
Towards Adaptability of
Demonstration-Based Training of NPC Behavior

John Drake
University of Pennsylvania

drake@seas.upenn.edu

Alla Safonova
University of Pennsylvania

alla@seas.upenn.edu

Maxim Likhachev
Carnegie Mellon University

maxim@cs.cmu.edu

Abstract

Using demonstration to guide behavior generation for non-
player characters (NPCs) is a challenging problem. Par-
ticularly, as new situations are encountered, demonstration
records often do not closely correspond with the task at hand.
Open-world games such as The Elder Scrolls V: Skyrim or
Borderlands often reuse locations within the game world for
multiple quests. In each new quest at each location, the par-
ticular configuration of game elements such as health packs,
weapons, and enemies changes. In this paper, we present
an approach that utilizes user demonstrations for generating
NPC behaviors while accommodating such variations in the
game configuration across quests.

Introduction

Training NPC behavior allows video game players to inter-
act with friendly NPCs in tactics of their own design. Game
designers can also use demonstration to author specific NPC
behavior not easily captured by other approaches. A partic-
ular challenge in the context of NPC behavior training is
that of adapting behavior as demonstrated to new environ-
ments and new problems. Open-world games often present
the player with quests or missions that give the player famil-
iar tasks in new locations and novel tasks in old locations.
For example, the player may be asked to clear a dungeon of
enemies in one quest, and then to go back to the same loca-
tion in another quest to retrieve a special item. If the NPC is
trained how to behave in the first quest, it is unclear how to
apply that experience to the new scenario.

NPC behavior generation can be posed as a planning
problem and accomplished by graph search. Graph search
algorithms like A* will find an optimal solution, if a solu-
tion exists (Hart, Nilsson, and Raphael 1968). Other algo-
rithms, like Weighted A* (Hart, Nilsson, and Raphael 1968)
can find a solution in less time or with fewer computational
resources, but at the cost of guaranteed solution optimality
(Likhachev, Gordon, and Thrun 2003).

As discussed in (Drake, Safonova, and Likhachev 2016),
the Experience Graph method can be used to train NPC be-
havior. The E-Graph method (Phillips et al. 2012) produces
solutions which prefer to reuse segments of experience or

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

demonstration paths. It does so by storing demonstrations
as paths and then computing a heuristic function that biases
the search towards the reuse of these paths within provided
bounds on sub-optimality.

When the NPC behavior needed to accomplish a quest
goal differs from behavior which was demonstrated in train-
ing, the use of the E-Graph heuristic can be more compu-
tationally costly than planning a solution with the plain A*
algorithm. It can also produce strongly sub-optimal solution
behaviors, since the search prefers to use the training data,
which leads it astray. We propose a method of incorporat-
ing Multi-Heuristic A* Search (Aine et al. 2015) to adapt
demonstration from one quest configuration to another.

Previous Work

Generating behavior for video game NPCs is typically ac-
complished by hand-crafted control schemes such as behav-
ior trees (Isla 2005) or finite state machines (Coman and
Muñoz-Avila 2013). Alternatively, a given objective func-
tion can be used to guide behavior generation, as in planning
(Macindoe, Kaelbling, and Lozano-Perez 2012) approaches.

Graph search-based planning is commonly used in video
game AI. The A* graph search algorithm has been used in
myriad applications, including for spatial trajectory plan-
ning (e.g. navigation meshes (Snook 2000)) and AI decision-
making. A* is a general-purpose graph-search technique
which finds the optimal path between two nodes in a graph
and does so by exploring the fewest number of nodes nec-
essary to guarantee that the optimal solution has been found
(Hart, Nilsson, and Raphael 1968). Variations on A* exist,
such as Weighted A*, which relax the guarantee on solution
quality (Likhachev, Gordon, and Thrun 2003). These varia-
tions tend to produce feasible solutions in less time than the
standard A* algorithm can produce the optimal solution.

Demonstration can be used to guide NPC behavior gen-
eration. This can permit NPC behaviors to change (as new
training demonstrations are provided) to suit new situations
not anticipated at development time. In the field of robotics,
inverse optimal control (Finn, Levine, and Abbeel 2016),
(Ratliff, Silver, and Bagnell 2009) is used to learn a cost
function from demonstration to bias the search. The E-Graph
method instead recomputes the heuristic function to bias the
search, leaving the cost function intact.

The E-Graph technique builds on A* by modifying the

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

179

search heuristic. The E-Graph heuristic makes the search
prefer to use paths from demonstration or previous solutions
(experience) while generating a new solution path. A heuris-
tic inflation parameter controls how much the search prefers
to use experience paths, and it also affects the guarantee on
solution optimality much like Weighted A*. Thus, the E-
Graph method allows its user to make a tradeoff between
how closely a new solution matches the experience and how
far the new solution’s cost might be from optimal. In cases
where an experience path closely matches the optimal solu-
tion, the algorithm produces high-quality solution paths in
little time.

For the purpose of NPC behavior generation from demon-
stration, the training-graph (T-Graph) heuristic (Drake, Sa-
fonova, and Likhachev 2016) was introduced to handle some
of the particular qualities of the video game NPC behavior
problem. While the E-Graph method either embeds experi-
ence within the search graph or augments the search graph
with demonstration data (Phillips et al. 2013), the T-Graph
heuristic permits the experience graph to lie off of the search
graph so long as a heuristic function can be computed be-
tween the two. This is important because NPC behavior is
often constrained (for example, the NPC may only be able
to navigate on the navmesh), and the behavior of a player
demonstrating a tactic is not. The T-Graph heuristic also
tends to smooth out the heuristic gradient to remove lo-
cal minima in the search space which slows down search
progress. NPC behavior can be planned from demonstra-
tion in this way, but as with the E-Graph heuristic, when the
spatial configuration of a problem is greatly different from
the configuration of the demonstration record, large local
minima are introduced and performance suffers. Addressing
such issues is the focus of this paper.

Game Context

We consider open-world video games such as the games
in the Elder Scrolls and Borderlands series. These kinds of
games often send the player and supporting NPCs on quests
(or “missions”) through portions of the game environment
we will call “dungeons” here. Each dungeon is accessible
from the greater game world, but itself only represents a lim-
ited physical area. The game’s storyline presents the player
with quests, and so-called “side-quests” tangential to the
main storyline are also available to the player. See Figure
1 and Figure 2 for examples of quest objectives and the cor-
responding dungeon areas from both the Borderlands and
Skyrim games.

These quests often re-use particular dungeons at different
points in the game. The player may be sent through a dun-
geon to retrieve a special item in one quest, but then be sent
back to the same dungeon to activate a device in another
quest. Parts of the dungeon may be exactly the same in a
later quest as they were previously, but other important parts
of the dungeon may have moved around. A key to open a
door might be moved to a new location, there might be addi-
tional health pack pick-ups available, and enemies may have
been randomly placed in new locations. See examples of en-
vironment reuse across quests in Figure 3 and Figure 4.

Figure 1: A Borderlands game mission with three objectives.
The first objective’s location (waypoint) is marked with a
diamond marker at the bottom of the local map.

Figure 2: A Skyrim game quest with four objectives. The lo-
cal map of the associated game area shows a quest objective
marked with a V marker at the bottom of the view.

NPC Behavior Training

As discussed in (Drake, Safonova, and Likhachev 2016), it
can be useful to train NPC behavior in these kinds of games,
so that a companion NPC can more effectively assist the
player, or so that the game developer can augment the NPC’s
ordinary AI capabilities with trained behavior for special cir-
cumstances. Training can be done by allowing the player (or
developer) to record a trace of gameplay in a dungeon en-
vironment and then feeding this trace into a demonstration-
based planning method like the E-Graph planner.

Since these kinds of heuristic graph search algorithms are
complete, they will find a solution if any solution exists, so
eventually they will find a behavior path for the NPC. Unfor-
tunately, when the player and NPC encounter a new quest for
a dungeon, the dungeon configuration may change so much
that the training trace misleads the search into large local
minima, causing a large computational delay before a solu-
tion path is found.

Demonstration-Based Training Via Graph

Search

Graph Search

To use graph search for NPC behavior generation, the
game’s configuration space is discretized as a graph. Nodes
on the graph describe the game state at a moment in time,
including all positions of enemies and items, NPC behav-
ior state, etc. Edges between nodes represent possible tran-
sitions from one game state a to another game state b and
each edge from a to b has an associated cost cost(a, b). For
navigation planning, the cost may be in units of distance (the
distance travelled on an edge), but in our case we use units
of time, which captures a notion of the expense of both nav-
igation actions and other kinds of actions such as attacks.

180

Figure 3: A Borderlands mission sharing the same environ-
ment with Figure 1. Note that the objective has moved.

Figure 4: Two Skyrim quests sharing objectives in the same
dungeon, Saarthal.

States in the search space are generated on the fly. To do
this, a successor generation function succ(a) is defined to
generate the set of all neighboring nodes reachable from in-
put state a. This function generates successors according to
all of the action choices available to the NPC, the effects
those actions have on the world (e.g. attacking: if the NPC
initiates an attack, this can harm enemies), and effects the
world has on the NPC (e.g. physics: if from state a the NPC
chooses to jump off a ledge, a result encoded in the cor-
responding successor b is that the NPC’s position falls with
gravity by an amount appropriate for the time cost cost(a, b)
of that edge.

The initial state of the game world is encoded as Sstart,
one of the states in the graph. A desired behavior outcome
(e.g. a task from a game quest) defines the goal of the search
problem. Since the goal may only be partially-specified, a
function SatisfiesGoal(a) is defined to compute whether
or not state a satisfies the conditions of the behavior goal,
rather than having a single goal state in the graph.

A graph search algorithm is used to find a path through
the state space from the start state to any state satisfying the
goal conditions. The path then encodes a sequence of actions
which brings the NPC from Sstart through the dungeon to
the quest task goal defined by SatisfiesGoal.

Heuristic graph search algorithms like A* use a heuristic
function h(a, b) to focus the graph search process. A heuris-
tic for A* search should be admissible and consistent. An
admissible heuristic never overestimates the cost between
two nodes. A consistent heuristic satisfies this triangle in-
equality: h(a, c) ≤ c(a, b) + h(b, c) (note that node b is a
successor of a). For example, a simple admissible and con-
sistent heuristic commonly used in, e.g., navigation planning
is defined by the Euclidean distance between the NPC posi-
tions in states a and b. When the cost unit is time instead

of distance, Euclidean distance can be divided by the max-
imum possible travel speed to produce a result in units of
time.

Weighted A* search is much like A*, but it inflates an
admissible and consistent heuristic by a factor of w. This al-
lows the search to find solutions which are guaranteed to be
no worse in cost than w times the optimal solution cost. This
tends to make searches find a path to the goal in substantially
less time than plain A* can.

E-Graph Heuristic

The Experience Graph (E-Graph) method introduces a way
to guide a graph search to utilize recorded experience paths.
These E-Graph paths are recorded from prior graph search
solutions, or they can come from demonstrations. The E-
Graph algorithm is implemented by substituting the special
E-Graph heuristic hE in place of the original graph heuristic
hG(a, b). For example, for navigation planning, the E-Graph
heuristic may replace the Euclidean distance heuristic. The
E-Graph method uses a new parameter 1 ≤ εE which con-
trols how much the search prefers to use the experience
paths. In extension from Weighted A*, when εE > 1, the
solution quality is bounded between the cost of the optimal
solution and wεE times the cost of the optimal solution.

The E-Graph heuristic hE(a, b) can be defined as follows:

min
π

N−1∑
i=0

min
{
εEhG(si, si+1), c

E(si, si+1)
}

(1)

where π is a path 〈s0...sN−1〉, s0 is a and sN−1 is b. cE(a, b)
returns the ordinary cost cost(a, b) if its inputs a and b are
both on the E-Graph, otherwise returns an infinite value.
This heuristic returns the minimal path cost from a to b
where the path π is composed of an arbitrary number of two
types of segments. One type of segment is a jump between
si and si+1 at a cost equal to the original graph heuristic in-
flated by εE . The other type of segment is an edge on the
E-Graph, and its cost in π is its actual cost. In this way, the
larger εE gets, the more the search prefers to utilize path seg-
ments on the E-Graph, since searching off of the E-Graph
becomes costly.

Adaptability Across Quests

When the E-Graph heuristic (or T-Graph heuristic from
(Drake, Safonova, and Likhachev 2016)) is used to guide
an NPC behavior planner search to reuse training paths and
the current quest configuration of a dungeon differs from its
configuration in the training quest, search progress can be
delayed by large local minima due to these differences. The
contribution of this paper is in the use of Multi-Heuristic A*
graph search to alleviate such issues.

Multi-Heuristic A* (MHA*) (Aine et al. 2015) performs a
graph search while exploiting the guidance of multiple dif-
ferent heuristics. We will focus on the MHA* implemen-
tation called Shared Multi-Heuristic A*. MHA* essentially
conducts multiple separate graph searches, each using a dif-
ferent heuristic. One search, called the anchor search, uses
an admissible heuristic, while the other searches do not need

181

Figure 5: Test environment used in this paper to illustrate the
advantage of using MHA*. The two lines with dots at each
vertex represent E-Graph paths where the key and shield
were instead located at points A and B, respectively.

to be admissible. Search g-values are shared across searches,
which allows the algorithm to have parts of the solution path
be found by different searches.

Consider the following example of a simplified game with
an NPC and a dungeon environment. The NPC can navigate
the environment by walking or sneaking, but there are ob-
stacles in the environment blocking some paths. In addition,
the NPC can complete some spatial events in the environ-
ment, such as picking up an item. A key and a shield are
available in the environment. The NPC starts without hold-
ing the key nor the shield and must walk over these items to
pick them up. There may be an enemy in the environment
which attacks when the NPC gets near it. The enemy’s at-
tacks hurt less if the NPC is carrying a shield. There may be
a door in the environment, which will not open unless the
NPC possesses the key.

Figure 6: The configurations of the dungeon when the two
demonstration paths were each recorded. On the left is a path
demonstrating a behavior to pick up a shield before facing an
enemy at the choke-point. The right side path demonstrates
to pick up a key before reaching the locked door near the
goal.

See Figure 6 and Figure 5 to see how a dungeon configu-
ration can change between quests. In this example there was

Figure 7: Left: The T-Graph planner is used to reach the goal
quickly when given a demonstration similar to the solution.
Right: The T-Graph planner encounters huge local minima
when the door and key are introduced. Many states need to
be expanded before the goal can be found.

one dungeon iteration with a shield and an enemy, another
dungeon iteration with a key and a door, and finally a third
iteration with a shield in a new position, an enemy, a key in
a new position, and a door.

See Figure 7 for a visualization of how the T-Graph
method can perform well when the demonstration path
closely matches the current quest configuration, but perfor-
mance suffers severely when the quest changes.

We use hS (Euclidean Distance heuristic) as the anchor
heuristic in our MHA*-based NPC behavior planner. We use
several inadmissible heuristics as follows. Let each event in-
stance i be defined as a partially-specified world state where
the event occurs. A property T (i, s) is true whenever the ef-
fect of i being Triggered is detectable on state s (e.g. after
picking up a shield, the shield is present in NPC inventory).
For each event instance i, we include an additional heuris-
tic hQi(a, b). This heuristic guides the search first toward
the event location and then from the event location to b ac-
cording to the E-Graph heuristic. Specifically, the heuristic
is computed conditionally as defined in Equation 2:

hQi(a, b) =

{
hS(a, i) + hE(i, b) : ¬T (i, a)
hE(a, b) : T (i, a)

(2)

If the event instance i has not been triggered (e.g. for the
shield pick-up event, if the shield is not yet in inventory) at
state a, then hQi(a, b) is the distance from a to i plus the E-
Graph heuristic from i to b; otherwise if the event instance i
has already been triggered (e.g. if the shield is already in in-
ventory) at a, then hQi(a, b) is simply the E-Graph heuristic
from a to b. A variation on our method would use a differ-
ent heuristic (perhaps the E-Graph heuristic) for the distance
between a and i in the case ¬T (i, a), the case where event i
has not yet been triggered at a.

Theoretical Properties

Our technique inherits theoretical properties from MHA*.
Though we have focused on simply generating feasible so-
lutions in less time, MHA* provides a bound on the cost of
the solution path. Two parameters used within the MHA* al-
gorithm are w1 and w2. The w1 parameter inflates the heuris-
tics used within the MHA* searches, and the w2 parameter

182

Figure 8: An example of a typical path planned to solve the
quest task. The NPC starts at S, the start position, moves
south to pick up the key, moves northeast and around a wall
to get the shield, then moves to the center of the map to pass
through the choke point with the enemy (which can only
be survived with the shield), then finally moves southeast
through the door (D), to the goal (G).

is a factor to prioritize the inadmissible searches over the ad-
missible anchor search. The cost of the solution path found
by MHA* is guaranteed not to be more than w1 ∗ w2 times
the cost of the optimal solution.

Though the E-Graph heuristic on its own introduces the
possibility of sub-optimality in solution paths (in propor-
tion to the size of the εE parameter), since we only use
the E-Graph heuristic within the inadmissible searches of
MHA*, εE has no effect on the sub-optimality guarantee
of the MHA* search. MHA* provides its bound on sub-
optimality independently of how inadmissible the inadmis-
sible heuristics are.

Results

All of our results were generated on a Windows 7 machine
with a 2.8GHz (up to 3.46 GHz) Intel i7-860 CPU and 12GB
of dual-channel PC3-10600 RAM. Our code was written in
C# for the Unity3d Game Engine.

To illustrate the benefit of using MHA*, we implemented
a simplified NPC behavior planning problem. In the exam-
ple test game (Figure 5) is an NPC whose state includes 2D
(x & y) position (each discretized into fifty possible val-
ues), a health value from 0 to 100 (discretized in multiples
of twenty, so there are six possible values), stealth mode
(sneaking or not sneaking), and an inventory which can hold
(or not) a key and hold (or not) a shield.

This test quest requires the NPC to acquire both the shield
and the key to reach the goal. The quest task is to traverse
the dungeon space to reach the goal position G. The goal is
within a room blocked by a locked door, and the vicinity of
the room can only be reached by making it past an enemy
at a choke point. The enemy can only be passed alive while
holding the shield. See Figure 8 to see an example of the
kind of NPC behavior required to complete the quest task.

Two demonstrations, shown in Figure 5, each from a dif-
ferent quest in the same environment, are provided to the
NPC. In one, there is no enemy at the choke point, and the
key is in a slightly different location. In the other, there is no
door, and the shield is in a slightly different location.

We compiled results for Weighted A* (including w = 1,
which is standard A*), the T-Graph algorithm (εT is its in-
flation factor, like E-Graph’s εE), and MHA* as described
in the previous section. Various configurations of the w, εT ,
w1, and w2 parameters were tested and from these we chose
the best for each algorithm. Listed in Figure 9 are the con-
figurations we used. Because of the poor performance of the
T-Graph method at adapting across quests, the optimum val-
ues for εT were actually all found to be 1, degenerating it
to A* search, so we picked the value 2 instead to illustrate
the problem. We generated MHA* results for εT = 2 to
compare, and also for εT = 100 to show its capacity for
improved performance for the same bounds.

As seen in Figure 10 the overhead of MHA* can cause
it to run slower than the other methods in some cases when
the bound factor is low, but as the bound factor increases,
MHA* manages to outperform the other methods.

As seen in Figure 11, our MHA* approach outperforms
the other methods in terms of expansion counts. Our MHA*

Label w εT w1 w2 Bound Factor
w

A 1 1
B 10 10
C 100 100
D 1000 1000
E 10000 10000
F 100000 100000

w ∗ εT
G† 1 1 1
H† 5 2 10
I† 50 2 100
J† 500 2 1000
K† 5000 2 10000
L† 50000 2 100000

w1 ∗ w2

M* 2 1 1 1
N* 2 10 1 10
O* 2 20 5 100
P* 2 200 5 1000
Q* 2 2000 5 10000
R* 2 20000 5 100000
S* 100 1 1 1
T* 100 1 10 10
U* 100 1 100 100
V* 100 20 50 1000
W* 100 200 50 10000
X* 100 2000 50 100000

Figure 9: The parameter configurations used to generate per-
formance results in Figure 11 and Figure 10. † indicates a T-
Graph search, * indicates an MHA* search using our heuris-
tics, all others are Weighted A*. The final column shows the
sub-optimality bound for each configuration, used as a com-
mon reference to compare results between algorithms.

183

�

�
� � � �

�	

	 �	 �	
	 �	

��

��

�� �� �� ��

��

��

��
�� �� ��

����

����

����

����

 ���

 ���

!���

� �� ��� ���� ����� ������

�
"
#
$
%
&'
&(
"
)
*�
(#

+*
,�
+-
"
)
.
/0

�"%).*�'-&"1

Figure 10: Computation time results. Reference Figure 9 for
the configuration associated with each label.

�

�
� � � �

�	

	 �	 �	
	 �	

��

��

�� �� �� ��

��

��

��
�� �� ��

�

����

�����

�����

 ����

 ����

!����

!����

2����

� �� ��� ���� ����� ������

�
3
$
')
/(
"
)
*�
"
%
)
&

�"%).*�'-&"1

Figure 11: Expansion count results. Reference Figure 9 for
the configuration associated with each label.

method performs the best because it adapts the demonstra-
tions to the new event locations and utilizes information
from both experience paths together while searching for the
goal. Note that the MHA* samples for εT = 2, N*, O*, P*,
Q*, and S* outperform the corresponding T-Graph samples
H†, I†, J†, K†, and L†, even though εT is the same and they
have the same sub-optimality bound.

For a more complex problem, where each state expansion
is more expensive (e.g. more expensive successor generation
due to collision checking, world modeling, etc.), MHA*’s
advantage in expansion counts outweighs the overhead of
using MHA*. We tested this by adding several parameters
to the NPC state, increasing the number of successors gen-
erated for a state from 16 to 256. Results are in Figure 12.

We also tested randomizing the key and shield locations
to see how our MHA* method performs over a range of ini-
tial conditions. The key and shield were randomly placed
in feasible locations (so they could be acquired before they
are needed to solve the problem). Our results can be seen
in Figure 13. MHA* greatly outperformed Weighted A* and
T-Graph in these trials.

�

�
� � � �

�	

	

�	 �	
	 �	

��

��

�� �� �� ��

��

��

��
�� �� ��

����

�����

������

������

 �����

 �����

� �� ��� ���� ����� ������

�
"
#
$
%
&'
&(
"
)
*�
(#

+*
,�
+-
"
)
.
/0

�"%).*�'-&"1

Figure 12: Computation time results for an expanded state
space. Reference Figure 9 for the configuration associated
with each label. Note that the computation times for MHA*
have lowered significantly relative to the other search times,
as compared to the standard state space results in Figure 10.

�

�

��

��

 �

 �

!�

�� ��� ����

�
3
$
')
/(
"
)
*�
"
%
)
&

3
*�
�
�
�
�

�"%).*�'-&"1

�+(45&+.*��

�6�1'$5

�
��*789

�
��*�6�1'$5*

789���

�

 �

2�

:�

;�

���

� �

�� ��� ����

�
"
#
$
%
&'
&(
"
)
*�
(#

+*
,�
+-
"
)
.
/0

�"%).*�'-&"1

�+(45&+.*��

�6�1'$5

�
��*789

�
��*�6�1'$5*

789���

Figure 13: Randomized initial condition results. Like in the
other trials, favorable parameters were selected to give each
algorithm its best chance.

Conclusions & Future Work

In this paper, we introduce multiple heuristics based on
the combination of pre-specified events and demonstra-
tions. These heuristics combined with Multi-Heuristic A*
yield significant performance improvements for the task of
generating demonstration-based NPC behavior plans across
quests in games. Our heuristic formulation guides a graph
search to use experience, including partial experience, while
adapting to the configuration of the current problem.

Future work includes further adaptation and generaliza-
tion of experience and training as used for NPC behavior
generation. Particularly, future work may explore the gener-
alization of the spatial component of demonstrations so that
those demonstrations can be used in environments entirely
different in spatial configuration.

Acknowledgments

This work was supported by NSF Grant IIS-1409549

184

References

Aine, S.; Swaminathan, S.; Narayanan, V.; Hwang, V.; and
Likhachev, M. 2015. Multi-heuristic A*. International Jour-
nal of Robotics Research (IJRR).
Coman, A., and Muñoz-Avila, H. 2013. Automated gener-
ation of diverse npc-controlling fsms using nondeterminis-
tic planning techniques. In Proceedings of the Ninth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment.
Drake, J.; Safonova, A.; and Likhachev, M. 2016.
Demonstration-based training of non-player character tacti-
cal behaviors. In Proceedings of the Twelfth Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE).
Finn, C.; Levine, S.; and Abbeel, P. 2016. Guided cost learn-
ing: Deep inverse optimal control via policy optimization.
In Proceedings of the 33rd International Conference on Ma-
chine Learning, volume 48.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions on
4(2):100–107.
Isla, D. 2005. Handling complexity in the halo 2 ai. GDC.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* search with provable bounds on sub-optimality.
In Thrun, S.; Saul, L.; and Schölkopf, B., eds., Proceedings
of Conference on Neural Information Processing Systems
(NIPS). MIT Press.
Macindoe, O.; Kaelbling, L. P.; and Lozano-Perez, T. 2012.
Pomcop: Belief space planning for sidekicks in cooperative
games. In Proceedings, The Eighth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment.
Phillips, M.; Cohen, B.; Chitta, S.; and Likhachev, M. 2012.
E-graphs: Bootstrapping planning with experience graphs.
In Proceedings of Robotics: Science and Systems.
Phillips, M.; Hwang, V.; Chitta, S.; and Likhachev, M. 2013.
Learning to plan for constrained manipulation from demon-
strations. In Proceedings of Robotics: Science and Systems.
Ratliff, N. D.; Silver, D.; and Bagnell, J. A. 2009. Learn-
ing to search: Functional gradient techniques for imitation
learning. Autonomous Robots 25–53.
Snook, G. 2000. Simplified 3d movement and pathfinding
using navigation meshes. In DeLoura, M., ed., Game Pro-
gramming Gems. Charles River Media. 288–304.

185

