
Creating a Hyper-Agent for Solving Angry Birds Levels

Matthew Stephenson, Jochen Renz
Research School of Computer Science

Australian National University
Canberra, Australia

matthew.stephenson@anu.edu.au, jochen.renz@anu.edu.au

Abstract

Over the past few years the Angry Birds AI competition has
been held in an attempt to develop intelligent agents that can
successfully and efficiently solve levels for the video game
Angry Birds. Many different agents and strategies have been
developed to solve the complex and challenging physical rea-
soning problems associated with such a game. However, the
performance of these various agents is non-transitive and
varies significantly across different levels. No single agent
dominates all situations presented, indicating that different
procedures are better at solving certain levels than others.
We therefore propose the construction of a hyper-agent that
selects from a portfolio of sub-agents whichever it believes
is best at solving any given level. This hyper-agent utilises
key features that can be observed about a level to rank the
available candidate algorithms based on their expected score.
The proposed method exhibits a significant increase in perfor-
mance over the individual sub-agents, and demonstrates the
potential of using such an approach to solve other physics-
based games or problems.

Introduction

The creation of an intelligent agent that can reason and pre-
dict the outcome of actions in a physical simulation environ-
ment, typically with inaccurate information, is a key subject
of investigation in the field of AI. It is particularly impor-
tant for the development of such agents to integrate the ar-
eas of computer vision, machine learning, knowledge repre-
sentation and reasoning, planning, and reasoning under un-
certainty. The Angry Birds AI (AIBirds) competition was
created as a means to promote the research and creation of
these agents through the use of the physics-based simulation
game Angry Birds (Renz 2015). This type of physical rea-
soning problem is very different to traditional games as the
attributes and parameters of various objects are often impre-
cise or unknown, meaning that it is very difficult to accu-
rately predict the outcome of any action taken (Renz et al.
2016). Many of the previous agents that have participated
in this competition employ a variety of techniques, includ-
ing qualitative reasoning (Waga, Zawidzki, and Lechowski
2016), internal simulation analysis (Polceanu and Buche

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2013; Schiffer, Jourenko, and Lakemeyer 2016), logic pro-
gramming (Calimeri et al. 2016), heuristics (Dasgupta et al.
2016), Bayesian inferences (Tziortziotis, Papagiannis, and
Blekas 2016; Narayan-Chen, Xu, and Shavlik 2013), and
structural analysis (Zhang and Renz 2014). However, none
of these agents has ever come close to being the dominant
performer across all levels (AIBirds 2017), indicating that
these methods are best suited to specific situations.

The fact that different agents perform better at differ-
ent levels suggests that the construction of a “hyper-agent”
(a.k.a. portfolio agent or ensemble agent), which selects
from a portfolio of various sub-agents, would be able to
utilise the combined strengths of their techniques (Mendes,
Togelius, and Nealen 2016). This is an idea that has been
suggested previously under the terms hyper-heuristic (Burke
et al. 2013; 2010) and algorithm selection (Kotthoff 2014).
The hyper-agent proposed in this paper uses a set of train-
ing levels to acquire information about how particular fea-
tures of a level relate to each sub-agent’s performance.
A prediction model is then created that allows the hyper-
agent to determine which sub-agent(s) would likely be
the most successful for any unknown levels it encounters
(i.e. an offline learning approach). Hyper-agents have been
proposed previously for domains such as task scheduling
(Cowling, Kendall, and Soubeiga 2001), packing problems
(López-Camacho et al. 2014) and examination timetabling
(Burke et al. 2012), as well as for multiple video game
genres including strategy games (Li and Kendall 2017),
card games (Elyasaf, Hauptman, and Sipper 2012), puz-
zle games (Salcedo-Sanz et al. 2014) and General Video
Games (GVGAI) (Bontrager et al. 2016; Horn et al. 2016;
Mendes, Togelius, and Nealen 2016).

Whilst some of the agents that have previously partici-
pated in the AIBirds competition have utilised various sim-
ple strategies based on level properties before, none have
yet combined different fields of AI based on higher level
features. Some of these approaches are faster, whilst oth-
ers may be more consistent, or adaptable to new scenarios.
Physical simulation games such as Angry Birds provide a
large and varied range of creative and challenging levels that
cannot yet be solved by a single AI technique, despite the
fact that people and even children are able to solve most of
these levels relatively quickly and easily (Renz et al. 2015).
Combining these techniques therefore seems to be the most

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

234

Figure 1: Screenshot of a level from the Angry Birds game.

effective and promising means of developing a successful
AI agent for both Angry Birds and other real-world physics
problems.

Background

Angry Birds Game

Angry Birds is a popular physics-based puzzle game in
which the player uses a slingshot to shoot birds at pigs, with
structures composed of blocks and other physical objects
protecting them, see Figure 1. The goal of each level is to
kill all pigs using a set number of birds provided. All objects
within the level have properties such as location, size, mass,
friction, density, etc., and obey simplified physics principles
defined within the game’s engine. Blocks are also made of
one of three materials, wood, stone or ice. Different bird
types are available with different properties, and pigs are
killed once they take enough damage from either the birds
directly or by being hit with another object. The player can
choose the angle and speed with which to fire a bird from the
slingshot, as well as a tap time for when to activate the bird’s
special ability if it has one, but cannot alter the ordering of
the birds or affect the level in any other way. The difficulty of
this game comes from predicting the physical consequences
of actions taken, and accurately planning a sequence of shots
that will result in success. Points are awarded to the player
once the level is solved based on the number of birds re-
maining and the total amount of damage caused.

AIBirds Competition

In this competition, agents are tasked with playing a set
number of unknown Angry Birds levels within a given time,
attempting to score as many points as possible in each level.
The exact location and parameters of certain objects, as well
as the current internal state of the game, are not directly ac-
cessible. Instead, information about the level is provided us-
ing a computer vision module, effectively meaning that an
agent gets exactly that same input as a human player. Agents
are required to solve these levels in real-time and can at-
tempt levels in any order and as many times as they like.
Once the time limit has expired the maximum scores that
an agent achieved for each level are summed up to give its
final score. Agents are then ranked based on this value and
after several rounds of elimination a winner is declared. The
eventual goal of this competition is to design AI agents that
can play new levels as well as or better than human players.

Agent Discussion

Our proposed hyper-agent selects from a portfolio consist-
ing of the eight agents that participated in the 2016 AIBirds
competition. Whilst there have been over 30 different agents
that have participated in the AIBirds competition over the
years, the agents from the latest competition represent the
best that are currently available. A brief description of each
of these agents is given below, with full details available on
the AIBirds website (AIBirds 2017).

2016 Competition Past Agents

Naive Agent The Naive agent is provided to all competi-
tion entrants as a useful starting point upon which to create
their own AI agent. It fires the currently selected bird at a
randomly chosen pig using either a low or high trajectory
(also chosen at random). No other objects apart from the
current bird and pigs are used when determining a suitable
shot, and tap times are fixed for each bird based on the total
length of its trajectory.

Datalab Agent The Datalab agent uses a combination of
four different strategies when attempting to solve a level.
These can be described as the destroy pigs, building, dy-
namite and round blocks strategies. The decision of which
strategy to use is based on the environment, possible tra-
jectories, currently selected bird and remaining birds. The
destroy pigs strategy attempts to find a trajectory that inter-
sects with as many pigs as possible. The building strategy
identifies and targets groups of connected blocks that either
protect pigs or are near to them. The dynamite strategy ranks
each TNT box within the level based on the number of pigs,
stone blocks and other TNT boxes that are nearby. The round
blocks strategy attempts to either hit round blocks directly or
else destroy objects that are supporting round blocks.

IHSEV Agent The IHSEV agent creates an internal
Box2D simulation of the level, within which it tries out
many shot angles and tap times. The shot that destroys the
most pigs is always selected. However, the simulation is not
a perfect representation of the environment. The agent does
not use any information about the number or type of remain-
ing birds when deciding which shot to take. A future plan to
adapt the agent’s environmental simulation based on the de-
viation between the actual and expected outcome of a shot
was proposed but has not yet been implemented.

Angry-HEX Agent The Angry-HEX agent uses HEX
programs to deal with decisions and reasoning, while the
computations are performed by traditional programming.
HEX programs are an extension of answer set programming
(ASP) which use declarative knowledge bases for informa-
tion representation and reasoning. The Reasoner module of
this agent determines several possible shots based on differ-
ent strategies. These shots are then simulated using a Box2D
simulation, with the shot that kills the most pigs being se-
lected as the ideal action (number of destroyed blocks being
used as a tiebreaker). The trajectory module of the base pro-
gram was improved to take the thickness of the currently
selected bird into account, as well as the ability to select
several different points on a block as the target location.

235

Eagle’s Wing Agent The Eagle’s Wing agent chooses
from five different strategies when deciding what shot to per-
form. These are defined as the pigshooter, TNT, most blocks,
high round objects and bottom building blocks strategies.
The pigshooter strategy attempts to find a trajectory that
either targets an unprotected pig, or includes multiple pigs
within it. The TNT strategy aims for any TNT box that can
cause significant damage to a large region. The many blocks
strategy finds the trajectory that destroys the most blocks
(highly dependent on the type of bird being used). The high
round objects strategy attempts to destroy objects close to
large round objects that are high above the ground. The bot-
tom building block strategy targets blocks that are important
to a structure’s overall stability.

SEABirds Agent The SEABirds agent uses an Analytic
Hierarchy Process (AHP) for deciding which shots to make,
and determines the best object or structure to hit based on
five different criteria. This includes the Y-axis position, sur-
rounding objects/structures, breakability (for currently se-
lected bird type), relative distance to pigs and whether the
object is a TNT box. The relative importance of each cri-
teria compared to the other alternative options is calculated
using a collection of training levels.

s-birds Agent The s-birds agent has two different ap-
proaches for determining the most effective shot to per-
form. The first strategy is called the bottom-up approach
and identifies a set of candidate target blocks for the level
based on the potential number of affected pigs. The sec-
ond strategy is called the top-down approach and utilizes the
crushing/rolling effect of a bird or round block onto pigs,
as well as the toppling effect of thinner blocks. Suitable tar-
get blocks are ranked based on the expected number of pigs
killed and the likelihood of the shot’s success. The penetra-
tion factor of specific bird types against certain materials is
also considered when determining if a block can be hit.

Bambirds Agent The Bambirds agent creates a qualita-
tive representation of the level and then chooses one of nine
different strategies based on its current state. This includes
approaches such as utilizing blocks within the level to cre-
ate a domino effect, targeting blocks that support heavy ob-
jects, maximum structure penetration and prioritizing pro-
tective blocks, as well as simpler options such as targeting
pigs/TNT or utilizing certain bird’s special abilities. These
strategies are each given a score based on their estimated
damage potential for the current bird type. A strategy is then
chosen randomly, with this score being used to determine
the likelihood of selection (i.e. shots that are believed to be
the most effective are more likely to be chosen).

Meta Strategies

Whilst the techniques each agent uses for solving a level
have been discussed, many agents also feature a variety of
different strategies for determining which levels are to be
played. The time given to each agent in the AIBirds com-
petition is typically high enough that it can attempt each
level multiple times. Some agents choose to attempt all lev-
els once before replaying any unsolved levels (such as Data-

lab and Eagle’s Wing) whilst others attempt a level multi-
ple times before moving on (such as s-birds and SEABirds).
Angry-HEX and Bambirds are also able to remember the
shots and strategies previously carried out, to aid them when
re-attempting levels later on. Whilst most agents try to solve
all levels before re-attempting those already solved, Bam-
birds calculates a probability of attempting each level based
on an estimated number of points for solving it, the num-
ber of times it has been played and the current score for that
level. For our hyper-agent we will use the following simple
meta-strategy. All levels are to be attempted at least once,
after which all still unsolved levels are repeatedly played
again. If all levels are solved then we simply cycle through
all the available levels.

Methodology

This section provides an overview of the methods used to
create the proposed hyper-agent. This involves both the col-
lection of important level features which can be used to cre-
ate models for predicting each agent’s score, as well as how
the hyper-agent uses these score prediction models to choose
a sub-agent from its available portfolio when attempting to
solve an unknown level.

Feature Collection

Identifying features of a level that influence agent perfor-
mance is one of the most important aspects in the creation
of a hyper-agent. For this type of game, the two factors that
make up an agent’s performance are the score it achieves for
a level and how long it took it to achieve that score. After
analysing the strategies and approaches of our sub-agents
we defined a list of 24 different numerical properties of a
level which we believe may influence the performance of
certain agents, see Table 1. These include basic level fea-
tures such as the number and type of different birds or blocks
within the level, as well as more complex attributes such as
the number of block connections or the overall dispersion
of pig locations. The values for each of these properties are
calculated using the information provided by the competi-
tion software’s computer vision module. These values may
therefore be subject to noise or other imperfections which
will affect the reliability of the information perceived. How-
ever, this is the same error that an agent would have to face
whilst playing unknown levels in real time. The first time the
proposed hyper-agent plays a level it will first calculate the
values for each of these features, after which it will select an
appropriate sub-agent from its portfolio. The time required
to calculate these features is very short, taking less than a
few seconds after the level has loaded.

Agent Selection

Using the collected features of certain levels, along with
each agent’s average score at those same levels, we can con-
struct machine learning models to predict each agent’s score
for an unknown level based on its features. Our hyper-agent
can then use these models to calculate an expected score
for each sub-agent in its portfolio. This enables us to rank
the agents based on their expected performance. Each time

236

Feature Description

#Pigs Number of pigs
#Wood Number of wood blocks
#Stone Number of stone blocks
#Ice Number of ice blocks
AreaWood Total area of wood blocks
AreaStone Total area of stone blocks
AreaIce Total area of ice blocks
#RedBirds Number of red birds
#BlueBirds Number of blue birds
#YellowBirds Number of yellow birds
#BlackBirds Number of black birds
#WhiteBirds Number of white birds
#TNT Number of TNT boxes
#Round Number of round blocks
AreaTerrain Total area of static terrain
#BelowRound Number of pigs below round blocks
#Blocked Number of pigs that have terrain block-

ing the player’s shot trajectory to them
#Reachable Number of pigs that can be hit directly

by the player (no protection)
#OutOfRange Number of pigs beyond the range of the

player’s shots
LevelWidth Width of the level
LevelHeight Height of the level
PigDispersion Overall dispersion of pig locations,

calcuated using method proposed in
(Stephenson and Renz 2016a)

AvgAspectRatio Average aspect ratio of all blocks
#BlockConnections Number of edges where blocks touch

Table 1: Selected level features to model agent performance

the hyper-agent attempts a level it will choose the highest
ranked agent that has not already been tried. If all agents
have played a level then we repeat this selection process,
starting again from the highest ranked agent.

Experiments and Results

In order to fully create and test our hyper-agent we require
three distinct steps. First, we need to use a set of training
levels to evaluate each sub-agent’s performance based on
the features within those levels. Second, we need to use this
performance information to construct score prediction mod-
els for each sub-agent that can be used on unknown levels.
Third, we will use a new set of testing levels to compare the
performance of our hyper-agent against that of each of the
original sub-agents.

A total of 105 levels are available from the “Poached
Eggs” and “Mighty Hoax” episodes of the original Angry
Birds game. Other levels from different Angry Birds games
or episodes feature objects that are not detectable by the vi-
sion module and are thus not usable by any of the Angry
Birds agents which are currently available. Of these 105 lev-
els we found that six of them caused issues with the vision
module, preventing certain key objects from being identi-
fied. This reduced the total number of viable levels with
which to train our hyper-agent to 99. We also have a collec-
tion of 80 new levels that were featured in the three previous
AIBirds competitions. These were not used in the training

Agent Average Score Average Shot Time

Naive 17570 31.74
Datalab 37557 19.82
IHSEV 24402 31.86
Angry-HEX 21253 24.19
Eagle’s Wing 36468 20.95
SEABirds 29978 35.01
s-birds 19628 55.64
Bambirds 23960 28.27

Table 2: Agent performance on training levels

process but were instead used to test the hyper-agent and
evaluate its performance. The experiments conducted were
all carried out on an Ubuntu(16.04) 64-bit desktop PC with
an i7-4790 CPU and 16GB RAM.

Agent Performance

Using our collection of 99 training levels, we tasked each
sub-agent with solving a level with the highest score pos-
sible within ten minutes. As some agents use their past at-
tempts to tailor their future ones, we treated each new at-
tempt like a brand-new level. This process was repeated
five times, to give five rounds of ten minutes, within which
each agent attempted to score as many points as possible.
The maximum score from each round was recorded for each
agent and the average of these scores across all rounds gave
the agent’s final score for that level. This process was fol-
lowed so as to better suit each agent’s overall performance
in the AIBirds competition environment, where an agent is
given a fixed amount of time to solve a collection of levels
rather than a set number of attempts.

The average score for each agent across all levels, along
with the average time in seconds that each agent took to
make a single shot, is provided in Table 2. Out of the 99
levels used, only five of them could not be successfully com-
pleted by any agent, giving us a total of 94 completed lev-
els with which to build our score prediction models. From
this information we can see a large disparity in the aver-
age scores of the best agent (Datalab) and the worst agent
(Naive) of almost 20,000 points, but also that there is a rea-
sonably gradual increase from the worst to best agent, with
the jumps in agent’s scores never being greater than 6500
points. There is also a moderate negative correlation (coef-
ficient of -0.458) between the average score and shot time
for each agent, indicating that having a faster shot time typ-
ically leads to a greater overall score, which is likely due to
the increased number of level attempts this results in.

Prediction Model Comparison

Using the agent scores from the training levels, along with
the features recorded using the computer vision module,
we can create a score prediction model for each agent.
However, this prediction model could be created with one
of multiple machine learning techniques. The Weka ma-
chine learning software (Hall et al. 2009) provides several
ready-made algorithms for this purpose. Possible popular

237

options include using Linear Regressions, Multi-Layer Per-
ceptrons (MLP), Support Vector Machines (SMOreg), k-
Nearest Neighbours (IBk), Random Trees, Random Forests,
and M5 Trees (M5P). Each of these methods can be used
to create a regression model to predict an agent’s expected
score for an unknown level. However, the accuracy of the
models created by each technique differs from agent to
agent, making choosing the right model for each agent ex-
tremely important.

In order to compare the models created by each method
for each agent, we performed 10-fold cross validation on
each model. The mean absolute error for each model was
recorded, allowing us to determine the best score predic-
tion model for each agent. The results of this analysis can be
seen in Table 3, with the lowest error values for each agent
given in bold (Note. the results for MLP, M5P and Random
trees were excluded to save space). From this we can see that
Random Forests and k-Nearest Neighbours (k=5) are best at
representing three agents each, while Linear regression and
SMOreg best model one agent each. MLP, M5P and Ran-
dom Trees did not best represent any agents. The best per-
forming model for each agent was selected to be used on
unknown levels. Comparing these errors against the average
scores acheived by each agent gives a mean error of 72.1%
over all eight methods. Whilst this may seem like a fairly low
signal-to-noise ratio the mean error for simply predicting the
average performance of each agent (ZeroR) is 88.5%, indi-
cating that there is an extremely large amount of variation in
agent scores between levels.

Hyper-Agent Analysis

Using the agent selection method previously described, we
are now able to create a hyper-agent to play unknown levels
of Angry Birds. Using the 80 levels featured in the past three
years of AIBirds competitions, we can compare our new
hyper-agent against the eight original agents which make up
its portfolio. Using the same rules as in the AIBirds compe-
tition, each agent is tasked with playing a collection of eight
levels in 30 minutes (one round of the competition) with the
combined maximum score achieved for each level making
up an agent’s total score for that round. After playing all ten
rounds of eight levels, we can then compare each agent’s
overall performance, see Table 4.

From this we can see our hyper-agent performed better
overall than any other single agent, both in terms of score
and the number of levels solved. Out of the ten rounds
played, our hyper-agent came first in seven of them, with
it coming second in the other three to SEABirds in the qual-
ification round, Datalab in the 2014 semi-finals round and
IHSEV in the 2016 quarter-finals round. Using these scores,
we can determine that had our hyper-agent competed against
these agents in the last three AIBirds competitions, and per-
formed the same as in these tests, then it would have won all
of the competitions from those years.

The distributions of each agent’s scores were also com-
pared by performing a Mann-Whitney-Wilcoxon (MWW)
test, in order to determine whether or not the hyper-agent’s
performance statistically differs from that of the other agents
(Fay and Proschann 2010). The bottom row of Table 4 shows

Agent Linear
Regr

SMOreg Random
Forest

IBk
(k=5)

Naive 16360 16450 16969 16414
Datalab 19700 21925 18838 20995
IHSEV 20251 19225 19763 18135

Angry-HEX 21216 22060 22060 18921

Eagle’s Wing 20548 20384 18472 19761
SEABirds 27594 28508 21842 22012
s-birds 17529 17191 18682 18174
Bambirds 15407 15917 14201 14083

Table 3: Mean absolute error for score prediction models

the P-values for each sub-agent’s score distributions when
compared against the hyper-agent. Using a p-value of less
than 0.05 as a marker for significance, this test demonstrates
that for all agents, with the exception of Datalab, we can re-
ject the null hypothesis that the difference in these scores is
due to random sampling.

To ensure that this improved score was not simply due
to the increased number of different agents attempting each
level, we also ran two naive hyper-agents on the competition
levels. The first naive hyper-agent selects a sub-agent based
only on the average performance of each agent from the
training levels (does not observe anything about the level’s
features), whilst the second randomly selects one of the
eight available agents each time it attempts a level. These
naive hyper-agents gave total level scores of 3783850 and
3176200 respectively. We also tried the randomly selecting
hyper-agent again, but this time with only the top four agents
(Datalab, Eagle’s Wing, SEABirds and IHSEV) being used
in the selection pool. Whilst this increased its total score to
3697150, its performance is still well below that of our pro-
posed hyper-agent.

Discussion

The proposed hyper-agent uses an assortment of score pre-
diction models to rank the sub-agents available in its port-
folio based on a given level’s features. These models were
created using one of several possible machine learning tech-
niques, with different techniques being used to create mod-
els for different sub-agents. The use of different model de-
signs makes it difficult to directly compare which features
most affected each sub-agent’s performance, and in addition,
the sheer number of features makes for an extremely detailed
and complex comparison. Nevertheless, we will briefly men-
tion some noticeable points of interest.

Whilst the effects of many of the more common and fluc-
tuating level properties, such as the number/area of certain
block materials and the level’s width/height, varied greatly
from agent to agent in terms of importance, there were sev-
eral features that seemed to be universally good or bad for
most agents. For example, #BlackBirds had a very positive
affect on the predicted score for all eight agents, likely due
to the large amount of damage this bird type causes and their
simplicity of use. Additional factors such as AvgAspectRa-
tio also had a large positive affect on most of the higher
ranked agents, whilst PigDispersion and PigsBlocked had a

238

Round Naive Datalab IHSEV Angry-
HEX

Eagle’s
Wing

SEABirds s-birds Bambirds Hyper

Qualification 251360 349640 195350 237420 384370 397810 143880 272670 397600
Quarter 2014 187180 309920 109920 134840 282110 319730 227400 161150 332270

Semi 2014 400980 586120 439520 402270 442800 453730 142760 383380 524400
Final 2014 209130 243160 257410 130630 250970 55800 0 132400 338330

Quarter 2015 68020 286450 163790 229090 346760 97370 84300 161580 351300

Semi 2015 145910 300330 166750 64480 299220 282600 151800 103950 375670

Final 2015 131660 440680 458030 462600 191970 383750 337970 417460 483610

Quarter 2016 251080 327490 444560 231300 252100 328570 182070 280930 336840
Semi 2016 436870 371100 562820 475840 420170 293410 190840 406200 610280

Final 2016 390050 415320 288720 347960 421790 385740 356050 426980 469960

Total Score 2472240 3630210 3086870 2716430 3292260 2998510 1817070 2746700 4220260

Levels Solved 37 59 52 38 52 49 27 42 69

MWW Score 0.0001 0.2627 0.0091 0.0014 0.0477 0.0067 0.0000 0.0008 N/A

Table 4: Agent performance on AIBirds competition levels

strong negative effect on the lower ranked agents. The only
feature that greatly affected most agents predicted scores
but in opposite directions was #WhiteBirds, which had a
positive effect on the Datalab, SEABirds and Eagle’s Wing
agents, but a negative effect on all the others. This is likely
due to the fact that using the white bird effectively is very
difficult, so less skilled agents cannot usually complete lev-
els that contain them and so receive zero points.

Whilst the proposed hyper-agent performs better than
each of the individual sub-agents, it still has several limi-
tations that could be addressed to improve its performance
further. The main benefit of the proposed hyper-agent is its
ability to use the multiple AI techniques employed by its
portfolio of agents. However, some of these agents are more
similar in their approach than others. It may be possible that
there are correlations between certain sub-agents and the
levels which they can solve, meaning that levels which can-
not be solved by one of these agents would also probably
not be solved by the other. Taking this into account could al-
low us to update each agent’s expected score based on which
agents have already attempted the level.

Another improvement that could increase the hyper-
agent’s overall performance would be to design a more com-
plex meta-strategy, which uses the predicted score of each
agent to identify the levels that will net the most points if
solved. Resetting a level halfway through an attempt to try
another agent, if the hyper-agent believes that the current
agent can no longer solve the level, may also be an interest-
ing topic of investigation. A greater understanding of why
certain sub-agents perform better at certain levels would also
help create better score prediction models.

Increasing the number of levels that are available for train-
ing the hyper-agent would naturally increase the accuracy of
its predictions. Whilst there are a reasonably large number of
Angry Birds levels available, most of them contain objects
that are not yet incorporated into the AIBirds competition
framework, and are thus not recognised by any of the cur-
rent agents. A possible solution to this problem would be to
utilise a level generator to create new levels with which to
train our hyper-agent. Several Angry Birds level generators
have been proposed previously (Ferreira and Toledo 2014;

Stephenson and Renz 2016b; Pereira et al. 2016) and pro-
vide the potential to build much more accurate models. We
could also utilise algorithms that can identify new Angry
Birds objects (Ge, Renz, and Zhang 2016).

Conclusion

This paper has presented an approach to creating a hyper-
agent for Angry Birds that selects from a portfolio of other
prior agents. Using a set of training levels, we were able to
extract features that may be deemed relevant to an agent’s
overall performance and use this to train a set of regres-
sion models which predict each sub-agent’s expected score.
When confronted with an unknown level we can use these
score prediction models, along with the level’s features, to
rank each of the available sub-agents. Our proposed hyper-
agent can then use this ranking to determine the order in
which to use the sub-agents available.

Comparing the scores of our hyper-agent against its in-
dividual constituent agents, for the levels used for that past
three AIBirds competitions, revealed that it performed con-
siderably better than all of them. This encouraging result
demonstrates the potential of hyper-agents which utilise
multiple AI techniques, not just for Angry Birds but for
physics-based problems in general. We have also discussed
many possible areas for improvement, which may further in-
crease the performance of our hyper-agent.

In the future, we aim to not only increase the abilities of
the current hyper-agent but to also further explore the do-
mains in which our methods could be applied. As an exam-
ple, the general video game AI competition (GVGAI) has
recently revealed a collection of physics-based games which
it intends to add to its current line-up. This is a promising
new area within which to create a hyper-agent and would
pose many interesting challenges and opportunities for fur-
ther research. Additional areas of AI such as content gener-
ation are also possible applications, where score prediction
models from hyper-agents could be used to help estimate the
difficulty of a generated level.

239

References
AIBirds. 2017. AIBirds homepage. https://aibirds.org. Ac-
cessed: 2017-04-21.
Bontrager, P.; Khalifa, A.; Mendes, A.; and Togelius, J.
2016. Matching games and algorithms for general video
game playing. In AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 122128.
Burke, E. K.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan,
E.; and Woodward, J. R. 2010. A Classification of Hyper-
heuristic Approaches. Boston, MA: Springer US. 449–468.
Burke, E. K.; Kendall, G.; Mısır, M.; and Özcan, E. 2012.
Monte Carlo hyper-heuristics for examination timetabling.
Annals of Operations Research 196(1):73–90.
Burke, E. K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa,
G.; Özcan, E.; and Qu, R. 2013. Hyper-heuristics: a survey
of the state of the art. Journal of the Operational Research
Society 64(12):1695–1724.
Calimeri, F.; Fink, M.; Germano, S.; Humenberger, A.;
Ianni, G.; Redl, C.; Stepanova, D.; Tucci, A.; and Wimmer,
A. 2016. Angry-HEX: An artificial player for Angry Birds
based on declarative knowledge bases. IEEE Transactions
on Computational Intelligence and AI in Games 8(2):128–
139.
Cowling, P.; Kendall, G.; and Soubeiga, E. 2001. A Hyper-
heuristic Approach to Scheduling a Sales Summit. Berlin,
Heidelberg: Springer Berlin Heidelberg. 176–190.
Dasgupta, S.; Vaghela, S.; Modi, V.; and Kanakia, H. 2016.
s-Birds Avengers: A dynamic heuristic engine-based agent
for the Angry Birds problem. IEEE Transactions on Com-
putational Intelligence and AI in Games 8(2):140–151.
Elyasaf, A.; Hauptman, A.; and Sipper, M. 2012. Evolu-
tionary design of FreeCell solvers. IEEE Transactions on
Computational Intelligence and AI in Games 4(4):270–281.
Fay, M. P., and Proschann, M. A. 2010. WilcoxonMan-
nWhitney or t-test? on assumptions for hypothesis tests and
multiple interpretations of decision rules. Statistics Surveys
4:1–39.
Ferreira, L., and Toledo, C. 2014. A search-based approach
for generating Angry Birds levels. In Computational Intelli-
gence and Games (CIG), 2014 IEEE Conference on, 1–8.
Ge, X.; Renz, J.; and Zhang, P. 2016. Visual detection of
unknown objects in video games using qualitative stability
analysis. IEEE Transactions on Computational Intelligence
and AI in Games 8(2):166–177.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA data mining software:
An update. SIGKDD Explor. Newsl. 11(1):10–18.
Horn, H.; Volz, V.; Pérez-Liébana, D.; and Preuss, M. 2016.
MCTS/EA hybrid GVGAI players and game difficulty esti-
mation. In 2016 IEEE Conference on Computational Intel-
ligence and Games (CIG), 1–8.
Kotthoff, L. 2014. Algorithm selection for combinatorial
search problems: A survey. AI Magazine 35(3):48–60.
Li, J., and Kendall, G. 2017. A hyperheuristic methodology
to generate adaptive strategies for games. IEEE Transactions
on Computational Intelligence and AI in Games 9(1):1–10.

López-Camacho, E.; Terashima-Marin, H.; Ross, P.; and
Ochoa, G. 2014. A unified hyper-heuristic framework for
solving bin packing problems. Expert Systems with Appli-
cations 41(15):6876 – 6889.
Mendes, A.; Togelius, J.; and Nealen, A. 2016. Hyper-
heuristic general video game playing. In 2016 IEEE Confer-
ence on Computational Intelligence and Games (CIG), 1–8.
Narayan-Chen, A.; Xu, L.; and Shavlik, J. 2013. An em-
pirical evaluation of machine learning approaches for Angry
Birds. In IJCAI Symposium on AI in Angry Birds.
Pereira, L. T.; Toledo, C.; Ferreira, L. N.; and Lelis, L. H. S.
2016. Learning to speed up evolutionary content generation
in physics-based puzzle games. In 2016 IEEE 28th Interna-
tional Conference on Tools with Artificial Intelligence (IC-
TAI), 901–907.
Polceanu, M., and Buche, C. 2013. Towards a theory-of-
mind-inspired generic decision-making framework. In IJ-
CAI Symposium on AI in Angry Birds.
Renz, J.; Ge, X.; Gould, S.; and Zhang, P. 2015. The Angry
Birds AI competition. AI Magazine 36(2):85–87.
Renz, J.; Ge, X.; Verma, R.; and Zhang, P. 2016. Angry
Birds as a challenge for artificial intelligence. In AAAI Con-
ference on Artificial Intelligence, 4338–4339.
Renz, J. 2015. AIBIRDS: The Angry Birds artificial intelli-
gence competition. In AAAI Conference on Artificial Intelli-
gence, 4326–4327.
Salcedo-Sanz, S.; Matı́as-Román, J. M.; Jiménez-
Fernández, S.; Portilla-Figueras, A.; and Cuadra, L.
2014. An evolutionary-based hyper-heuristic approach for
the Jawbreaker puzzle. Applied Intelligence 40(3):404–414.
Schiffer, S.; Jourenko, M.; and Lakemeyer, G. 2016. Ak-
baba: An agent for the Angry Birds AI challenge based on
search and simulation. IEEE Transactions on Computa-
tional Intelligence and AI in Games 8(2):116–127.
Stephenson, M., and Renz, J. 2016a. Procedural generation
of complex stable structures for Angry Birds levels. In 2016
IEEE Conference on Computational Intelligence and Games
(CIG), 1–8.
Stephenson, M., and Renz, J. 2016b. Procedural generation
of levels for Angry Birds style physics games. In Twelfth
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-16), 225–231.
Tziortziotis, N.; Papagiannis, G.; and Blekas, K. 2016.
A bayesian ensemble regression framework on the Angry
Birds game. IEEE Transactions on Computational Intelli-
gence and AI in Games 8(2):104–115.
Waga, P. A.; Zawidzki, M.; and Lechowski, T. 2016. Qual-
itative physics in Angry Birds. IEEE Transactions on Com-
putational Intelligence and AI in Games 8(2):152–165.
Zhang, P., and Renz, J. 2014. Qualitative spatial represen-
tation and reasoning in Angry Birds: The extended rectan-
gle algebra. In Proceedings of the Fourteenth International
Conference on Principles of Knowledge Representation and
Reasoning, KR’14, 378–387.

240

