columns, in which the same SparCraft players performed
the battle entirely in the SparCraft simulator vs. the At-
tackClosest (c) script. Since the battle was symmetric, the
results for script c were all ties vs. itself in the simulator.
The hold position (wchn) and kiting (wckn) scripts lost
all of their battles, and wcn and PGS won all of their bat-
tles. In fact for all scenarios, both wcn and PGS win all of
their battles in simulation but do not win all games in the
StarCraft game engine.

m5v5 - This simpler scenario is also symmetric, with each
player controlling 5 ranged Terran Marine units. The best
results come from the RL policy with a near perfect score,
with two scripted players c and wc coming just behind
them. As this is a simpler scenario consisting of the same
unit type, simply attacking the closest unit performs quite
well, due to the fact that the enemy player starts by walking
all of their units toward the player’s units. We can again
see a large difference between the BWAPI and SparCraft
versions of the scripted player Attack Closest (c). Again,
as SparCraft does not model unit collisions, there are a
number of times when the initial movement of the units
results in a collision, providing a small disadvantage, but

enough for the enemy to win.
The results for Experiment 2 are identical to the first sce-
nario, where SparCraft simulated that it should have won
all of the battles. As we continue to see this trend, it be-
comes more obvious that the differences in the SparCraft
and StarCraft engine are a major source of error, and lead-
ing to worse performance.

m15v16 - In this battle, the player is placed at a disadvan-
tage, having one less Marine than the enemy player. Since
both players units spawn in a cluster, it is difficult for clever
movement to play much of a role in success due to unit
collisions. In this scenario, the best performance is seen
by the BWAPI scripted Attack Closest (c) player, followed
closely behind by the RL policy. PGS performsworse than
its version of the Attack Closest script, again because of is-
sues related to unit collisions. PGS simulates incorrectly
that it can move its units in on top of each other to attack
the enemy, resulting in reduced performance.
The results for Experiment 2 in this scenario are interest-
ing, as it believes that it should be able to win every battle
in simulation by kiting the opponent (wckn), but in the
SparCraft engine it ends up losing nearly every battle. On
visual inspection of the games in simulation, we can see
that kiting the marines back and forth has the effect of con-
stantly cycling low hit point units to the back lines, taking
them out of range of the enemyAttack Closest script, caus-
ing units to stay alive much longer. However, when it tries
to implement this tactic in the StarCraft game engine, the
units collide and performance suffers.

w15v17 - In this scenario, the player is again at a disadvan-
tage, controlling 15 Wraiths vs. 17. The most important
aspect of this scenario is that flying units in StarCraft do
not incur unit collisions, and theWraith unit does not need
to stop moving to fire its rockets, meaning that the Spar-
Craft simulation of the scenario is much more accurate
than the ground unit scenarios. We see this reflected in
the results, with PGS outperforming all other methods.
We can draw several conclusions from these experiments:

• The reinforcement-learned ZO policy outperforms PGS in
smaller combat scenarios with less units.

• The reinforcement-learned ZO policy outperforms PGS in
situations where the SparCraft simulation is less accurate,

12

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 2 4 6 8 10 12 14 16

PG
S

Sc
or

e
(W

in
s +

 D
ra

w
/2

)

Move Penalty (StarCraft Game Frames)

Move Penalty vs. PGS Score (Different Scenarios)
m5v5 m15v15 m15v16 d2z3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 8 16 24 32 40 48 56 64

PG
S

Sc
or

e
(W

in
s +

 D
ra

w
/2

)

Range Addition (StarCraft Game Pixels)

Range Addition vs. PGS Score (Different Scenarios)
m5v5 m15v15 d2z3 w15v17

Figure 1: Results of Experiment 3 showing the effects on PGS results with varying parameters of the SparCraft simulation.
Shwon are results for varying the Move Penalty (left) and Range Addition (right) parameters within SparCraft, while all other
parameters remain fixed. 1000 battles were played for each parameter/scenario combination.

particularly in ground unit battles where many unit colli-
sions can happen.

• For large ground unit battles in the StarCraft game engine,
it seems difficult to outperform simple scripted players, as
unit collisions tend to hinder clever tactical movements,
and simulations are less accurate.

• PGS outperforms all other methods in scenarios where
SparCraft more accurately simulates the battle, especially
with flying units which do not incur collisions.

• PGS performs well in simulation, outperforming any
scripted players that it faced, however the actions produced
by PGS are often blunders when performed in the Star-
Craft game engine, due to inaccuracies in the simulation.

Experiment 3
The results for Experiment 3 can be seen in Figure 1, and
show the effects on the PGS score in various scenarios when
varying two different parameters of the SparCraft combat
simulation, the Movement Penalty (left) and the Range Ad-
dition (right). From these results, we can see that varying
these parameters can have drastic effects on PGS score for
some scenarios, but little effect on other scenarios. For ex-
ample, a Move Penalty difference of just 2 frames (from 6
to 8) yields a difference of 0.32 in the m5v5 scenario, while
yielding no noticeable difference in any other scenario. Intu-
itively, raising the value for the Move Penalty has the effect
of discouraging movement-based tactics, as each movement
will delay the next time a unit can attack. On visual inspec-
tion of the battles for d2z3, with a Move Penalty of 0 frames,
the PGS controlled Dragoons attempted to Kite the enemy
units for the entire duration of the battle due to there being
nomovement penalty, which led to them dealing significantly
less overall damage due to the unit turning animation in the
StarCraft game engine which was not compensated for.
The Range Addition parameter has even more dramatic

effects, with every scenario yielding very low scores for a
Range Addition of 0, while hitting a range of good scores be-
tween 24 and 40 pixels. Intuitively, a Range Addition value

that is too small may force units to move too close to an
enemy unit before firing, incurring incoming damage while
they move. A value that is too high will result in units at-
tempting to attack units that are too far away, possibly pass-
ing by enemy units en route, again incurring additional dam-
age. We believe that to obtain a higher level of accuracy, the
Range Addition parameter must be set individually for each
unit type, as well as each target unit type, leading to a very
difficult parameter tuning problem.
This experiment demonstrates the fragility ofmodel-based

methods, whose results can vary dramatically based on the
accuracy of the simulation involved. Without access to the
source code of a game engine, accurately creating a simulator
such as SparCraft becomes an exercise in reverse engineer-
ing, data mining, and parameter tuning, none of which are
required for systems such as deep learning which do not rely
on existing environment models.

Conclusion and Future Work
In this paper we have presented the first implementation of
PGS in the StarCraft engine, and compared its performance
directly with a state-of-the-art deep reinforcement learning
technique for StarCraft unit micro. By running both meth-
ods through the same set of StarCraft combat scenarios, we
were able to explore the strengths and weaknesses of each.
We have shown that the reinforcement learned policy out-
performs PGS for small combat scenarios, and for scenar-
ios in which the SparCraft simulator used by PGS is inac-
curate. We have also shown that for scenarios in which the
SparCraft simulator is more accurate, such as for flying units,
PGS outperforms all other methods, and may be suitable for
use in such situations in a StarCraft AI competition agent be-
cause of its low running time of only 10ms. We also observed
that for large scenarios involving many ground units, simple
scripted players such as AttackClosest perform surprisingly
well in the StarCraft game engine.
We can conclude that neither method is currently a clear

winner for all scenarios, and both offer unique strengths and
weaknesses. The reinforcement learned policy offers good

13

performance for small battle sizes without the need for an
environment model, however it requires a significant training
period to achieve this level of performance. Heuristic search
techniques offer good performance in situations where an ac-
curate, efficient model is available, and require no training
period, however creating an accurate model is time consum-
ing, may require parameter optimization, and in many sce-
narios (such as real world problems) may be impossible to
construct. It is the opinion of the authors that if learned mi-
cro policies continue to improve to surpass the capabilities
of heuristic search in all scenarios, they would be preferable
in situations where offline training periods are acceptable.
In the end, we do not necessarily view search and learning
techniques as strictly competing, but as techniques that can
be used together to create systems that are more powerful
than either could be alone. In the future, we hope to combine
heuristic search and deep learning to create the next genera-
tion of RTS game combat systems.

References
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In IEEE
Conference on Computational Intelligence in Games (CIG),
1–8. IEEE.
Churchill, D. 2016a. SparCraft: Open Source Star-
Craft Combat Simulation. https://github.com/davechurchill/
ualbertabot/wiki/SparCraft-Home.
Churchill, D. 2016b. UAlbertaBot. https://github.com/
davechurchill/ualbertabot/.
Collobert, R.; Kavukcuoglu, K.; and Farabet, C. 2011.
Torch7: A matlab-like environment for machine learning. In
BigLearn, NIPS Workshop, number EPFL-CONF-192376.
Kiefer, J.; Wolfowitz, J.; et al. 1952. Stochastic estimation
of the maximum of a regression function. The Annals of
Mathematical Statistics 23(3):462–466.
Moravčík, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
no-limit poker. arXiv preprint arXiv:1701.01724.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-time
strategy gameAI research and competition in StarCraft. TCI-
AIG.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
van denDriessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of go with deep neural networks and tree search. Na-
ture 529(7587):484–489.
Synnaeve, G.; Nardelli, N.; Auvolat, A.; Chintala, S.;
Lacroix, T.; Lin, Z.; Richoux, F.; and Usunier, N. 2016.
Torchcraft: a library for machine learning research on real-
time strategy games. arXiv preprint arXiv:1611.00625.
Usunier, N.; Synnaeve, G.; Lin, Z.; and Chintala, S. 2017.
Episodic exploration for deep deterministic policies: An ap-
plication to starcraft micromanagement tasks. In ICLR.

14

