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Abstract

Human computation games (HCGs) often suffer from low
player retention. This may be due to the constraints placed
on level and game design from the real-world application of
the game. Previous work has suggested using player rating
systems (such as Elo, Glicko-2, or TrueSkill) as a basis for
matchmaking between HCG levels and players, as a means to
improve difficulty balancing and thus player retention. Such
rating systems typically start incoming entities with a default
rating. However, when applied to HCGs, incoming entities
may have useful information associated with them, such as
player behavior during tutorials and properties of the tasks
underlying the levels. In this work, we examined using fea-
tures derived from player behavior and level properties to pre-
dict their eventual Glicko-2 ratings in the HCG Paradox. We
found that using regression produced rating estimates closer
to the actual ratings than default or baseline average ratings.
The use of rating systems allows a unified approach to pre-
dicting both player skill and level difficulty.

Introduction

Human computation games (HCGs) often suffer from low
player retention, with most players leaving soon after start-
ing, and the bulk of work being accomplished by a small
fraction of players (Sturn et al. 2015). This contribution pat-
tern holds true in other human computation systems, such
as online citizen science projects (Sauermann and Franzoni
2015). Improving retention of members of the “long tail”
of participants may help in increasing the effectiveness of
human computation systems in general. This, in turn, may
help advance the range of problems to which HCGs can
be applied, which have included image labeling (von Ahn
and Dabbish 2004), graph-theoretic problems (Cusack et al.
2010), neuron reconstruction (Kim et al. 2014), gathering
common-sense facts (Siu and Riedl 2016), and protein fold-
ing (Cooper et al. 2010).

Due to the constraints of solving pre-existing problems,
HCG designers do not have complete freedom to modify lev-
els. Previous work (Cooper, Deterding, and Tsapakos 2016)
has suggested that these constraints may contribute to low
retention, and has suggested using existing player rating
systems as a basis for matchmaking between HCG levels
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and players, as a means to improve difficulty balancing and
thereby player retention. Rating systems—such as Glicko-
2 (Glickman 2001)—are often used for player-versus-player
matchmaking, though they have been used in other appli-
cations involving pairwise comparison of entities, including
player-versus-level matchmaking. In such systems, each en-
tity has a rating, which is updated based on the result of some
comparison (for example, a player attempting a level, and ei-
ther winning or losing).

Rating systems typically start incoming entities (i.e. play-
ers or levels) with a default rating. They are essentially
treated all the same—a “blank slate” about which there is no
information. However, in the case of HCGs, there may be
some information about incoming entities that can be used
to inform their initial rating. For players, this can include
their behavior in the game up to the point where a rating is
needed—for example, their performance in any tutorials or
onboarding before they are to be matched with a level de-
rived from a real task. For levels, this can include various
properties of the underlying task—for example, size, esti-
mates of complexity, and so on.

In this work, we gathered gameplay data in the HCG
Paradox from players recruited using Mechanical Turk. We
used this data to assign ratings to the players and levels using
the Glicko-2 system. For use in a rating system, we treated
each instance of a player successfully completing a level as
a win for the player, and a player failing to complete a level
as a win for the level. Thus, the most difficult levels (i.e. the
levels that players most often fail to complete) are those that
“win” the most, and therefore end up with the highest rat-
ings, similar to a player-vs-player setting where the players
with the highest ratings are those that win the most matches
against other players. Hence, using rating systems offers a
reasonable way of assessing both level difficulty and player
skill, giving us a suitable ground truth on which to make our
predictions.

We then used linear and Gaussian process regression to
predict the ratings of players—based on their behavior in
the game’s tutorial levels—and levels—based on properties
of the underlying problem defining the level. We found that
rating predictions based on regression were closer to the ac-
tual ratings than both the default Glicko-2 rating and a base-
line method using average ratings. Predictions generally per-
formed better for level ratings than for player ratings.
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Figure 1: Screenshot from the HCG Paradox.

Related Work
Rating Systems

Player rating systems are used to match up players pos-
sessing comparable levels of skill. Several such rating sys-
tems exist, with Elo (Elo 1978), Glicko (Glickman 1999),
Glicko-2 (Glickman 2001), and TrueSkill (Herbrich, Minka,
and Graepel 2007) being some notable examples. While
most commonly used for player-versus-player skill rating
and matchmaking, these systems are increasingly being ap-
plied to other situations to handle the results of pairwise
(Hacker and von Ahn 2009) or setwise (Sarkar et al. 2016)
comparisons.

Such rating systems are usually employed in settings (e.g.
chess, online gaming) where no useful information is known
about new, unrated players who are thus assigned a uniform
default rating. However, in the domain of HCGs, we may
have access to information about players (or levels) that
could help the rating system assign a starting rating which
may be more indicative of the player’s actual skill (or the
level’s actual difficulty) than the default rating. It is this re-
search question that we primarily explore in this work.

Level Difficulty Prediction

Several approaches to predicting level difficulty have been
developed. Closely related to our work is that of van Krev-
eld et al. (2015), who used a linear function to predict the
difficulty (on a subjective scale of 1-10) of levels in vari-
ous puzzle games. Their predictions relied on, in addition
to initial (static) features of a level, both solution features
and dynamic (gameplay) features. Other work has examined,
for example, estimating the difficulty of Sokoban levels us-
ing approaches such as the time taken to solve them, either
automatically (Ashlock and Schonfeld 2010) or by players
(Jarusek and Pelanek 2010). In our work on the case of
HCGs, features based on level solutions or gameplay may
not be present, as the solution to an HCG level may be un-
known, and we wish to make predictions before any players
play a level. Additionally, in our work, we predict player
skill using the same approach as level difficulty.
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Levels in Paradox are derived from instances of the max-
imum satisfiability (MAX-SAT) problem. Thus, predicting
the level difficulty is related to predicting the difficulty of
the underlying MAX-SAT problem. Existing work has ex-
amined understanding what features of SAT problems make
them hard. These include features such as the average num-
ber of variables per clause (Mitchell, Selman, and Levesque
1992) and tree-related subgraph features (Mateescu 2011).
Several of the level features used in our work are informed
by these.

Dynamic Difficulty

Although the immediate goal of our work in this paper is
predicting player and level ratings, this will be applied to
matchmaking between players and levels, with the goal of
assigning levels of appropriate difficulty to players based
on their skill. This relates to dynamic difficulty adjustment
(Hunicke 2005), which has received considerable attention
in the game research community. Inspired by the flow the-
ory of Csikszentmihalyi (1990), dynamic difficulty adjust-
ment can attempt to affect player engagement by personal-
izing the difficulty of a game for each player’s skill. Much
work has examined the relationship between skill, difficulty,
and engagement (Engeser and Rheinberg 2008; Alexander,
Sear, and Oikonomou 2013; Denisova and Cairns 2015;
Lomas et al. 2013).

Data Collection

Paradox (Dean et al. 2015) is a 2D puzzle HCG originally
designed for the purpose of crowdsourced formal verifica-
tion of software. Each level in the game represents a MAX-
SAT problem, which the players attempt to solve by mak-
ing use of both manual and automated tools (represented as
“brushes” in-game) to assign values to different variables.
Players are assigned a score based on the percentage of
clauses they are able to satisfy and can “complete” a level
by reaching a pre-determined target percentage.

The game starts with a set of 9 hand-crafted tutorial lev-
els, intended to introduce the game, which include instruc-
tions and hints on gameplay. After completing the tutorial,
players then proceed to the challenge levels derived from
MAX-SAT problems. In this work, we used levels generated
from a number of MAX-SAT problems encoded in the DI-
MACS file format. We decided upon a set of 50 levels, 38
of which were derived from the SATLIB Benchmark Prob-
lems' while the remaining 12 were generated using random-
ized algorithms.

For player recruitment, we used a Human Intelligence
Task (HIT) posted on Amazon Mechanical Turk (MTurk)
that paid $1.50 upon completion. Through this HIT, we re-
cruited 150 players. Players were required to complete all
tutorial levels, after which they advanced to the challenge
section where they were served the 50 aforementioned lev-
els in random order. Players were not served the same level
more than once until they had seen all of the 50 levels. They
did not have to complete these challenge levels, and had the
option of skipping (moving to the next level without making

"http://www.cs.ubc.ca/~hoos/S ATLIB/benchm.html



Default | Average LR GPR
Players | 211.1 198.0 195.2 197.3
Levels 403.8 412.0 358.9 319.2

Table 1: Root Mean Square Error (RMSE) in rating predic-
tions for players and levels.

a move) or forfeiting (moving to the next level after making
at least 1 move) them. Upon skipping or forfeiting at least 5
levels, players could finish the HIT.

The match data from our HIT was then played back
into the Glicko-2 rating system, using the pyglicko2
Python module (Kirkman 2010). Both players and levels
were started out with default Glicko-2 parameters (rating
of 1500, rating deviation of 350 and volatility of 0.06). We
treated each instance of a player seeing a level as a match
in order to generate the ratings used in our analysis. This
resulted in three possible outcomes: a player completing a
level (i.e. reaching the target percentage) counted as a win
for the player, a player forfeiting a level counted as a loss
for the player, and a player skipping a level was ignored for
the purpose of rating generation.

From the initial pool of 150 players, we filtered out from
further analysis those who had either played fewer than 5
levels, hadn’t completed the tutorial, or had only skipped
through the levels. After doing so, we arrived at a player
count of 99. We did not filter out any of the 50 levels, as
each was involved in at least 15 matches.

Analysis

To predict ratings for players and levels, we derived several
features to be used in regression. The features used for play-
ers were based on their behavior during the game’s tutorial
levels. This is data that would be available before players
started the game’s challenge levels and thus before they need
to be assigned a rating. The following three features were
aggregated across all tutorial levels:

e Total time taken (in seconds) to complete all tutorial lev-
els.

e Total number of moves used to complete all tutorial levels.

e The amount by which the player’s total score for the tuto-
rials exceeded the total target score of the tutorials.

The features used for levels were based on static proper-
ties of the levels themselves. These included properties of
the underlying MAX-SAT problem:

e Average number of variables per clause.

e Average number of clauses per variable.

e | if all clauses are satisfied when all variables are set to
true, otherwise 0.

e | if all clauses are satisfied when all variables are set to
false, otherwise 0.

e Percentage of clauses satisfied when all variables are set
to true.

e Percentage of clauses satisfied when all variables are set
to false.
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Average LR GPR
Players 66% 66% 65%
Levels 22% 66% 68%

Table 2: Percentage of predictions closer to the actual rating
than baseline default predictions.

LR GPR
Players 55% 58%
Levels 68% 68%

Table 3: Percentage of predictions closer to the actual rating
than baseline average predictions.

e Absolute value of the difference of the previous two fea-
tures.

as well as properties of the factor graph (Sinz 2007) repre-
sentation of the underlying MAX-SAT problem:

Number of nodes.

Number of variable nodes.

Number of clause nodes.

Number of edges.

Percentage of edges in minimum spanning tree.

Size of the periphery. (Periphery of a graph is the set of

nodes having eccentricity equal to the graph’s maximum

eccentricity. The eccentricity of a node is the maximum

distance from that node to all other nodes in the graph.)

e Average shortest path length—computed using the equa-
d(s,t)

tion
2 (n—1)

n
s,teV

where V' is the set of nodes in the graph, d(s,t) is the
shortest path between nodes s and ¢, and n is the number
of nodes in the graph.

We thus ended up with 14 features for the levels.

For our analysis, we used the player and level features
described above, along with the Glicko-2 ratings obtained
from the HIT, to train and test different approaches for
predicting ratings. To fit regression models on the feature
data for the purpose of ratings predictions, we used the
scikit-learn Python module (Pedregosa et al. 2011).
We used the following prediction methods:

o Default: Always predicting the default rating (of 1500).
This was a baseline for comparing to using default values.

e Average: Predicting the average of all training ratings.
This was a simple baseline prediction.

e LR: Using linear regression for predictions.
scikit—-learn’s LinearRegression was used.

e GPR: Using Gaussian process regression for predictions.
scikit-learn’s GaussianProcessRegressor
was used, with a kernel consisting of RBF, constant, and
noise terms. Each feature was offset and scaled so that the
minimum value in the training set was 0 and the maximum
value was 1. Ratings were scaled by dividing by 2000.
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Figure 2: Scatter plot of actual and linear regression pre-
dicted ratings for players.
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Figure 3: Scatter plot of actual and linear regression pre-
dicted ratings for levels.

To evaluate the different methods, we used leave-one-out
cross validation. Scatter plots comparing the actual ratings
obtained from the HIT and predicted ratings are shown in
Figure 2 (players, linear regression), Figure 3 (levels, linear
regression), Figure 4 (players, Gaussian process regression)
and Figure 5 (levels, Gaussian process regression).

We used two approaches to compare the methods. First,
we computed the root mean square error (RMSE) between
the actual ratings and each of the prediction methods. These
results are given in Table 1. Second, we calculated the per-
centage of predictions that were closer to the actual ratings
than a baseline method. These results are given in Table 2
(for comparing against default) and Table 3 (for comparing
against average). Overall, predictions performed relatively
better for levels than for players.

We found that both linear regression and Gaussian pro-
cess regression improved RMSE over using the baseline de-
fault rating—improving rating RMSE by up to 8% for play-
ers and 21% for levels. Gaussian process regression showed
the greatest RMSE improvement for predicting level ratings,
though it did not do much better than average for players.
Average predictions actually had worse RMSE than default
for levels. However, linear regression improved prediction
RMSE over both baselines and thus may overall be a more
consistently useful approach.

In terms of percentage of predictions that improved over
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Figure 4: Scatter plot of actual and Gaussian process regres-
sion predicted ratings for players.
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Figure 5: Scatter plot of actual and Gaussian process regres-
sion predicted ratings for levels.

baselines, both linear regression and Gaussian process re-
gression improved a similar percentage of predictions, with
Gaussian process performing slightly better than linear re-
gression for players as compared to average predictions.

Conclusion

In this work, we examined using various methods to predict
player and level ratings in a rating system used in an HCG.
The use of rating systems allows a potentially unified ap-
proach to predicting both player skill and level difficulty.

We found that regression techniques improved over using
the default rating; improvements were generally greater for
levels than for players. This may allow accurate player and
level ratings to be reached more rapidly by starting ratings
out closer to their eventual values, and could have applica-
tions in improved difficulty adjustment using rating-based
matchmaking. Although the predictions moved many rat-
ings closer to their actual values, many are still far off. Thus,
continuing to use the rating system during gameplay, and
updating the ratings on-line based on outcomes from player
attempts at levels remains useful.

In the future, this approach can be further validated on
other HCGs or even entertainment games such as platform-
ers or shooters, for example. The player features used, based
on behavior in tutorials, included time spent, moves made,



and scores, which may generalize fairly easily to other
games. However, level features were quite specific to Para-
dox, though some might be applicable to games with an un-
derlying graph structure to their levels. Additionally, other
features might be useful to incorporate, potentially including
Al performance on levels (before they are given to players).

Beyond the scope of this current work, but additionally
worth exploring, is the impact of using rating systems on
player engagement in HCGs and other games (Sarkar et al.
2017). Rather than starting out players and levels with de-
fault ratings, it would be interesting to see if using features
and parameters to inform initial player and level ratings as
described in this work is able to more accurately assess rat-
ings and thereby improve player engagement.
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