
Deep Learning for Real-Time
Heuristic Search Algorithm Selection

Devon Sigurdson, Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8, Canada
{dbsigurd | bulitko}@ualberta.ca

Abstract

Real-time heuristic search algorithms are used for creating
agents that rely on local information and move in a bounded
amount of time making them an excellent candidate for video
games as planning time can be controlled. Path finding on
video game maps has become the de facto standard for eval-
uating real-time heuristic search algorithms. Over the years
researchers have worked to identify areas where these algo-
rithms perform poorly in an attempt to mitigate their weak-
nesses. Recent work illustrates the benefits of tailoring al-
gorithms for a given problem as performance is heavily de-
pendent on the search space. In order to determine which al-
gorithm to select for solving the search problems on a map
the developer would have to run all the algorithms in con-
sideration to obtain the correct choice. Our work extends the
previous algorithm selection approach to use a deep learning
classifier to select the algorithm to use on new maps without
having to evaluate the algorithms on the map. To do so we
select a portfolio of algorithms and train a classifier to predict
which portfolio member to use on a unseen new map. Our
empirical results show that selecting algorithms dynamically
can outperform the single best algorithm from the portfolio
on new maps, as well provide the lower bound for potential
improvements to motivate further work on this approach.

1 Introduction and Related Work

Autonomous agent search is a key task in video games. An
agent is tasked with finding a path from their starting loca-
tion to a goal. The agent is guided by a heuristic estimate
of each state’s distance to the goal. The classical A* (Hart,
Nilsson, and Raphael 1968) guarantees the shortest path to
the goal, but is constrained to solving the entire problem
before the agent’s first steps can be taken. Learning Real-
time A* (LRTA*) (Korf 1990) pioneered real-time heuris-
tic search by enabling the agent to move before it knows a
complete path to the goal. It does so by updating the agent’s
heuristic beliefs as it searches towards the goal, and limits
planning to its immediate neighbors.

Real-time heuristic search algorithms bound the time the
agent can use for planning each move. The bounding is done
such that the amount of time for each move is independent
of the search graph it operates in. By contrast, the time for an

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A* agent to make its first move is directly tied to the number
of states the agent must expand before reaching the goal.
Limiting the search to local information of the surrounding
area centers the search around the agent and prevents the
jumping to desired frontier nodes as seen in A*.

Real-time agents interweave their planning and action as
they traverse to the goal. This interweaving of planning and
action is done through limiting the agent to information lo-
cal to it and bounding the amount of time to plan its move.
Agents will move based on limited information and before
the whole path to the goal is known causing the agent to
make suboptimal decisions. During the agent’s traversal to
the goal it updates its heuristic of each state it visits. These
updates enable the agent to find the goal as their heuristics
converge to the correct value but makes the agents prone
to frequent state revisitation, often referred to as scrubbing.
The scrubbing behavior appears irrational or broken as the
agent will visit the same state repeatedly in short succes-
sion (Hernández and Baier 2012).

In an effort to mitigate scrubbing, agents can attempt to
identify when they enter a heuristic depression. A depres-
sion is a bounded region in which the contained states have
heuristics that are too low in comparison to the surround-
ing states. Because of these depressed regions, the agent is
forced to scrub back and forth until the heuristics rise to
the point where the region is no longer depressed (Ishida
1992). Knowing the agent has entered a depressed region
they can employ depression avoidance techniques to escape
the depression by marking the states in the region with a
temporary avoid flag to discourage the agent from explor-
ing the region (Hernández and Baier 2012). Another method
for reducing scrubbing is through pruning expendable states,
which are states whose neighbors are all reachable without
said state (Sharon, Sturtevant, and Felner 2013).

LRTA* originally updated the heuristic value of a state
based on the surrounding state with the minimum heuristic
estimate to the goal. Different heuristic learning rules have
also been researched for alternatives to the original meth-
ods used in LRTA* (Bulitko 2016d; 2016a). Weighting the
learning of the agent has been explored and shown to help
speed up converging to the correct heuristic value (Shimbo
and Ishida 2003; Rivera, Baier, and Hernndez 2015).

Over the two decades of research since the seminal
LRTA* many new algorithms have been proposed and stud-

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

108

ied. Despite being developed as standalone algorithms these
variations were able to be unified into a single frame-
work (Bulitko 2016a). This framework parameterized which
components of the previous algorithms were active, enabling
different algorithms to be achieved by varying the parame-
ters of the framework. A downside to having parametrized
algorithms is the bewildering combination of the various
algorithms and parameters that can be created. These vast
combinations can pose a challenge for their use in practice.
To overcome this, an automated algorithm selection tech-
nique was implemented by Bulitko (2016a) where several
variations of uLRTA* were evaluated to determine which
combination of parameters was the best single solver overall
in their video game map test bed and which algorithm was
best on a per-map basis (Bulitko 2016b). Selecting an al-
gorithm on a per-map bases resulted in significant improve-
ments over using the single best solver on all maps (Bulitko
2016b); Bulitko’s approach however, required evaluating the
potential algorithms on each new domain in order to select
which algorithm to use.

This approach of developing specialized solvers that ex-
cel at a specific problem achieved state-of-the-art results not
only in real-time-heuristic search but in other fields such
as satisfiability problems (Kotthoff 2014; Loreggia et al.
2016). The underlying concept behind the success of these
approaches is the algorithm selection problem (Rice 1976).
Selecting the correct algorithm or configuration of an algo-
rithm from a portfolio for a given problem can be automated
using tools such as Sequential Model-Based Optimization
for General Algorithm Configuration (SMAC) and sampling
approaches illustrated in per-maps selection.

These algorithm selection techniques operate in an off-
line matter where in order to select an algorithm on a new
domain the portfolio must be evaluated on the new domain.
This requires the new domain to be known sufficiently ahead
of time for it to be used in practice where in games this may
not always be conceivable. To alleviate this off-line draw-
back deep learning image networks have been trained to take
a visual representation of a satisfiability problem to select
which algorithm from a portfolio is the best solver for that
problem (Loreggia et al. 2016). This approach was able to
achieve better results than using the single best solver from
the training data in the satisfiability study. Given the visual
aspect of video game maps, using the same approach should
be a valid avenue for alleviating the off-line requirement that
currently exists for real-time heuristic search algorithms.

Dynamic algorithm selection is well suited for video
games given the rise of procedurally generated maps and
widely available game engines like Unreal Engine and
Unity. In both cases the game maps that potential agents
must traverse is not fixed and may not have sufficient time
to sample the algorithms in the portfolio on the new game
maps. Being able to dynamically select algorithms could
lead to performance gain over using the best single solver
on the previous maps.

The contribution of this paper is demonstrating a method
for using an off-the-shelf deep learning neural network to
select an algorithm for a given problem well enough to out-
perform the use of a single algorithm. We organize the rest

of the paper as follows. First we formalize the definition
for a real-time heuristic search in Section 2. We then ex-
plain the search algorithm framework for which we form the
portfolio of algorithms from in Section 3. We then explain
our methodology for dynamically selecting algorithms for a
given problem in Section 4 and discuss the varying results
for map and problem based selection in Section 6 and 7.
Limitations of our approach and future work directions are
presented in Section 8 followed by conclusions.

2 Problem Formulation

We re-use the problem formulation of Bulitko (2016c) and
reproduce it below for the reader’s convenience. A search
problem is a tuple (S, E, c,s0, sg , h) where S is a finite set
of states and E ∈ S × S is a set of edges between them.
S and E jointly define the search graph. The search graph
is stationary, undirected and connected (and thus safely ex-
plorable). No state has an edge leading to itself. Each edge
(sa,sb) ∈ E is weighted by the cost c(sa, sb) = c(sb, sa) >
0. The agent begins in the start state s0 and changes its cur-
rent state by traversing edges (i.e., taking actions). The cu-
mulative cost of all edges it traverses prior to reaching the
goal state sg is the solution cost. The suboptimality (α)
is the ratio of the solution cost produced by an agent to the
cost of the shortest possible path, h∗(s0). Lower values are
desired; the value of 1 indicates optimality.

The agent has access to a heuristic h which is an esti-
mate of the remaining cost to the goal. We do not assume
the heuristic to be admissible or consistent. The agent is free
to update it in any way as long as h(sg) = 0. The heuristic
at time t is denoted by ht; the initial heuristic h0 = h is
included in the problem description.

The objective is to find a real-time heuristic search
algorithm with the lowest expected suboptimality. The
expectation is empirically approximated by sample
suboptimality: running an algorithm on a set of benchmark
problems and averaging suboptimality of the solutions. Per-
problem sub-optimality is capped as αmax ≥ 1.

3 Search Framework

Section 1 introduced some of the ways of improving LRTA*
towards lower solution suboptimality. In this paper we
specifically focus on how to select which parametrized
real-time heuristic search algorithm (Algorithm 1) (Bulitko
2016b) to use based on the search space. To isolate the prob-
lem, we fix the lookahead at 1 (i.e., allow the agent to con-
sider only the immediate neighbors of its current state dur-
ing the planning stage). We use the same parametrized LRTS
as Bulitko (2016a) and Bulitko (2016b) which takes the fol-
lowing input parameters w, wc, b, lop, da, expendable.

The agent will deploy depression avoidance (Hernández
and Baier 2012) techniques if the parameter da = true,
as shown in line 4. If used then line 5 will have the
agent’s neighboring states N(st) temporarily set to include
states which have minimal amounts of learning(|ht(s) −
h0(s)|) (Bulitko 2016a). This is done to prevent frequent
state revisitation by discouraging agents from revisiting the
same states right away.

109

Line 6 consists of the learning rule which utilizes
weighted heuristics (Bulitko 2016c; Rivera, Baier, and
Hernández 2013) and lateral learning (Bulitko 2016a).
These parameters are controlled with w, wc, lop, and b. The
learning operator is represented by lop which consists of
min, max, median, and mean. w weighs the heuristic up-
date, which can increase the speed at which the heuristic
value converges to h∗, but higher weights can lead to in-
admissible heuristics that are larger than h∗. wc is another
weighting control that weights the cost of traversing from
the current state to the neighboring states. The lateral learn-
ing portion of line 6 is defined by the agent’s neighborhood
Nf

b as the b fraction of the neighborhood N(st) with mini-
mum f values:

Nf
b (s) = (s1, ..., s�b|N(st)|�)

where (s1, ..., s�b|N(st)|�, ..., s|N(st)|) is the immediate
neighborhood sorted in the ascending order by their f val-
ues. A b value of 1 represents the full neighborhood(all the
connecting states), while a value of 0 represents the single
neighboring state with lowest f value.

When the control parameter expendable is active and a
state is deemed expendable (Sharon, Sturtevant, and Felner
2013) then it is pruned from the graph, as shown in line 8.
In order for a state to be expendable (denoted by ε(st))
all its immediate neighbors must be reached from each other
within the immediate neighborhood; learning must have also
occurred in line 6. The agent moves to its new state in line 9.

Algorithm 1: Parametrized Real-time Heuristic
Search

input : search problem (S,E, c, s0, sg, h), control
parameters w,wc, b, lop,da,expendable

output: path (s0, s1, . . . , sT), sT = sg
1 t ← 0
2 ht ← h
3 while st �= sg do
4 if da then
5 N(st) ← Nminlearning(st)

6 ht+1(st) ←
max

{
ht(st), w · lop

s∈N
f
b
(st)

(wc · c(st, s) + ht(s))
}

7 if expendable & ht+1(st) > ht(st) & ε(st) then
8 remove st from the search graph;

9 st+1 ← argmins∈N(st)(c(st, s) + ht(s))
10 t ← t+ 1

11 T ← t

3.1 Space of Algorithms

We use the same control parameters as Bulitko (2016b)
and reproduce them here for the reader’s convenience: w ∈
[1, 10], da ∈ {true, false}, expendable ∈ {true, false},
lop ∈ {min, avg,median,max}, b ∈ [0, 1] which defines
a six-dimensional space of real-time heuristic search algo-
rithms in which our method will choose from.

4 Our Approach

The best algorithm on a search problem for algorithm se-
lection can be selected through evaluating all the algorithms
in the portfolio. However, this is computationally expensive
and defeats the purpose if to solve one problem faster sev-
eral slower algorithms are ran to determine the best choice.
Our approach leverages the advances in image classification
to select which algorithm to use for a given search problem.
Instead of running the algorithms in the portfolio on these
new maps the game designer runs them through a trained
image classifier that selects the algorithm to use for the in-
put problems. Modern classifiers have very high accuracy at
making correct classifications for the examples that trained
the network. This enables achieving close to the best subop-
timality for the portfolio for all the training examples.

As the previous work showed, evolving an algorithm (Bu-
litko 2016a) to perform well overall can be outperformed by
explicitly selecting an algorithm on a per-map basis (Bu-
litko 2016b). This concept of selecting a specific algorithm
for a given problem has been studied extensively. Kotthoff
(2014) recently provided a comprehensive survey on algo-
rithm selection for combinatorial search. Our work takes this
concept and provides a general technique for selecting al-
gorithms on new problems without sampling algorithms in
order to make the selection as Bulitko (2016b) did. Our tech-
nique is generalizable to any chosen performance metric but
for this study we focus on suboptimality.

4.1 Algorithm Generation

In order to dynamically select algorithms we first need to
create algorithms to form a portfolio. We take a simple ap-
proach to algorithm generation by creating 1000 algorithms
from the algorithm space defined in Section 3.1. Each con-
trol parameter was selected uniform randomly in the same
fashion as Bulitko (2016b) did. While the space of algo-
rithms that we chose from are variations of parameterized
uLRTA*, seen in Figure 1, conceptually these can be thought
of as separate algorithms and many of the combinations
were originally developed as standalone algorithms.

4.2 Portfolio Formation

The large performance gains seen in state-of-the-art algo-
rithms come from specialized algorithms that excel at a very
specific set of problems through sacrificing generality (Bu-
litko 2016b). Since our algorithm selection is done in an
on-line fashion selecting one of these specialized algorithms
outside of their specialty can reduce the performance of the
algorithm selection approach.

Algorithm portfolios define the algorithms which are able
to be selected. Ensuring any selection from a portfolio has
a specific property can be achieved by having all algorithms
in the portfolio each individually having the desired prop-
erty. This can be used to ensure no matter what selection is
made desired results such as completeness or upper bounds
on suboptimality are met.

To reduce the potential harm from selecting an incor-
rect algorithm we reduce the portfolio size from the pos-
sible 1000 different variations to a smaller subset. We form

110

our subset of algorithms using a greedy portfolio generation
shown in Algorithm 2. A similar greedy subsetting approach
was applied to selecting a subset of heuristic functions for
the traditional A* algorithm in order to reduce the compu-
tation time required for evaluating these heuristic functions
through considering a smaller subset (Lelis et al. 2016).

Algorithm 2 forms a portfolio by greedily adding the al-
gorithm which maximizes the portfolios performance under
perfect selection. The algorithm takes a set of algorithms A
with a target portfolio size n indicating the maximum num-
ber of members in the portfolio. The subsetted portfolio of
algorithms is represented by the set T and initialized to a
null set in line 1. Line 3 finds algorithm a from the set of
algorithms A which has the lowest suboptimality in combi-
nation with portfolio T defined by f . The best algorithm is
then added to the set in line 4.

Algorithm 2: Portfolio Formation
input : a set of algorithms A, target portfolio size n
output: portfolio T

1 T ← ∅
2 for i ∈ {1, . . . , n} do
3 a ← argmin

a∈A
f(T, a)

4 T ← T ∪ {a}

5 Empirical Evaluation

Our evaluation was conducted on search graphs represent-
ing grid-based video game maps. The search graph for each
map is an 8-connected grid. Diagonal moves have a cost of√
2 with cardinal moves having a cost of 1. The game maps

are taken from the Moving AI benchmark (Sturtevant 2012).
This consists of 342 maps from Dragon Age: Origins, Star-
Craft, WarCraft III, Baldur’s Gate II (rescaled to 512×512).
We evaluate the performance of these algorithms by running
each of them over 17100 problems from the 342 maps in the
Moving AI benchmark (Sturtevant 2012).

5.1 Dynamic Algorithm Selection

In an ideal setting the user would enable the game to run
all of its optimizations, but they likely would want to play
their map right away. To gain the advantages of using algo-
rithm selection for optimizing real-time search performance
we treat dynamic algorithm selection as a traditional im-
age classification problem. The input for all of our classi-
fications are a 227 × 227 pixel image of the problem the
agent will be traversing. The output is the index of the al-
gorithm, in this case corresponding to the algorithm to be
used to solve the search problem. For the image classifica-
tion we used AlexNet (Krizhevsky, Sutskever, and Hinton
2012), a popular deep-learning neural network, pre-trained
on the ImagenNet dataset included in MATLAB 2017a Neu-
ral Network Toolbox.

The classification for the algorithm selection can be done
at different levels of problem granularity. Bulitko (2016b)
studied the selection problem at per-map and per-problem
level, and showed the more granular of a selection the more

specialized an algorithm can be resulting in higher perfor-
mance. In particular, we consider the algorithm selection for
four different granularities.

Algorithm 3: Dynamic Algorithm Selection
input : map m, Neural Network n
output: a

1 pi ← P (ai ∈ a∗
A(m))

2 [p1, ...pn] ← n(m)
3 a ← argmax([p1, ...pn])

6 Map-based Algorithm Selection

For all of the classifications based on selecting an algorithm
from a map we run a trials which create a split that separates
75% of the problems for a training set and 25% for a test set.
For the map-level classifications the input is an image of the
map. Each training input is assigned a label corresponding to
the best algorithm from the portfolio for that map. The 25%
test set and the performance of the algorithms are completely
withheld from both the training of the network and portfolio
formation. Using the training set’s map-algorithm pairs we
train the network. The maps are rescaled to match the 227
× 227 pixel input of the network. We repeat the splits over
20 trials to reduce the chance that the test and training split
happened to be favorable.

We then use the newly trained network to select which
algorithm from the portfolio to use for each of the remain-
ing 25% of the maps as shown in Algorithm 3. The network
uses a softmax final layer to give a probability distribution
of each label as shown in line 2, over the n algorithms in
the portfolio. This can be conceptualized as how likely the
network thinks each label is. For example, in the case where
a network has four potential labels the distribution for algo-
rithms 1, 2, 3, and 4 could be 0.24, 0.25, 0.25, and 0.26 re-
spectively. The network would recommend using algorithm
4 even though it is only slightly more confident in that la-
bel. Line 3 selects the algorithm to use for the inputed map
image given the probability distribution. We refer to a per-
fect selector as an oracle meaning that it always selects the
correct label for the input.

6.1 Game-type Algorithm Selection

The highest aggregation we consider is the type of game the
agent will be traversing. For this classification the input is an
image representing the map and the output is the algorithm
which performed best on that game type. Moving AI con-
tains role-playing games (RPG) and real-time strategy (RTS)
games meaning we are using the 2 best out of the 1000 algo-
rithms from the training data for our selection. There are 231
role-playing game maps in Moving AI from Baldur’s Gate
II and Dragon Age: Origins. The remaining 111 maps are
real-time strategy games from StarCraft and WarCraft III.

Our game-type classification achieved an average accu-
racy of 96±2.2% for predicting which type of game the map
is from. The average suboptimality achieved by our network
and the oracle selector was 12.33 ± 1.0 while the subopti-
mality achieved by the best single algorithm was 12.58±1.1

111

Figure 1: Sample maps from Dragon Age: Origins, Star Craft, WarCraft III, and Baldur’s Gate II.

in comparison. Using the network resulted in better perfor-
mance 70% of the time for our 20 trials.

6.2 Per-game Algorithm Selection

We next consider the task of selecting the best algorithm
from our 1000 possible algorithms for each of the 4 Moving
AI games in our 256 map training set. Conceptually each
map is assigned an algorithm meaning the algorithm selec-
tion can be thought of as selecting which game the map is
most similar too and using the corresponding algorithm. The
remaining 86 maps are considered to be new maps with no
information regarding which game they are from. Our classi-
fier will predict which game a new map could be from, and
then assign the corresponding best algorithm to the newly
classified map. We use the best algorithm for that game to
measure the suboptimality on the newly classified map. In
this test the best static algorithm is the algorithm which did
best across all 256 maps. The oracle is again a classifier with
100% accuracy meaning it always picks the correct game the
map is from but not necessarily the best algorithm for that
map.

Our ability to classify which game a map was from ob-
tained a lower accuracy than the game-type classification
with a accuracy of 90 ± 3.1%. The average suboptimality
for the oracle selector is 12.52 ± 1.3, our network selection
resulted in an average suboptimality of 12.54± 1.3, and us-
ing the best static algorithm suboptimality of 12.72 ± 1.2.
Selecting an algorithm dynamically resulted in better per-
formance 65% of the time over our 20 trials.

6.3 Per-map Algorithm Selection

Per-map differs from per-game and game-type classification
in that it does not rely on preconceived labels such as game-
type. Instead we use Algorithm 2 to determine our portfolio.
Each map is assigned the label corresponding to the best per-
forming algorithm from the portfolio. The oracle in this sce-
nario represents both a classifier with perfect accuracy but
also a lower bound for performance when using this tech-
nique, as the correct label is the best performing algorithm
from the portfolio. The per-map selection with a portfolio
size of 2 achieved an accuracy of 55±5.3% for selecting the
best algorithm to use for a given map out of the 2 algorithms.
The average result of the network selected algorithms were a
suboptimality of 12.20±1.2 in comparison to the best static

algorithm achieving a result of 12.27 ± 1.3. The oracle se-
lector which always selected the best algorithm out of the 2
achieved a suboptimality of 11.27 ± 1.1. Over the 20 trials
the dynamic selection achieved better results than the static
algorithm 60% of the time.

7 Problem Based Algorithm Selection

Problem based algorithm selection is the ability to select an
algorithm for an individual problem as opposed to selecting
an algorithm for all problems on a map. This can result in
better performance for a map. To help the network focus on
selecting an algorithm for each individual search problem
we reduce the classification to a single map.

The network is trained using images of a single map but
with information regarding the individual search problem
also embedded on the map image. In particular we added
a green 3 × 3 square pixel at the start and another red 3 ×
3 square pixel at the goal location and a 1 pixel width line
connecting the start and goal. We train the network by feed-
ing in the problem images with the corresponding algorithm
to use for the input problem. The newly trained network is
then used in the same fashion as described in Section 6.

Training a network for each individual map increases the
resources required for algorithm selection because the train-
ing process is repeated for each map. Our testing was limited
to a map from Dragon Age: Origin’s map from the Moving
AI benchmark which was slightly smaller (207 × 196) than
the networks input dimensions and had 1169 problems on
the map. Using a portfolio size of 2 again the suboptimal-
ity achieved by the network was 14.20 ± 0.7 in contrast to
the best static algorithm achieving a result of 14.77 ± 0.5.
The accuracy of network was 70± 2.3%. If the network had
the 100% accuracy of the oracle selector the performance
achieved would have been 11.35 ± 0.5 suboptimality. The
20 trials of the per-problem testing achieved a better average
performance than the static algorithm 90% of the time.

8 Current Limitations and Future Work

Our work provides several examples with varying degrees
of performance gains and classification accuracy in us-
ing dynamic algorithm selection. The potential performance
improvements were limited by not developing specialized
solvers but instead selecting out the 1000 algorithms tested.
Given the high degree of accuracy for per-game and game-

112

Suboptimality

Algorithm Selection Type Accuracy Static ANN Oracle

Game-type 96± 2.2% 12.58± 1.1 12.33± 1.0 12.33± 1.0

Per-game 90± 3.1% 12.72± 1.2 12.54± 1.3 12.52± 1.3

Per-map 55± 5.3% 12.27± 1.3 12.20± 1.2 11.27± 1.1

Per-problem 70± 2.3% 14.77± 0.5 14.2± 0.7 11.35± 0.5

Table 1: Results of Algorithm Selection: Compares using a static algorithm, our network (ANN) and a perfect selector (Oracle)
as well as reports classification accuracy for our network.

type classification using an optimization tool such as SMAC
to truly create specialized solvers may lead to lower subopti-
mality. The number of game types and maps evaluated were
limited to the Moving AI benchmark. Ideally, we would have
several maps from multiple games across a diverse set of
genres to examine if the same classification accuracy can be
achieved on a larger test bed.

Our greedy method to select a portfolio only works if the
classification accuracy is sufficiently high. When increasing
the portfolio size past two with the same technique, the al-
gorithms added often performed poorly across the major-
ity of maps but excelled only at one and were added be-
cause the portfolios are formed under the assumption of a
perfect selector. This resulted in larger portfolios creating
worse results. Creating a portfolio formation algorithm that
would only add algorithms that passed a baseline require-
ment could help allow for larger portfolio sizes. Another ex-
tension is to have the approach to select from algorithms
outside of the framework we used as well.

As mentioned in Section 5.1, our network is trained as
a simple 0-1 classification problem meaning the network’s
loss function punishes choosing any algorithm that is not
the optimal algorithm equally. One way to overcome this is
by replacing the loss function used in AlexNet with one that
incorporates a weighted loss.

9 Conclusions

In this paper, we built on the recent work which used eval-
uating algorithms on a domain in order to select which al-
gorithm to use for the remaining problems on that domain.
We showed that networks could be used to achieve better re-
sults than always sticking with a single algorithm. We also
showed the degree of accuracy a neural network could clas-
sify which type of game a map was from in addition to which
game it belonged to. Neural networks are an excellent tool
that is readily available to game developers as there are sev-
eral libraries to implement a wide range of networks. Us-
ing an off-the-shelf configuration of AlexNet we were able
to obtain successful results and provide possible methods in
our future works for how a game developer could potentially
increase the results even further.

Acknowledgments

We thank Shelby Carleton, Delia Cormier, and the anony-
mous reviewers for providing valuable feedback. The fund-
ing was provided by NSERC.

References

Bulitko, V. 2016a. Evolving real-time heuristic search algo-
rithms. In Proceedings of the Fifteenth International Con-
ference on the Synthesis and Simulation of Living Systems,
108–116.
Bulitko, V. 2016b. Per-map algorithm selection in real-time
heuristic search. In Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment Conference, 143–149.
Bulitko, V. 2016c. Searching for real-time search algo-
rithms. In Proceedings of the Symposium on Combinatorial
Search, 121–123.
Bulitko, V. 2016d. Weighted lateral learning in real-time
heuristic search. In Proceedings of the Symposium on Com-
binatorial Search, 10–19.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Trans. on Systems Science and Cybernetics 4(2):100–107.
Hernández, C., and Baier, J. A. 2012. Avoiding and es-
caping depressions in real-time heuristic search. Journal of
Artificial Intelligence Research 43:523–570.
Ishida, T. 1992. Moving target search with intelligence. In
Proceedings of the Tenth National Conference on Artificial
Intelligence, 525–532.
Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42(2–3):189–211.
Kotthoff, L. 2014. Algorithm selection for combinatorial
search problems: A survey. In AI Magazie, volume 35, 48–
60.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Pereira, F.; Burges, C. J. C.; Bottou, L.; and Wein-
berger, K. Q., eds., Advances in Neural Information Process-
ing Systems 25. Curran Associates, Inc. 1097–1105.
Lelis, L. H. S.; Franco, S.; Abisrror, M.; Barley, M.; Zilles,
S.; and Holte, R. C. 2016. Heuristic subset selection in
classical planning. In Proceedings of the Twenty-Fifth Inter-

113

national Joint Conference on Artificial Intelligence, 3185–
3191.
Loreggia, A.; Malitsky, Y.; Samulowitz, H.; and Saraswat,
V. A. 2016. Deep learning for algorithm portfolios. In Pro-
ceedings of the Artificial Intelligence and Interactive Digital
Entertainment Conference.
Rice, J. R. 1976. The algorithm selection problem. Ad-
vances in Computers 15:65 – 118.
Rivera, N.; Baier, J. A.; and Hernández, C. 2013. Weighted
real-time heuristic search. In Proceedings of Autonomous
Agents and Multiagent Systems, 579–586.
Rivera, N.; Baier, J. A.; and Hernndez, C. 2015. Incor-
porating weights into real-time heuristic search. Artificial
Intelligence 225:1 – 23.
Sharon, G.; Sturtevant, N. R.; and Felner, A. 2013. Online
detection of dead states in real-time agent-centered search.
In Proceedings of the Symposium on Combinatorial Search,
167–174.
Shimbo, M., and Ishida, T. 2003. Controlling the learning
process of real-time heuristic search. AI 146(1):1–41.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.

114

