
Robustness of Real-Time Heuristic Search Algorithms to
Read/Write Error in Externally Stored Heuristics

Mina Abdi Oskouie, Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8, Canada

{abdiosko|bulitko}@ualberta.ca

Abstract

Real-time heuristic search algorithms follow the agent-
centered search paradigm wherein the agent has access only
to information local to the agent’s current position in the envi-
ronment. This allows agents with constant-bounded computa-
tional faculties (e.g., memory) to take on search problems of
progressively increasing sizes. As the agent’s memory does
not scale with the size of the search problem, the heuris-
tic must necessarily be stored externally, in the environment.
Storing the heuristic in the environment brings the extra chal-
lenge of read/write errors. In video games, introducing error
artificially to the heuristics can make the non-player charac-
ters (NPC) behave more naturally. In this paper, we evaluate
effects of such errors on real-time heuristic search algorithms.
In particular, we empirically study the effects of heuristic read
redundancy on algorithm performance and compare its ef-
fects to the existing technique of using weights in heuristic
learning. Finally, we evaluate a recently proposed technique
of correcting the heuristic with a one-step error term in the
presence of read/write error.

1 Introduction

Real-time heuristic search follows the agent-centered frame-
work of Koenig (2001). Such an agent occupies a single ver-
tex in the search graph which it changes by traversing the
graph’s edges. Being agent-centered, it can only use infor-
mation around its current vertex when deciding on the edge
to traverse. The decision can also be influenced by the as-
sumptions that it makes about other parts of the terrain. Such
locality of heuristic access is desirable when the agent’s cog-
nitive ability does not scale with the size of the problem it
is solving (e.g., in ad hoc wireless networks (Bulitko and
Lee 2006) or, more generally, any infinitely scalable com-
puting (Ackley and Small 2014)) and/or when locality of
memory access is desirable (e.g., when using disks to store
information about the search space (Korf and Schultze 2005)
or taking advantage of CPU cache coherence).

Heuristic search algorithms normally assume that heuris-
tic values can be stored perfectly and thus any heuristic error
is due to the simplifications/abstractions taken in defining
the heuristic function (e.g., ignoring map obstacles in the

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Manhattan distance heuristic). While robotics show heuris-
tics can become noisy in the procedure of storing whether
internally, in the memory of robots, or externally, in the en-
vironment. Lelis et al. introduced a scheme to correct the er-
rors caused by the memory corruption (Lelis et al. 2016) 1.
They assumed that the corruption can flip bits of the heuris-
tics stored in the memory and make them inadmissible.

Storing heuristic functions in the environment, is inspired
by ants who lay pheromone on the ground for path find-
ing. The intensity of the pheromone can be affected by
natural phenomena like temperature or rain and eventually
mislead the ant (Van Oudenhove et al. 2012). Recent real-
time heuristic search literature also observed the same er-
rors (read/write errors) when implementing LRTA* (Korf
1990) on a Roomba-style robot (Traverse and Suave-Hoover
2014). The robot stored its heuristic function externally by
writing it with a blackboard marker on the floor. Doing so
led to read/write errors in the heuristic. Bulitko and Sam-
pley (2016) studied the effects of these errors empirically
in a simulation. Specifically, they modeled the heuristic
read/write errors as Gaussian noise added to the true heuris-
tic value. They compared eight heuristic search algorithms
in the presence of noise and showed that wLRTA* (previ-
ously suggested by Rivera, Baier, and Hernández (2015))
and their own wbLRTA* were most robust to the heuristic
read/write errors. They speculated that the robustness may
be due to the more aggressive updates due to weight and/or
due to the learning operator that averages heuristic informa-
tion around the current state as opposed to the LRTA*’s tra-
ditional minimum operator.

Humans and animals do not always find the perfect path.
Their mistakes are due to wrong estimations or assumptions
they have in their mind. These phenomena can be modeled
by corrupted heuristics. Adding errors to heuristics can make
the NPC behave less robotic and more like humans or ani-
mals. As the information gets more inaccurate (i.e. mishear-
ing the conversation from longer distances), the errors be-
come more intense. Humans behave differently given inac-
curate information. Having a method to alleviate the error

1Disk read/write errors in fully searching the 15 puzzle (Korf
and Schultze 2005) were eventually solved by using error-
correcting disk storage (RAID). Furthermore, even solid-state
memory can exhibit read/write errors especially in low-voltage im-
plementations (Dreslinski et al. 2010).

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

137

partially, can help us capture these differences in NPCs.
In this paper, we build on their work and make the fol-

lowing contributions. First, we attempt to correct the read
heuristic error by retrieving the heuristic multiple times for
a single state. We compare the effects of this idea to that
of introducing weights to the learning rule of LRTA* (i.e.,
wLRTA*). Second, we evaluate the recent heuristic error-
correction technique of O’Ceallaigh and Ruml (2015) in the
presence of the read/write heuristic noise. We show that the
error correction based on averaging one-step heuristic er-
ror is prone to systematic bias in the presence of read/write
heuristic errors. We then show that the multiple retrievals
technique does help but not enough to recommend using
their error correction technique over the regular LRTA*.

2 Problem Formulation

For continuity we use the same notation as the work we
extend (Bulitko and Sampley 2016) and reproduce it here
for the reader’s convenience. The search problem is de-
fined as the tuple (S,E, c, sstart, sgoal, h) where S is a finite
set of states and E ∈ S × S is a set of edges between
the states. To prove the completeness of real-time heuris-
tic search algorithms, S is commonly assumed to be finite.
Although we do not consider the completeness here, we as-
sume it finite to be in line with previous endeavors. The
search graph is defined by S and E and is assumed undi-
rected: ∀a, b ∈ S [(a, b) ∈ E =⇒ (b, a) ∈ E] and lacking
self-loops: ∀s ∈ S [(s, s) �∈ E]. Each edge in E has a strictly
positive weight: c : E → R

+. The edge weights remain un-
changed during search (i.e., the search graph is stationary).
The states a and b are immediate neighbors iff there exists
an edge between them: (a, b) ∈ E. The set of all immedi-
ate neighbors of a, called neighborhood of a, is denoted by
N(a). A path P is a sequence of states (s0, s1, . . . , sn) in
which for each i ∈ {1, . . . , n}, si−1 and si are immediate
neighbors. We assume that the graph is safely explorable and
the goal state is reachable from any state which an agent can
get to from the start state.

The agent is first put in the start state, sstart. It moves to-
ward the goal state, sgoal, by traversing edges in the graph.
The state that agent occupies at time t is denoted as st . The
problem is solved at earliest time T , when sT = sgoal. The
solution is a path P = {sstart, . . . , sgoal} that agent has tra-
versed in order to reach the goal states. The solution cost
is defined as the cumulative cost of all edges in the solu-
tion path P : C(P) =

∑T−1
t=0 c(st, st+1). The cost of the

shortest path between two arbitrary states a and b is de-
noted as h∗(a, b). The suboptimality (α) of the agent us-
ing algorithm A is the ratio of the cost of the solution P
found by this agent to the cost of the shortest possible path
α(A) = C(P)/h∗(sstart,sgoal).

The heuristic function h : S → [0,∞) estimates the dis-
tance from each state to the goal. The agent can access and
update hs any time. The heuristic of the goal state is always
zero. An externally stored heuristic may have read/write er-
rors. Specifically, an agent attempting to retrieve a heuristic
value for a state may get a different reading on each attempt.
In this paper we follow the model of Bulitko and Samp-

ley (2016) 2 and model the value read as h(s) + x where x
is randomly sampled from the normal distribution N(0, σ)
with the mean μ = 0 and the standard deviation σ. Like-
wise, when the agent writes out a new value of the heuris-
tic for state s, the actual value written out is h(s) + x with
x ∼ N(0, σ). In this paper, we focus on real-time heuristic
search algorithms whose planning time per move is upper
bounded by a constant independent of the total number of
states in the search graph. This excludes classical algorithms
such as A* (Hart, Nilsson, and Raphael 1968) but includes
a large number of modern real-time algorithms (Bulitko
2016). In-line with the literature (Bulitko and Lee 2006) we
will evaluate the algorithms by their solution suboptimality
as defined above. Additionally, as a total measure of com-
putational effort spent to derive a solution, we measure the
goal achievement input/output operations (GAIO) which is
the total number of heuristic read and write operations per-
formed by the agent before it reaches the goal. GAIO is in-
spired by the goal-achievement time (GAT) of Hernández et
al.; Burns, Kiesel, and Ruml (2012; 2013) but avoids having
to worry about the amount of time an agent spends travers-
ing an edge as well as makes the measurement more reliable
(since time at the scale of micro-/milli-seconds is subject
to measurement errors, especially when running in a multi-
threaded environment). Within our algorithms, the majority
of planning time per move is proportional to heuristic in-
put/output operations (as detailed in the next section), al-
lowing GAIO to reliably capture the cumulative per-problem
computational effort of different algorithms.

3 Framework

In this work, we evaluate two algorithms. We use the fixed
lookahead of 1 (i.e., consider only the agent’s immediate
neighbors) as such myopic algorithms form the base for
more sophisticated/powerful algorithms while being simpler
to present and discuss. First, we consider weighted LRTA*
adapted from work of Bulitko and Sampley; Rivera, Baier,
and Hernández (2016; 2015).

Algorithm 1: Simple Weighted LRTA*
input : search problem (S,E, c, sstart, sgoal, h, n), weight w
output: solution path (sstart, s1, . . . , sgoal)

1 t ← 0
2 st ← sstart
3 ht ← h
4 while st �= sgoal do
5 st+1 ← arg min

s∈N(st)
[c(st, s) + ht(s)]

6 ht+1(st) ← max{ht(st), min
s∈N(st)

[w · c(st, s) + ht(s)]}
7 t ← t+ 1

In the weighted LRTA* (Algorithm 1) the agent inter-
leaves planning and learning phases. As long as the goal is
not reached (line 4), the agent selects the next state as its im-

2Earlier Piltaver, Luštrek, and Gams; Sadikov and Bratko
(2012; 2006) modeled heuristic errors by Gaussian distribution.

138

mediate neighbor with the minimum f = c+h cost (line 5).3
It then updates its heuristic in the current state using the
weighted update rule in line 6. The maximum guarantees
that heuristics never decrease in the updating procedure. Do-
ing so would not be necessary if we had assumed that the
heuristics are consistent. We do not assume admissibility or
consistency of the heuristic and thus use the maximum ex-
plicitly. This is in line with wLRTA* evaluated by Bulitko
and Sampley (2016).

The second algorithm we evaluate is a simplified ver-
sion of the Dynamic f̂ algorithm (O’Ceallaigh and Ruml
2015). In our version (Algorithm 2) the agent always used
the lookahead of 1 by considering only the immediate neigh-
bors of the current state. The resulting algorithm is largely
identical to the weighted LRTA* presented above with the
following differences. First, no weight is used in learn-
ing. Second, in line with the original Dynamic f̂ algorithm
by O’Ceallaigh and Ruml (2015), Algorithm 2 uses f̂ in-
stead of wLRTA*’s f in choosing its next state. Specifically,
in line 11, the next state st+1 is selected as the neighbor
with the lowest f̂ cost where f̂ is f = c + h cost with an
error-correcting add-on ε̄ · d(support(s)). The intuition is
that each edge remaining to be traversed by the agent until
the goal state adds a heuristic error which the agent needs
to correct for in order to make a more informed move. The
number of edges remaining until the goal state is unknown
and is estimated by the function d : S → N supplied to the
agent.4 The per-edge error ε̄ is the average of per-edge f er-
rors seen so far (line 10). Each such per-edge f error is com-
puted in line 9 as the difference of the lowest f among the
current state’s neighbors (i.e., mins∈N(st)[c(st, s) + h(st)])
and the current state’s own f (i.e., ht(st)).

4 Related Work

Our work builds on the study of real-time search perfor-
mance in the presence of read/write error noise (Bulitko
and Sampley 2016). That work was itself inspired by the
read/write errors observed by Traverse and Suave-Hoover
(2014) while implementing LRTA* on a Roomba-style robot
which stored the heuristic externally in the environment.
Bulitko and Sampley (2016) reported the percentage of
search problems solved by eight algorithms under a prior
upper bound on the solution suboptimality. The eight algo-
rithms considered were a mixture of the classic algorithms
LRTA*, RTA* (Korf 1990) and more contemporary ones:
aLRTA*, daLRTA*, wLRTA*, wdaLRTA*, daLRTA*+E
and wbLRTA*. These algorithms used the weighting in the
learning rule (Rivera, Baier, and Hernández 2015), tracking
previously visited states (Hernández and Baier 2012), prun-
ing expendable states (Sharon, Sturtevant, and Felner 2013)
and lateral learning (Bulitko and Sampley 2016). While

3Throughout this paper ties among neighbors are broken in a
fixed order (e.g., in grid pathfinding we may prefer neighbors to
the north to neighbors to the west).

4As O’Ceallaigh and Ruml (2015), we compute d with respect
to the state’s support defined as its neighbor whose f value was
used to compute the state’s current h (line 7). Initially each state’s
support is the state itself (line 4). The support is updated in line 8.

Algorithm 2: Simplified Dynamic f̂

input : search problem (S,E, c, sstart, sgoal, h, n), heuristic d
output: solution (sstart, s1, . . . , sgoal)

1 t ← 0
2 st ← sstart
3 ht ← h
4 ∀s ∈ S [support(s) ← s]
5 ε ← 0
6 while st �= sgoal do
7 ht+1(st) ← max{ht(st), min

s∈N(st)
[c(st, s) + ht(s)]}

8 support(st) ← arg min
s∈N(st)

[c(st, s) + ht(s)]

9 ε ← ε− ht(st) + min
s∈N(st)

[c(st, s) + ht(s)]

10 ε̄ ← ε/t+1

11 st+1 ← arg min
s∈N(st)

[c(st, s)+ht(s)+ ε̄ ·d(support(s))]

12 t ← t+ 1

interesting and pioneering, Bulitko and Sampley (2016)’s
work neither explicitly measured the resulting solution sub-
optimality nor considered the total computational effort.

Ruml’s group has been investigating correcting heuristic
errors and building more accurate heuristics over the last
several years. Thayer and Ruml (2009) considered using
distance-to-go (i.e., the number of edges remaining to tra-
verse, regardless of their cost) in a non-real-time search set-
ting. Thayer, Dionne, and Ruml (2011) introduced the idea
of measuring one-step heuristic errors and using them in a
correction term to obtain better heuristics. More recently,
O’Ceallaigh and Ruml (2015) combined these techniques
in a new real-time heuristic search algorithm that corrects
the heuristic error using the average one-step heuristic er-
ror observed by the agent as well as deciding on the amount
of planning on each move (meta-reasoning). Following the
common practice in the field, they assumed that the agent
can store the heuristic perfectly and therefore the only errors
in the heuristic are due to the simplification/abstraction used
in its construction.

While none of the existing work fully addresses the prob-
lem we tackle in this paper, our paper builds on the re-
search of the last two years (O’Ceallaigh and Ruml 2015;
Bulitko and Sampley 2016).

5 Multiple Heuristic Retrievals

In this paper, we tackle the read/write heuristic errors
with averaging redundant heuristic read operations. In other
words, whenever the agent needs to look up the heuristic
value of a state, it does so R times and then averages the re-
sults. This simple idea trades heuristic accuracy for running
time and is a simple case of trading efficiency for robust-
ness (Ackley 2013). The sample mean is an unbiased esti-
mator of the actual heuristic value stored in the environment.
The higher the R the more precise the average of the multi-
ple heuristic readings will be but the longer the search will
take. Algorithms with higher R are expected to have lower

139

suboptimality but longer overall planning time (GAIO).5

Note that the multiple retrieval technique does not address
write errors in the heuristic. Indeed, an agent attempting to
store h(s) is actually storing h(s) + x, x ∼ N(0, σ) an esti-
mate of which will later be read. Addressing write errors is
a subject of future work.

6 Empirical Evaluation

We will first introduce our experimental testbed and then
present results of several experiments designed to address
previously introduced questions.

6.1 Experimental Testbed

We used 205 different maps from the Moving AI map
set (Sturtevant 2012) that were sampled from the follow-
ing games: Dragon Age: Origins, Starcraft, Warcraft III and
Baldurs Gate II . As the common practice, the maps were
converted to 8-connected two-dimensional grids. Each state
was connected to at most 8 neighbors. Cardinal edges had a
cost of 1 while diagonal edges cost

√
2. The initial heuris-

tic h between two states a = (ax, ay) and b = (bx, by) is
the usual octile distance: h(a, b) =

√
2 · min{Δx,Δy} +

max{Δx,Δy} −min{Δx,Δy} where Δx = |ax − bx| and
Δy = |ay − by|. The number-of-edges estimate d used in
Algorithm 2 is computed similarly except both diagonal and
cardinal edges are counted as 1: d(a, b) = min{Δx,Δy}+
max{Δx,Δy} −min{Δx,Δy} = max{Δx,Δy}.

To have meaningful results and to make sure the exper-
iments could run in a practical amount of time we gener-
ated a problem set as follows. On each of the 205 maps,
we generated problems whose start and end states were cho-
sen randomly. Out of such, we picked 5 problems per map
whose LRTA* suboptimality was in (10, 70) (in the absence
of read/write heuristic errors). We also made sure that each
problem could be solved by the basic LRTA* even in the
presence of read/write heuristic errors (σ ∈ {5, 10, 15}) and
that the resulting suboptimality did not exceed 200 on the
first attempt.6 This process resulted in a set of 1025 prob-
lems which we then used for all our experiments.

Each heuristic value h read in or written out by the al-
gorithms had a random value added to it. Such values were
sampled from a normal distribution N(0, σ) with the stan-
dard deviation σ ∈ {0, 5, 10, 15}. Note that both of our al-
gorithms update/learn only h which is stored externally and
thus is subject to read/write noise. The secondary heuris-
tic d is computed procedurally and is never updated. It is
not stored in the environment and thus is not subject to
read/write errors. The fact that the errors are different in each
trial, makes the agent behave differently. To gain a better

5One can imagine that reducing suboptimality will also improve
the total planning time as the agent reaches the goal faster and thus
has fewer moves to plan. We investigate this empirically in Sec-
tion 6.2.

6In the presence of read/write heuristic errors, the search be-
comes stochastic. Thus the fact that LRTA* was able to solve a
problem with read/write errors does not guarantee it will do so
again as the read/write errors may be different on a different run.

Figure 1: Average suboptimality of LRTA* as a function of
the number of heuristic retrievals R and the standard devia-
tion of read/write error σ.

insight about the algorithms, each of the following experi-
ments are repeated 10 times and the average is reported.

6.2 Effects of Multiple Retrievals on Solution
Quality and Total Planning Time

In this section, we explore how averaging over multiple
heuristic retrievals influences performance of LRTA*. For
this matter we tested LRTA* in the presence of read/write
errors with the standard deviation of 0, 5, 10 and 15. Fig-
ure 1 show the suboptimality of the algorithm. As we ex-
pected, applying multiple retrievals helps LRTA* achieve
better suboptimality. More retrievals are needed to combat
higher σ. Multiple heuristic retrievals per move helps the
agent make more informed moves and achieve shorter so-
lutions. This does not compensate for the larger number of
read/write operations per move and the total GAIO mono-
tonically increases with R.

6.3 Multiple Retrievals and Learning Weight

In this section we investigate the influence of applying
multi-retrieval technique and using the learning weight w.
We ran wLRTA* (Algorithm 1) with the weight w ∈
{1, 5, 10, 15} and the number of multiple heuristic retrievals
R ∈ {1, 10, 20, 30, 40, 50, 60, 100}. For each of the combi-
nations of w and R we ran wLRTA* on our set of 1025 prob-
lems with the read/write heuristic error of σ = 15. Figures 2
and 3 show suboptimality and GAIO respectively, averaged
over all problems in the set as functions of R and w.

Increasing the learning weight and retrieving heuristics
both contribute to improving average suboptimality. Us-
ing both of these techniques, we can achieve suboptimal-
ity below 20 while the suboptimality of the original LRTA*
(w = 1, R = 1) is about 90. Applying learning weight,
multiple retrievals and both can improve the agent’s perfor-
mance on more than 71%, 98% and 99% of problems re-
spectively. As we discussed earlier, more retrievals increases
GAIO even though it is decreasing the number of visited
states. On the other hand, Figure 3 shows that increasing
the learning weight can decrease GAIO. This is because a

140

Figure 2: Average suboptimality of wLRTA* as a function of
the number of heuristic retrievals R and the learning weight
w.

Figure 3: Average GAIO of wLRTA* as a function of the
number of heuristic retrievals R and the learning weight w.

higher learning rate improves suboptimality without affect-
ing the planning time per move.

6.4 Simplified Dynamic f̂ with Read/Write
Errors

In this section we evaluate our simplified dynamic f̂ algo-
rithm (Algorithm 2) in the presence of read/write heuristic
errors. The algorithm explicitly models one-step errors in f
and uses their average to inform its choice of the next state.
In doing so it makes several assumptions (O’Ceallaigh and
Ruml 2015) which are worth checking in our testbed.

We first examine heuristic error correction term in the ab-
sence of read/write heuristic errors. To do so we compare
the correction ε̄ · d(support(s)) to the actual heuristic er-
ror h∗(s) − ht(s). We compute the quantities for all states
s considered by Algorithm 2 in line 7. The left plot in Fig-
ure 4 presents the results. For each point the x-coordinate
is the heuristic correction of O’Ceallaigh and Ruml (2015)
whereas the y-coordinate is the actual heuristic error. If the
correction were perfect all points in the scatter plot would
land on the 45◦ line. As the figure shows, they do not. In

Figure 4: Left: all the visited states by LRTA* when it uses ĥ
to find its next move and there is no read/write error. In this
case the agent finds the goal after visiting 1191 states. Right:
all the visited states by LRTA* when it uses ĥ to find its next
move and there is read/write error with standard deviation of
15. In this case the agent cannot find the goal after visiting
1132253 states. For both plots R is equal to 1.

particular, there are a number of points on the x axis which
indicates states where ht = h∗ but ε̄ · d(support(s)) > 0.
This happens, for instance, when there are no obstacles be-
tween s and sgoal which makes the heuristic perfect but does
not make ε̄ · d(support(s)) = 0.

We now repeat the measurements but this time add nor-
mally distributed errors to the read/write operations (σ =
15). The right plot in Figure 4 shows the results. Here the
correcting term ε̄·d(support(s)) is highly negative. The rea-
son lies with the way Algorithm 2 computes per-step error in
line 9. In the expression −ht(st)+ min

s∈N(st)
[c(st, s)+ ht(s)]

used by the algorithm, the min operation chooses neighbor-
ing states whose f value (i.e., c(st, s)+ht(s)) is particularly
low due to the read/write error in the heuristic. While the f
value of the current state (i.e., ht(st)) is also affected by the
read/write error in the heuristic, the chances are that at least
one of the multiple neighbors of the current state st will have
its ht value read from the environment artificially low. As a
result, the lowest f of the neighbors tends to be below the
f of the current state and the one-step error ends up being
negative. Thus, ε̄ will tend to be negative and the correction
term ε̄ · d(support(s)) will be negative as well.

We confirm this reasoning by plotting the converged value
of ε̄ in Figure 5. We say that ε̄ is converged when the absolute
value of difference between its previous value and the new
one is less than 0.001. The converged value of ε̄ becomes
progressively more negative as the standard deviation of the
read/write errors σ increases.

The bias brought on by the min operation in estimating ε
can be reduced by averaging read h over multiple retrievals.
As Figure 5 shows, by increasing R from 1 to 750 the final
values of ε̄ converge. The differences between the values of
converged ε̄ in 750 retrievals are due to the write error which
is not impacted by multiple retrieval technique.

6.5 Pareto-optimality Analysis

We have so far considered two algorithms and two tech-
niques: weighted learning and multi-retrieval heuristics. In

141

Figure 5: Average of final ε̄ over all problems with differ-
ent number of retrievals and standard deviation of read/write
heuristic error.

this section we analyze the resulting variations in the space
of our two performance measures: solution suboptimality
and the total planning effort (GAIO). We say that an algo-
rithm A is dominated by algorithm B iff B is simultaneously
better than A with respect to both performance measures.
All non-dominated algorithms form a pareto-optimal fron-
tier, trading one performance measure for the other.

For this experiment we run wLRTA* and simplified Dy-
namic f̂ algorithm with w ∈ {1, 5, 10, 15} and R ∈
{1, 50, 100, 150}. The standard deviation (σ) of read/write
error is equal to 157. Note that we excluded R = 1 from sim-
plified Dynamic f̂ with weight on edge cost in the presence
of read/write errors (σ > 0) as they were unable to solve
most problems under the suboptimality cutoff of 104 due to
the phenomena (large negative ε̄) analyzed in Section 6.4.

Each point in Figure 6 represents a parametrized algo-
rithm. The suboptimality and GAIO averaged over our prob-
lem set of 1025 problems on 205 maps. Like the previous re-
sults, Figure 6 shows that increasing the learning weight not
only improves the suboptimality but also reduces the GAIO
in both algorithms. We believe this is due to the reason iden-
tified by Bulitko and Sampley (2016): a larger weight makes
the algorithm update its heuristic more aggressively thereby
creating a larger difference between the value of heuristic
and its neighbors and discouraging the agent from revisit-
ing states. The explanation is confirmed by the observed de-
creasing in the average number of visits per state for all set-
tings (e.g. decreases from 6.51 to 1.36 by adding w = 15 to
LRTA* when there is no read/write error). Averaging over
multiple heuristic retrievals can also improve the subopti-
mality but harms the total planning time (GAIO) as per our
analysis in Section 6.2. A practitioner can pick any pareto-
optimal algorithm (filled markers) depending on how they
would like to trade suboptimality and GAIO.

7To apply weighted learning technique on dynamic f , similar
to wLRTA*, we only change the learning rule. Specifically, we re-
place line 7 of algorithm 2 with line 6 in algorithm 1.

Figure 6: Pareto optimality analysis. Dominated algorithms
are shown with a hollow marker. Darker/red markers are for
wLRTA*. Lighter/blue markers are for the simplified Dy-
namic f̂ algorithm with the added learning weight w. Both
algorithms use averages of multiple heuristic retrievals.

7 Current Limitations and Future Work

This preliminary study opens interesting avenues for future
work. First, algorithms with deeper lookahead such as LSS-
LRTA* (Koenig and Sun 2009) and the actual Dynamic
f̂ (O’Ceallaigh and Ruml 2015) need to be investigated
in the framework of our study. Second, storing the heuris-
tic externally can additionally lead to cross-talk between
heuristic values as well as deterioration of stored values over
time. We plan to use biologically (Schultheiss, Cheng, and
Reynolds 2015; Merkle, Knaden, and Wehner 2006) and
robotically (Svennebring and Koenig 2004) inspired mod-
els of such errors. It would also be interesting to replicate
our simulation-based study on an actual robot.

8 Conclusions

In this work we explore scalable agent-centered (Koenig
2001) computing and investigate robustness of real-time
search algorithms to read/write error in the heuristic stored
externally to the agent. This paper builds on the previous
work (Bulitko and Sampley 2016) extending it in several
important ways. Specifically, we demonstrated the effective-
ness of redundant heuristic read operations with and without
learning weights. We also demonstrated issues with using
average one-step h error in the presence of read/write heuris-
tic errors and how redundant heuristic reads can remedy
the issue. Using single-step error, ε̄, cannot improve LRTA*
even when there is no read/write error. This is not in contrast
with the work (O’Ceallaigh and Ruml 2015), since it also in-
troduces other features to the algorithm (i.e. identity action).
We show that using single-step error solely, cannot make
LRTA* more robust against heuristic inaccuracies caused
by read/write error or abstraction. Finally, we evaluated our
algorithms not only in terms of the solution suboptimality
but also in terms of the GAT-inspired computational effort
(GAIO). All pareto-optimal algorithms used the maximum
learning weight tried with the number of heuristic retrievals
trading solution quality for total planning time.

142

Acknowledgments

We appreciate help from Shelby Carleton and Delia Cormier
and funding from NSERC.

References

Ackley, D. H., and Small, T. R. 2014. Indefinitely scalable
computing = artificial life engineering. In Proceedings of
The Fourteenth International Conference on the Synthesis
and Simulation of Living Systems (ALIFE 14) 2014, 606–
613. MIT Press.
Ackley, D. H. 2013. Beyond efficiency. Communations of
the ACM 56(10):38–40.
Bulitko, V., and Lee, G. 2006. Learning in real time search:
A unifying framework. Journal of Artificial Intelligence Re-
search(JAIR) 25:119–157.
Bulitko, V., and Sampley, A. 2016. Weighted lateral learning
in real-time heuristic search. In SoCS, 10–18.
Bulitko, V. 2016. Evolving real-time heuristic search algo-
rithms. In Proceedings of the Fifteenth International Con-
ference on the Synthesis and Simulation of Living Systems
(ALIFEXV), 108–115.
Burns, E.; Kiesel, S.; and Ruml, W. 2013. Experimental
real-time heuristic search results in a video game. In Sixth
Annual Symposium on Combinatorial Search (SOCS), 47–
54.
Dreslinski, R. G.; Wieckowski, M.; Blaauw, D.; Sylvester,
D.; and Mudge, T. 2010. Near-threshold computing: Re-
claiming moore’s law through energy efficient integrated cir-
cuits. Proceedings of the IEEE 98(2):253–266.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100–
107.
Hernández, C., and Baier, J. A. 2012. Avoiding and es-
caping depressions in real-time heuristic search. Journal of
Artificial Intelligent Research (JAIR) 43:523–570.
Hernández, C.; Baier, J.; Uras, T.; and Koenig, S. 2012.
Time-bounded adaptive A. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent
Systems, volume 2, 997–1006. International Foundation for
Autonomous Agents and Multiagent Systems.
Koenig, S., and Sun, X. 2009. Comparing real-time
and incremental heuristic search for real-time situated
agents. Journal of Automatic Agents & Multi-Agent Systems
(JAAMS) 18(3):313–341.
Koenig, S. 2001. Agent-centered search. Artificial Intelli-
gence Magazine 22(4):109–132.
Korf, R., and Schultze, P. 2005. Large-scale parallel breadth-
first search. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 1380–1385.
Korf, R. E. 1990. Real-time heuristic search. AI 42(2–
3):189–211.
Lelis, L. H.; Valenzano, R.; Nazar, G.; and Stern, R. 2016.
Searching with a corrupted heuristic. In Ninth Annual Sym-
posium on Combinatorial Search (SOCS).

Merkle, T.; Knaden, M.; and Wehner, R. 2006. Uncertainty
about nest position influences systematic search strategies in
desert ants. Journal of Experimental Biology 209(18):3545–
3549.
O’Ceallaigh, D., and Ruml, W. 2015. Metareasoning in real-
time heuristic search. In Proceedings of the Eighth Annual
Symposium on Combinatorial Search (SOCS), 87–95.
Piltaver, R.; Luštrek, M.; and Gams, M. 2012. The pathol-
ogy of heuristic search in the 8-puzzle. Journal of Experi-
mental & Theoretical Artificial Intelligence 24(1):65–94.
Rivera, N.; Baier, J. A.; and Hernández, C. 2015. Incor-
porating weights into real-time heuristic search. Artificial
Intelligence 225:1–23.
Sadikov, A., and Bratko, I. 2006. Pessimistic heuristics beat
optimistic ones in real-time search. Frontiers in Artificial
Intelligence and Applications 141:148–152.
Schultheiss, P.; Cheng, K.; and Reynolds, A. M. 2015.
Searching behavior in social hymenoptera. Learning and
Motivation 50:59–67.
Sharon, G.; Sturtevant, N. R.; and Felner, A. 2013. Online
detection of dead states in real-time agent-centered search.
In SoCS, 167–174.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games 4(2):144 – 148.
Svennebring, J., and Koenig, S. 2004. Building terrain-
covering ant robots: A feasibility study. Autonomous Robots
16(3):313–332.
Thayer, J. T., and Ruml, W. 2009. Using distance estimates
in heuristic search. In International Conference on Auto-
mated Planning and Scheduling (ICAPS), 382–385.
Thayer, J. T.; Dionne, A. J.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
volume 2, 3.
Traverse, S., and Suave-Hoover, F. 2014. Learning in real
time search on robot with limited sensors. Poster, University
of Alberta, Department of Computing Science.
Van Oudenhove, L.; Boulay, R.; Lenoir, A.; Bernstein, C.;
and Cerda, X. 2012. Substrate temperature constrains re-
cruitment and trail following behavior in ants. Journal of
chemical ecology 38(6):802–809.

143

