
Merits of Hierarchical Story and Discourse
Planning with Merged Languages

David R. Winer,1 R. Michael Young2

1,2School of Computing and 2Entertainment Arts and Engineering Program
University of Utah
Salt Lake City, UT

drwiner@cs.utah.edu
young@eae.utah.edu

Abstract

A hierarchical, bipartite model can characterize many com-
plex narrative phenomena associated with coordinating plot
and communication in storytelling (e.g., cinematography),
but the predominant pipeline-based strategy for generating
narratives has inadvertently limited the expressiveness of
storytelling systems. We introduce computational steps for
merging story and discourse languages in plan-based story-
telling systems with hierarchical knowledge which avoids this
problem and motivates more expressive narrative discourse
reasoning.

Narrative intelligence is an interdisciplinary area of re-
search in artificial intelligence leveraging insights from lin-
guistics, cognitive psychology, narratology, and computer
science (Schank 1995). This work addresses the problem
of generating narrative fiction (e.g., text or film) by using
a plan-based language to model the schematic knowledge of
1] storyworld mechanics and 2] communicative plans. The
science for merging these two tasks is desirable for gener-
ating narrative discourse which has the goal-oriented and
hierarchical structure to support expressive storytelling. In-
tegrating scenario generation with communicative reasoning
has broad applicability for problem-solving agents which in-
teract with people such as in the context of entertainment and
education.

Our approach to automated narrative generation borrows
from narrative theory which frequently distinguishes fabula
(i.e., setting and plot events, story) from discourse (the com-
municative act of storytelling) (Chatman 1980).
• Fabula Actions at the fabula level are storyworld me-

chanics. Story generators arose as the first AI planning
algorithms were developed, such as TALE-SPIN (Mee-
han 1977) in which woodland creatures follow plans to
satisfy basic needs. State-of-the-art planners solve multi-
agent coordination problems such that characters fol-
low domain-independent rules to behave more believably
(Riedl and Young 2010; Ware et al. 2014; Kapadia et al.
2016).

• Discourse The communication side of generating narra-
tive content (storytelling) involves modeling the beliefs
of a hypothetical viewer and conveying meaning through

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

utterances which refer to the plot (Young 2007), consis-
tent with discourse theories from narratology (Chatman
1980).
Fabula and discourse are hierarchically structured phe-

nomena in their construction and reception by human under-
standers. At the fabula level, we recognize patterns of human
movements as actions, and patterns of actions as tasks or
character plans. For example, the task of flying from Point
A to Point B can be decomposed into the actions of buy-
ing a ticket, getting to the airport, taking your seat, etc. At
the discourse level, we recognize the hierarchical structure
of films as composed of scenes, which can be further de-
composed into camera shots, and further still into frames
(other types of patterns may take place simultaneously such
as the rise and fall of tension). In practice, plan-based sys-
tems can leverage knowledge about hierarchical patterns to
narrow the search space by decomposing steps into com-
mon patterns of primitive units (Jhala and Young 2010;
To, Langley, and Choi 2015).

One of the predominant strategies for designing auto-
mated storytelling systems is to adhere to the natural lan-
guage generation (NLG) pipeline: start with a set of events
or a library of information (fabula), generate discourse for
conveying the events such as with paragraph and sentence
planning, and last make edits to conform to the structural
requirements of the medium (Reiter, Dale, and Feng 2000;
Callaway and Lester 2002). Systems which borrow this
fabula-then-discourse architecture typically take fabula as
input and form a storytelling plan around some subset of
the fabula (Young et al. 2013).

Research Problem

The fabula-then-discourse strategy is not designed well for
tasks requiring coordinated plot and communication such as
generating narrative fiction. An input fabula (or one gener-
ated in isolation) may be coherent and believable, but it may
not have the desired attributes for good storytelling plans
(e.g., take into account the pragmatics of communicating)
and thus the quality of storytelling may suffer. Unless di-
rected, a character agent is not likely to arrange itself for a
camera shot or hold its positions at favorable moments, and
these actions are typically planned at the fabula level.

Another problem occurs when hierarchical knowledge is
introduced. If only primitive fabula-level actions are allowed

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

262

to substitute variables in discourse patterns, then we risk
losing context associated with an action’s role in the fabula
structure. If abstract fabula actions are introduced as substi-
tutions in isolation from their own sub-plans, then we have a
communicative gap: discourse actions are not equipped with
the knowledge to decompose the task of communicating the
abstract pattern.

In prior work, the BiPOCL planner (Winer and Young
2016) was introduced which is a novel algorithm architec-
ture for generating narratives with coordinated plot and dis-
course. The algorithm interleaves fabula and discourse plan-
ning rather than generating fabula first; however, the work is
limited to leveraging hierarchical knowledge at the discourse
level, but not at the fabula level, and thus did not resolve the
communicative gap problem.

In this paper, we first introduce hierarchical fabula and
discourse languages and provide examples of unified ground
models with merged hierarchical structure. State-of-the-art
automated planning systems (Vallati et al. 2015) precompile
ground models of actions prior to the planning phase for ef-
ficiency. We walk through the computational steps needed
to precompile hierarchical ground models in a way that is
domain-merging. To the best of our knowledge, a formal-
ism for precompiling a hierarchical planning problem is not
documented. The ground steps are characterized in a lan-
guage that the BiPOCL planner can use to generate the bi-
partite narrative model consisting of fabula and discourse
plans (Young 2007). Finally, we discuss how our approach
to merging fabula and discourse improves the expressiveness
of plan-based narrative generation systems.

Related Work
A range of projects have sought to address aspects of fab-
ula and discourse generation with natural language. No-
tably, STORYBOOK (Callaway and Lester 2002) is an end-
to-end narrative prose generation system; STORYBOOK
takes as input a plot from a fabula planner and uses built-in
discourse-level directive patterns that serve to segment the
fabula, scaffold clause-level structure, and modify the vo-
cabulary and style. The SCHEHERAZADE system (Li et
al. 2013) learns script-like knowledge about fabulas from
crowd-sourced examples and is used to generate text with
a storytelling style by extracting style parameters from the
Project Gutenberg book corpus (Li et al. 2014).

A growing trend in narrative discourse reasoning is to
approach storytelling as modeling a reader or viewer’s be-
liefs about fabula (Winer et al. 2015). Dramatis (O’Neill and
Riedl 2014) rates the suspense of a fabula using automated
planning to calculate the likelihood of a protagonist escaping
negative outcomes. Ware and Young (2014) model dimen-
sions of conflict in fabula by measuring the degree to which
character plans interfere in a multi-agent plan. Recently, Wu
and colleagues (2016) tested a belief-memory framework for
inserting flashbacks.

The Darshak system (Jhala and Young 2010) has the goal
that the viewer observe the actions in a fabula plan pro-
vided as input. It represents film scene segments with ab-
stract plan-based actions. The scenes decompose into low-
level camera operators and interval planning is used to con-

struct a presentation timeline. The story is played out by
avatars in a 3D game environment such that fabula actions
are mapped to animation patterns and discourse low-level
actions are mapped to virtual camera instructions. Our work
adopts a similar representational framework for discourse
generation as automated cinematography and resolves the
problems associated with expanding this work that we men-
tion above.

Fabula and Discourse Languages

A planning language has an object type taxonomy, a set
of predicates describing world conditions with typed argu-
ments, and a set of STRIPS-style declarative action models
(Fikes and Nilsson 1972) of the form 〈α, V,A, P,E〉 which
have an action type (α), an ordered list of typed parameters
(V) 0 or more which may be volunteering agents (A ⊆ V),
a set of non-ground literal preconditions (P), and a set of
non-ground literal effects (E). If s is an action model of
the form 〈α, V,A, P,E〉, then pre(s) = P , eff(s) = E,
actors(s) = A, params(s) = V , and arg(s, i) = Vi. For
simplicity, an action with n disjunctive literals as precondi-
tions or effects is considered equivalent to 2n actions with-
out disjunction.

The action models are found in a domain specification.
Actions in the following example shooting-world fabula do-
main specify that a character agent can orient towards an
object, unload a gun from its inventory, aim a gun, and fire
a gun. Variables are specified with the ? symbol and may be
hyphen-labeled with an object type.

(: domain s h o o t i n g−world
(: t y p e s c h a r gun − o b j e c t)
(: p r e d i c a t e s (has ? c − c h a r ? g − gun)

(a l i v e ? c − c h a r) (f a c i n g ? c − c h a r ? o − o b j e c t)
(h o l s t e r e d ? g − gun) (l o a d e d ? g − gun)
(sho t−a t ? g − gun ? o − o b j e c t)
(aimed−a t ? g − gun ? o − o b j e c t))

(: a c t i o n o r i e n t
: p a r a m e t e r s (? c − c h a r ? t a r g e t − o b j e c t)
: p r e c o n d i t i o n (a l i v e ? c)
: e f f e c t (f a c i n g ? c ? t a r g e t)
: c o n s e n t i n g−a g e n t s (? c))

(: a c t i o n d e h o l s t e r
: p a r a m e t e r s (? c − c h a r ? g − gun)
: p r e c o n d i t i o n (has ? c ? g) (a l i v e ? c)
: e f f e c t (n o t (h o l s t e r e d ? g))
: c o n s e n t i n g−a g e n t s (? c))

(: a c t i o n aim
: p a r a m e t e r s (? c − c h a r ? g − gun ? t a r g e t − o b j e c t)
: p r e c o n d i t i o n (has ? c ? g) (a l i v e ? c)

(f a c i n g ? c ? t a r g e t) (n o t (h o l s t e r e d ? g))
: e f f e c t (aimed−a t ? g ? t a r g e t)
: c o n s e n t i n g−a g e n t s (? c))

(: a c t i o n f i r e
: p a r a m e t e r s (? c − c h a r ? g − gun ? t a r g e t − o b j e c t)
: p r e c o n d i t i o n (a l i v e ? c) (has ? c ? g) (l o a d e d ? g)

(aimed−a t ? g ? t a r g e t)
: e f f e c t (sho t−a t ? g ? t)
: c o n s e n t i n g−a g e n t s (? c)))

The language afforded by a domain depends on a particu-
lar planning problem which specifies the following:

263

• Instances of typed objects of the form 〈obj, type〉 such as
〈Jane, agent〉, 〈revolver, gun〉.

• A complete closed-world initial state

• A set of goal conditions

The language of the domain and problem is the set of steps
which can be constructed by substituting variables in actions
with consistently-typed objects. A step is a ground action
instance whose arguments are object instances and whose
preconditions and effects are function-free ground literals.
Steps are created by swapping each typed variable argument
with a typed object instance. A special dummy step di is cre-
ated whose effects are the initial conditions, and a dummy
step dg is created whose preconditions are the goal condi-
tions.

A plan is a partially ordered set of steps. A plan starts out
with an ordering di ≺ dg , and then adds new steps from the
language to repair flaws. The classic partial-order planning
algorithm (Penberthy, Weld, and others 1992) begins with
open condition flaws for each precondition of dg . Open
condition flaws are resolved by adding steps and ordering
them before they are needed. As part of the intermediate rep-
resentation of plans, we denote links between steps called
causal links. If sneed is a step with an open condition flaw
for precondition p, and s is a step s.t. p ∈ eff(s), then to
denote that s resolves open condition flaw 〈p, sneed〉, we add
a causal link to the plan of the form s

p−→ sneed; this way, if
there is some other step sthreat s.t. ¬p ∈ eff(sthreat) and
sthreat is possibly ordered after s and before sneed in some
total ordering of steps, then the algorithm can protect the
repaired flaw by detecting the causal link is threatened and
adding an ordering sthreat ≺ s or sneed ≺ sthreat (or fail)
so that p is protected. A step s is executable when for every
total ordering of steps in the plan, all of its preconditions are
protected.

Abstract Actions

An abstract action is an action with built-in hierarchical
knowledge about how to decompose that action into sub-
steps in a subplan. The preconditions of an abstract action
are guaranteed initial conditions of its subplan, and the ef-
fects are the goal conditions of its subplan. A subplan char-
acterizes authored plot points which help constraint the set
of possible plans for establishing an action’s effect condi-
tions. For simplicity, an action with n > 0 subplans is equiv-
alent to n actions each with 1 subplan each.

The plan components (steps, orderings, and causal-links)
hold as domain-independent properties of plans. These are
needed for specifications on the subplans of abstract actions.
To extend the domain above to include abstract actions, we
add a few extra types and specialized predicates correspond-
ing to plan-based elements. Below are some examples:

Predicate Description
(has-effect s l) l ∈ eff(s)
(has-precond s l) l ∈ pre(s)
(has-actor s a) a ∈ actors(s)

(linked-by s t l) s
l−→ t

(before s t) s ≺ t
(has-arg s v) v ∈ param(s)

(has-arg-n s v j) v = arg(s, j)

For example, predicate (has-effect s l) indicates
that for any step which binds to s and literal which binds to
l, then l ∈ eff(s).

An abstract action’s decomp characterizes a partial sub-
plan. The following action to draw and fire a weapon is
achieved with a subplan to grab, lift, and fire the weapon.

s t e p l i t − elm − o b j e c t
(: a c t i o n draw

: p a r a m e t e r s (? c − c h a r ? g − gun ? o b j − o b j e c t)
: p r e c o n d i t i o n (has ? c ? g) (h o l s t e r e d ? g)

(l o a d e d ? g) (a l i v e ? c)
(n o t (= ? c ? o b j)) (n o t (= ? g ? o b j))

: e f f e c t (sho t−a t ? c ? g ? o b j)
: decomp (? g r ab ? l i f t ? f i r e − s t e p)

(l i n k e d−by ? g rab ? l i f t (n o t (h o l s t e r e d ? g)))
(l i n k e d−by ? l i f t ? f i r e (aimed−a t ? g ? o b j))
(has−e f f e c t ? f i r e (sho t−a t ? g ? o b j))

: c o n s e n t i n g−a g e n t s (? c))

Let 〈Jane, agent〉, 〈revolver, gun〉, 〈Cole, agent〉, and
〈bottle, object〉 be the objects in a planning problem. Using
primitive fabula actions to substitute the step parameters, the
possible subplans for the draw step are shown below:

• (deholster Jane revolver) (aim Jane revolver Cole) (fire
Jane revolver Cole)

• (deholster Cole revolver) (aim Cole revolver Jane) (fire
Cole revolver Jane)

• (deholster Jane revolver) (aim Jane revolver bottle) (fire
Jane revolver bottle)

• (deholster Cole revolver) (aim Cole revolver bottle) (fire
Cole revolver bottle)

The step parameters at the subplan level may also be sub-
stituted by abstract actions. For example, a draw-typed ac-
tion could satisfy all of the conditions of a draw action sub-
plan and substitute one or more substep parameters. As part
of the methodology introduced in the next section, an ab-
stract ground step cannot be its own substep, preventing
pointless recursion. Subplans may be incomplete; in a plan-
space planning algorithm, actions can be inserted between
sub-steps to resolve open conditions. A step s can be refer-
enced in a subplan without being added as a substep using
the (not-occurs s), where condition ¬(not-occurs
s) is assumed as part of the closed world at the subplan level.

Discourse Actions

Discourse actions are goal-oriented utterances by a speaker
to a listener. We adopt the model of a director as speaker
whose utterances are camera actions which show fabula to
a viewer (i.e., viewers observe and form beliefs about the

264

content of the storyworld). We designate the predicates obs
and bel for this meaning (e.g., obs (p) indicates that the
viewer observes p. Observations and beliefs are grounded in
the presentation time of the story using specialized interval
predicates associated with Allen’s interval logic (Allen and
Ferguson 1994).

Symbol Literal Allen notation
i � alu i i′ s.t. (<m i i′)
	 i fol i i′ s.t. (<m i′ i)
� i 	 dur i i′ s.t. (c i i′)
< i < i i′ s.t. (< i′ i)

The interval 	 i, read as at-least-until (alu), is a function
which returns an interval i′ where either i′ overlaps i or i′
meets i. If (obs p 	 i) is a precondition of a discourse
action, then p is observed in the presentation timeline right
at the moment that i begins (and possibly through i). The
interval i �, read as following (fol), refers to an interval i′
where either (i′ met-by i) or (i′ overlapped-by i). The in-
terval � i 	 is an interval contained in i, and for any two
intervals j, k contained in i, then j and k do not overlap as
a default setting. This interval notation allows us to easily
characterize observations and beliefs occurring before, dur-
ing, and after a discourse action.

The predicate (bel e i) indicates that the reader be-
lieves element e during interval i, where i may have un-
bound endpoints. Beliefs and observations do not exist in
the initial state and must be introduced by an action. If s is a
step whose precondition is satisfied by ignorance of the form
(¬bel (x) 	 i) then that ignorance is established by the ini-
tial state. A belief at interval i in the effect of an action is
threatened only by an inconsistent belief during k where k
is during or overlapping i. The threat is resolved by assign-
ing endpoints to k.

If (obs a i) is a condition and a is an abstract action,
then a must be presented during i without any observation
gaps; meaning that for each goal condition of a’s subplan,
the viewer must observe the fabula-level actions which es-
tablish them if they are not in a’s initial conditions. Dur-
ing compilation, any literal in this form is decomposed into
a conjunction of observation literals for each substep of a.
These observations can be established with other discourse
actions. An observation of the form (obs a i) is consid-
ered threatened if p ∈ pre(a) and (obs (¬p) 	 i). It’s
resolved by a discourse action which shows an action s s.t.
¬p ∈ pre(s) and p ∈ eff(s) inserted into the timeline such
that (obs (¬p) 	 i′), (obs (s) i′), and (obs (a)
i′ �). This strategy resolves the communicative gap prob-
lem by decomposing the task of communicating a fabula
action’s subplan such that changes to world conditions are
explained.

A duel is something that both occurs in a storyworld and
is a concept communicated to the viewer through camera
shots, and thus serves as a good example of coordinated plot
and communication. Shot types extreme close-up (ECU) and
medium (MED) are constants referring to shot scale in a
camera shot.
ECU MED− s c a l e − o b j e c t
(: a c t i o n cam−s h o t

: p a r a m e t e r s (? s − s t e p ? sc − s c a l e ? i − i n t r v l)
: p r e c o n d i t i o n ()
: e f f e c t (obs ? s ? i) (b e l ? s (f o l ? i)))

(: a c t i o n a n t i c i p a t e−d u e l
: p a r a m e t e r s (? c1 ? c2 − c h a r ? g1 ? g2 − gun ? i − i n t r v l)
: p r e c o n d i t i o n (obs (has ? c1 ? g1) (a l u ? i))

(obs (has ? c2 ? g2) (a l u ? i))
: e f f e c t (b e l (draw ? c1 ? g1) (f o l ? i))
: decomp (? g u n t h r e a t ? s t a r e 1 ? s t a r e 2 − s t e p)

(has−e f f e c t ? g u n t h r e a t (aimed−a t ? g2 ? c1))
(has−e f f e c t ? s t a r e 1 (f a c i n g ? c1 ? c2))
(has−e f f e c t ? s t a r e 2 (f a c i n g ? c2 ? c1))
(cam−s h o t ? g u n t h r e a t MED (dur ? i))
(cam−s h o t ? s t a r e 1 ECU (dur ? i))
(cam−s h o t ? s t a r e 2 ECU (dur ? i)))

An abstract discourse action specifies what the viewer
should observe or believe in the presentation timeline at least
until the action’s interval, what the viewer will observe dur-
ing the interval, and what the viewer will believe follow-
ing the interval. Real value durations for minimum or max-
imum intervals could be provided as part of the input. The
anticipate-duel action’s subplan characterizes a sce-
nario where two characters are armed and staring at each-
other and one is aiming a gun. As a result of this pattern, the
viewer anticipates that the other character will draw his or
her gun and fire. The cam-shot action has a step-typed ar-
gument which is substituted during instantiation (and could
be abstract). If s is a ground step, then a cam-shot action
is compiled with argument s, and if s is abstract then abstract
cam-shot actions are calculated for each possible subplan
which presents a subplan of s.

Computing Abstract Steps

The merged language is a library of ground abstract actions
compiled using our methodology. In this section, we present
technical instructions and definitions to calculate abstract ac-
tions with multiple levels of decomposition. The formalism
can be used to merge any number of hierarchical domains
and planning problems provided as input,. Compiling the
planning language in advance is beneficial for efficiency be-
cause no time is wasted grounding the same action models,
and the causal relationships between steps are available to
inform heuristics (Helmert 2006; Vallati et al. 2015). Com-
piling hierarchical domains for this purpose is has not been
documented but is not trivial because abstract actions may
be nested as sub-steps. This process shows that hierarchical
planning such as with merged languages can leverage the
same efficiency benefits.

Problem Definition: Given a set of planning problems,
generate the library of ground steps.

We skip the subtask of generating primitive steps (steps
which have no subplan) and the ground literals which com-
pose the preconditions and effects of these steps, as this por-
tion of the task is a trivial substitution of variable parameters
with consistent-typed object instances. The abstract actions
may have sub-steps which themselves are abstract, so we
start with level i = 1: substituting sub-steps with primitive
steps, and work our way up to some cutoff level i = h or
until there’s no sub-step substitutable by a step at level i−1.

Consider a subplan for an abstract step. There are regular
object variables, some sub-step variables, and possibly lit-
eral variables as well. It’s helpful to package these together

265

as follows:
Definition 1 (Subplan Variable Triple) A subplan vari-
able triple is a triple of the form 〈Vo, Vl, Vs〉 where Vo is
a set of object-variables, Vl is a set of non-ground literals,
and Vs is a set of step variables whose preconditions and
effects are in Vl.

The subplan variable triple can be found as part of the
subplan constraints in an abstract action.
Definition 2 (Abstract Action) An abstract action is a tu-
ple of the form 〈α, V, P,E, U〉 where 〈α, V, P,E〉 is an ac-
tion of type α with parameters V , preconditions P and ef-
fects E, and U is a subplan problem, a tuple of the form
〈Uv, Ur, Uω, Uλ〉 where Uv is a subplan-variable triple rep-
resenting sub-parameters, Ur is a set of requirements be-
tween variables in Uv , Uω is a set of ordering constraints
between sub-step variables in Uv , and Uλ is a set of causal-
links between steps in Uv whose dependencies may be in Uv .

The goal is to pick some object instances, ground literals,
and ground steps from any planning problem to substitute
the variables of the subplan.
Definition 3 (Ground Library Triple) A ground library
triple is a triple of the form 〈Go, Gl, Gs〉 where Go is a set
of object instances, Gl is a set of ground literals, and Gs is
a set of ground steps whose preconditions and effects are in
Gl.

Since we start the task having already generated all prim-
itive ground steps from all problems, we start with a ground
library triple which includes all of the object instances,
ground preconditions, ground effects, and ground steps from
this process. To achieve the goal of substituting the variables
in the subplan, the task is to find a set of bindings to map
variables to ground elements.
Definition 4 (Subplan Binding Triple) Given a subplan
variable triple 〈Vo, Vl, Vs〉 and a ground library triple
〈Go, Gl, Gs〉, a subplan binding triple is a triple of the form
〈Bo, Bl, BΣ〉 such that ∀vo ∈ Vo, vl ∈ Vl, σ ∈ Vs, ∃go ∈
Go, gl ∈ Gl, s ∈ Gs, where 〈vo, go〉 ∈ Bo, 〈vl, gl〉 ∈ Bl,
and 〈σ, s〉 ∈ BΣ. The subplan binding triple is valid just
when no variable is in two bindings.

The subplan binding triple is the intermediate goal. To
reach this goal, construct a list where each entry in the list
corresponds to a sub-step variable in the subplan. Start by
substituting each sub-step variable with a ground step, and
add the bindings which make the substitution possible to that
entry in the list.
Definition 5 (Subplan Step Binding List) Given a sub-
plan variable triple 〈Vo, Vl, Vs〉 and a ground library triple
〈G0, Gl, Gs〉, a subplan step binding list BS is a list of the
form B1, ..., Bk where k = |Vs| and ∀Bi ∈ BS , Bi is a sub-
plan binding triple of the form 〈Bo, Bl, 〈σi, si〉〉 s.t. σi ∈ Vs,
s ∈ Gs, and Bo, Bl are bindings between all variable ar-
guments in σi and ground arguments in si, and ∀σ′ ∈ Vs,
∃〈B′o, B′l, 〈σ′, s′〉〉 ∈ BS .

This list is used to solve the subplan binding problem by
checking to see if the configuration of step substitutions are
consistent.

Definition 6 (Subplan Binding Problem) The sub-
plan binding problem is a tuple 〈V,G〉 where
V = 〈Vo, Vl, Vs〉 is a subplan variable triple and
G = 〈G0, Gl, Gs〉 is a ground library triple. A solu-
tion is a valid subplan binding triple 〈Bo, Bl, BΣ〉 s.t.
〈B0

o , B
0
l , b0〉, ..., 〈Bk

o , B
k
l , bk〉 is a subplan step binding list

and 〈Bo, Bl, BΣ〉 = 〈⋃k
i=0 B

i
o,
⋃k

i=0 B
i
l ,
⋃k

i=0{bi}〉.
The ground subplan is formed by adding causal links and

orderings between ground steps which substitute the sub-
step variables. Once all step substitutions are made, it’s pos-
sible that some causal links cannot be formed (such as causal
links where the dependency was not specified). At this stage,
new candidate subplans are added for every valid depen-
dency condition.

Definition 7 (Subplan Causal-Link Problem) The
subplan causal-link problem is a triple 〈V,B,Λ〉
where V = 〈Vo, Vl, Vs〉 is a subplan variable triple,
B = 〈Bo, Bl, BΣ〉 is a subplan binding triple, and Λ

is a set of causal links of the form σu
p−→ σv where

σu, σv ∈ Vs. A solution is a set of causal links L of the
form su

l−→ sv s.t. ∀〈σu
p−→ σv〉 ∈ Λ, ∃〈su l−→ sv〉 ∈ L

where 〈σu, su〉, 〈σv, sv〉 ∈ BΣ, l ∈ Gl, and if p ∈ Vl then
〈p, l〉 ∈ Bl.

The Linkify Algorithm (2) substitutes causal links be-
tween step variables to generate all possible causal links be-
tween corresponding ground steps.

Definition 8 (Subplan Problem) The subplan problem is
a tuple 〈V,G,Ω,Λ〉 where V = 〈Vo, Vl, Vs〉 is a subplan
variable triple, G = 〈Go, Gl, Gs〉 is a ground library triple,
Ω is a set of ordering constraints between variables in Vs,
and Λ is a set of causal links between variables in Vs. A solu-
tion is called a subplan, a tuple of the form 〈B,S,O, L〉 s.t.
B = 〈Bo, Bl, BΣ〉 is a subplan binding triple which solves
the subplan binding problem 〈V,G〉, S = {s : 〈σ, s〉 ∈
BΣ}, O is a set of ordering constraints over sub-steps in
S, and L is a solution to the subplan causal-link problem
〈V,B,Λ〉.

The Subplannify Algorithm (1) takes a subplan prob-
lem as input and returns all possible subplans.

Algorithm 1 Subplannify

Input: 〈V,G,Ω,Λ,Υ, i〉 where 〈V,G,Ω,Λ〉 is a subplan
problem, Υ = {}, and i is an integer.
Output: The set of solutions to the subplan problem.

1: B := Find-Subplan-Bindings(V , G)
2: for each 〈Bo, Bl, BΣ〉 ∈ B, do
3: Skip if |BΣ| < k or ¬∃s ∈ Gi

s, 〈σ, s〉 ∈ BΣ

4: S := {s : 〈σ, s〉 ∈ BΣ}.
5: O := {su ≺ sv : 〈σu, su〉,〈σv, sv〉 ∈ BΣ and σu ≺

σv ∈ Ω}
6: L := Linkify(V,B,Λ)
7: Υ+ = {〈〈Bo, Bl, BΣ〉, S,O, L〉 for each L ∈ L}.
8: end for
9: return Υ

266

Algorithm 2 Linkify

Input: 〈〈Bo, Bl, Bs〉,Λ〉, a subplan causal-link problem.
Output: The solutions to the subplan causal-link problem.

1: L := empty nested list
2: for each 〈σu

p−→ σv〉i ∈ Λ do

3: L[i].append(〈su q−→ sv〉) if ∃〈p, q〉 ∈ Bl

4: Else:
5: Q := {q : q ∈ eff(su) ∩ pre(sv), 〈σu, su〉,

〈σv, sv〉 ∈ BΣ}
6: L[i].append(〈su q−→ sv〉 for each q in Q)
7: end for
8: return L :=

∏|Λ|
i L[i]

Finally, new ground abstract steps are added to the library
for every subplan by propagating the ground subplan param-
eters to the step’s arguments, preconditions, and effects. If
there are leftover non-ground arguments, we create new ab-
stract steps for every possible consistently-typed substitution
from the language.

Definition 9 (Abstract Step) Given a ground library
triple G = 〈Go, Gl, Gs〉 and an abstract action
〈α, V, P,E, 〈Uv, Ur, Uω, Uλ〉〉, an abstract step is a
tuple 〈VG, PG, EG, πsub〉 where VG are ground arguments,
PG, EG are sets of ground preconditions and effects corre-
sponding to P and E, respectively, whose arguments are in
VG, and πsub is a subplan which solves the subplan problem
〈Uv, G, Uω, Uλ〉.

Abstract steps are compiled bottom-up (with increasing
depth of recursion in the hierarchical structure). For i = 1 :
h, where i is the level of depth such that a step at i = 1 has
only primitive sub-steps, we compute steps at level i such
that at least one sub-step at level i−1 until some cutoff level
h to avoid infinite recursion.

When abstract steps are added to a plan during plan gen-
eration, steps in its subplan are either added or substituted
by steps already in the plan. For completeness, all valid sub-
stitutions are considered.

Comparative Analysis

The performance of a narrative discourse generation ap-
proach is often judged based on the kinds of examples that
can be formulated. We use a comparative analysis to evalu-
ate our approach with respect to kinds of utterances related
to narrating. Recall that BiPOCL (Winer and Young 2016)
can use the ground unified actions computed by our method-
ology in section 4 to generate fabula and discourse plans. We
use BiPOCL as a representative for our approach in the con-
text of narrative generation. First, we compare our approach
to the Darshak system (Jhala and Young 2010) which was
introduced in related work. Then, we introduce a typology
of narration actions which form the basis for our compari-
son with other systems.

We use a representational framework for discourse plan-
ning which is similar to Darshak. Because Darshak takes
fabula as input, it can fail to generate a scene architecture

when an abstract discourse step is needed in the solution
but its instantiated fabula-level constraints are inconsistent
with the input. This situation is avoided by our approach be-
cause the fabula constraints found in the Darshak model are
analogous to the decomp requirements which motivate fab-
ula generation. The fabula-first strategy inadvertently penal-
izes discourse actions which characterize complex fabula-
level constraints, yet these constraints are critical for coor-
dinating fabula and discourse. Our approach eliminates this
balancing act and incentivizes fabula-level constraints from
an efficiency standpoint because constraints help limit the
breadth of the search space (fewer abstract steps will exist
with consistent subplans).

Storytelling Acts

Coordination in fabula and discourse is central for extending
the kinds of utterances supported in automated narration. We
outline a typology of actions as a proposed extension to the
narrate speech act (Searle 1969).

Narrate Act arg0 arg1 arg2
show e i
inform e ≺ i

withhold e i i′
suggest e i i′
describe desc e
relate rel e0 e1

evaluate {+,−} e

Arguments are fabula elements (e) (e.g., entities, liter-
als, steps, etc.), intervals (i, i′), partial ordering (≺), sym-
bols representing valence in set {+,−}, and predicates for
description of an arg (desc) and for relations between args
(rel). Narration themselves have intervals for their duration
in the presentation (the first 3 are shown transparent).

• The show act lets the story unfold before the eyes/ears of
the reader (e.g., obs).

• An action informs when it has an effect which is
a belief whose content is not observed, such as be-
cause it is learned indirectly. A plan action informs
b if it has preconditions (not (obs b) (alu ?i))
and (not (bel b) (alu ?i)), subplan require-
ment (not (obs b) (dur ?i)), and effect (bel
b (fol ?i)).

• Withholding is when the viewer is required not to ob-
serve or believe an element during some interval.

• The suggest act is when the viewer is led to anticipate
that some element will be observed at a future interval.

• A describe act is when the viewer recognizes or is led
to believe a subjective description about an element.

• The relate act is when the viewer recognizes or is led
to believe a subjective relationship between two elements.

• An evaluate act is a describe act specific to valence
or sentiment.

Figure 2 shows a comparison of BiPOCL to other systems
on the basis of their support of narrate acts. BiPOCL has

267

system whold inform suggest desc rel eval

BiPOCL yes yes yes yes yes yes
Darshak no no limited limited limited yes
SBOOK no no no yes yes yes

SCHZAD no yes yes no no yes

Figure 1: Narration acts supported by generation systems

a characterization of observations, beliefs, and fabula con-
straints which makes these narrate acts possible. Darshak
cannot characterize gaps of observation and has limited de-
ployment of fabula-level constraints as discussed, but can
depict emotion using camera features like shot angle. STO-
RYBOOK (Callaway and Lester 2002) lacks observation
and belief modeling but has built-in directives for controlling
descriptions, relations, and valence. SCHEHERAZADE (Li
et al. 2014) uses word choice to influence valence but lacks
the same goal-oriented influence for description and relation
through its style parameters. Its script representation of fab-
ula can be used to prompt or leverage expectations about
next events at the discourse level.

Conclusion

Our work describes the merits of merging fabula and dis-
course for narrative planning with abstract actions. The
pipeline bottleneck caused by the fabula-then-discourse ap-
proach has inadvertently limited the expressiveness of plan-
based narratives in practice. Our methodology merges fab-
ula and discourse planning which alleviates the problem.
We present a formalism for this method which is consis-
tent with a modular approach to fabula and discourse and
can be used to support efficiency gains associated with pre-
compiling steps. The merits of our approach are compared to
other systems on the basis of a new typology of narrate acts.
We hope our work encourages more sophisticated models of
narrative discourse reasoning.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 1654651, for which the
authors are thankful.

References

Allen, J. F., and Ferguson, G. 1994. Actions and events in
interval temporal logic. Journal of logic and computation
4(5):531–579.
Callaway, C. B., and Lester, J. C. 2002. Narrative prose
generation. Artificial Intelligence 139(2):213–252.
Chatman, S. B. 1980. Story and discourse: Narrative struc-
ture in fiction and film. Cornell University Press.
Fikes, R. E., and Nilsson, N. J. 1972. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3):189–208.
Helmert, M. 2006. The fast downward planning system.
JAIR 26:191–246.

Jhala, A., and Young, R. M. 2010. Cinematic visual dis-
course: Representation, generation, and evaluation. TCIAIG
2(2):69–81.
Kapadia, M.; Frey, S.; Shoulson, A.; Sumner, R. W.; and
Gross, M. H. 2016. CANVAS: computer-assisted narrative
animation synthesis. In Symposium on Computer Animation,
199–209.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. 2013.
Story Generation with Crowdsourced Plot Graphs. In AAAI.
Li, B.; Thakkar, M.; Wang, Y.; and Riedl, M. O. 2014. Sto-
rytelling with adjustable narrator styles and sentiments. In
ICIDS, 1–12. Springer.
Meehan, J. R. 1977. Tale-spin, an interactive program that
writes stories. In IJCAI, volume 77, 91–98.
O’Neill, B., and Riedl, M. 2014. Dramatis: A computational
model of suspense. In AAAI, volume 2, 944–950.
Penberthy, J. S.; Weld, D. S.; et al. 1992. UCPOP: A sound,
complete, partial order planner for ADL. KR 92:103–114.
Reiter, E.; Dale, R.; and Feng, Z. 2000. Building natural
language generation systems, volume 33. MIT Press.
Riedl, M. O., and Young, R. M. 2010. Narrative planning:
Balancing plot and character. JAIR 39(1):217–268.
Schank, R. C. 1995. Tell me a story: Narrative and intelli-
gence. Northwestern University Press.
Searle, J. R. 1969. Speech acts: An essay in the philosophy
of language, volume 626. Cambridge university press.
To, S. T.; Langley, P.; and Choi, D. 2015. A unified frame-
work for knowledge-lean and knowledge-rich planning. In
ACS, 20.
Vallati, M.; Chrpa, L.; Grześ, M.; McCluskey, T. L.; Roberts,
M.; Sanner, S.; et al. 2015. The 2014 international planning
competition: Progress and trends. AI Magazine 36(3):90–98.
Ware, S. G.; Young, R. M.; Harrison, B.; and Roberts, D. L.
2014. A computational model of plan-based narrative con-
flict at the fabula level. TCIAIG 6(3):271–288.
Winer, D. R., and Young, R. M. 2016. Discourse-driven
narrative generation with bipartite planning. In INLG Con-
ference.
Winer, D. R.; Amos-Binks, A. A.; Barot, C.; and Young,
R. M. 2015. Good timing for computational models of nar-
rative discourse. In Workshop on Computational Models of
Narrative, volume 45. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.
Wu, H.-Y.; Young, R. M.; and Christie, M. 2016. A
cognitive-based model of flashbacks for computational nar-
ratives. In AIIDE.
Young, R. M.; Ware, S.; Cassell, B.; and Robertson, J. 2013.
Plans and planning in narrative generation: a review of plan-
based approaches to the generation of story, discourse and
interactivity in narratives. Sprache und Datenverarbeitung,
Special Issue on Formal and Computational Models of Nar-
rative 37(1-2):41–64.
Young, R. M. 2007. Story and discourse: A bipartite model
of narrative generation in virtual worlds. Interaction Studies
8(2):177–208.

268

