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Abstract

A key challenge in game design is achieving balance between
the strategies available to the players. Traditionally this has
been done through playtesting, with its difficult requirements
of time, labor, and interpretation of results. To make it quicker
and easier to balance games, we propose a game-theoretic
approach that automatically balances strategies based on a
mathematical model of the game.
Specifically, we model the balance problem as modifying a
zero-sum game, using one variable per strategy, so that every
strategy has an incentive to be employed. We begin with a
special case where these variables affect player payoffs mul-
tiplicatively, and show that the simple Sinkhorn-Knopp al-
gorithm can be used to balance the game. We then proceed
to analyze the more general case where the variables have
a monotonic effect on payoffs, and show that it is amenable
to standard optimization methods. We give examples inspired
by well-known game series including Pokémon and Warham-
mer 40,000.

1 Introduction

“A game is a series of meaningful choices”, as Civilization
designer Sid Meier is famously quoted (Rollings and Morris
2000). A choice is not very meaningful if it is the correct
choice every time, or the wrong choice every time. Over-
powered choices will tend to crowd out all others, leading to
stale gameplay; underpowered choices may rarely see use in
practice, wasting the development resources spent on them.
Game designers thus strive to balance the choices in their
games so that each can be reasonably employed.

While human playtesting is the ultimate arbiter of balance
and player enjoyment, dedicated human playtesting is time-
and labor-intensive. Analytics techniques (Andersen et al.
2011a; 2011b; 2012; Lomas et al. 2013) can allow design-
ers to measure the impact of decisions on balance and other
design objectives using large-scale experiments with actual
players. However, in this case the game’s playtesters are also
its audience and customers, and therefore expect to enjoy the
game while they are playing it. Therefore designers cannot
only be concerned with the final state of a game’s balance,
but also the speed at which balance is achieved and even the
initial balance.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Top: The Pokémon type chart. Damage done by
an attack is multiplied by a factor depending on the type of
the attack and the type(s) of the defending Pokémon.
Bottom: Example Pokémon statistics screen. In addition to
the type multiplier, damage is also multiplied and divided
by the (special) attack and defense values of the Pokémon.
(Bulbapedia 2017a; 2017b) We consider the problem of set-
ting balanced values for these statistics in a simplified ver-
sion of the game.

An alternative to human playtesting is to use AI players.
AI techniques such as Monte Carlo Tree Search (Chaslot et
al. 2008; Browne et al. 2012) are capable of achieving a high
level of skill and are adaptable to a wide variety of games,
a recent high-profile example being AlphaGo (Silver et al.
2016). AI players have also been used to generate and bal-
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ance games, often using an evolutionary algorithm as the
“outer loop” (Browne 2008; Mahlmann, Togelius, and Yan-
nakakis 2012).

Another approach, and the one we use in this paper, is
to make a game-theoretic analysis using provably optimal
agents. While such analysis cannot be applied to as broad
a class of games as general AI techniques, it offers lower
computational costs and more precisely interpretable solu-
tion definitions.

Zero-sum games (in the game theory sense) are a natu-
ral model for games (in the entertainment sense) which pit
two players against each other. In some cases the entire work
may be modeled by a zero-sum game, such as in the case of
Rock, Paper, Scissors—though even this simple game offers
deep enough dynamics to support both human and computer
tournaments (Knoll, Lu, and Burdge 2017). Jaffe (2012) in-
vestigated the effect of play restrictions on optimal agents in
a two-stage zero-sum game. Even more complex works may
include zero-sum components; for example, Jaffe (2013) and
Tavares (2016) examined the metagame of choosing char-
acters in a fighting game and choosing strategies in a RTS
game respectively.

It is well-known that the Nash equilibrium of a zero-sum
game can be found via linear programming (Dantzig 1963).
Here we consider an inverse problem: given an initial zero-
sum game, and a Nash equilibrium and value (i.e. expected
payoff at Nash equilibrium) we would like the game to have,
how can we modify the game so it has that Nash equilibrium
and value? In a talk Hazard (2010) gave some examples of
problems of this type, but did not develop the theory further.

In this paper, we formally define this problem in terms of
handicap functions, which determine the payoff of the game
based on the strategies picked by the two players and a hand-
icap variable affecting the overall strength of each strategy.
We analyze the special case where the handicap function is
simply the ratio of the two handicap variables times some
initial value for that matchup, and show that such a game
may be balanced using the Sinkhorn-Knopp algorithm, with
its associated conditions on the existence and uniqueness of
a solution. Then we move on the case where the handicap
functions are general monotonic functions, and show that the
solution set has properties favorable to numerical optimiza-
tion. We demonstrate our algorithms on examples inspired
by well-known games.

2 Setting
Let us now describe our formalism and how it relates to
the mechanics of actual games. We consider the two-player
zero-sum game, where each player chooses between a finite
number of strategies. This kind of game can be represented
by a matrix F , whose elements Fij give the payoff if the row
player picks strategy i and the column player picks strategy
j. By convention, the row player is attempting to maximize
this payoff, and the column player is trying to minimize it
(or equivalently, maximize its negation).

Our goal is to modify this game so that it has a particu-
lar Nash equilibrium that we desire. With n × m entries in
the matrix but only n + m strategies, this problem is un-
derconstrained if we are allowed to modify the entries of the

matrix arbitrarily. Furthermore, the individual pairwise strat-
egy interactions typically reflect other design goals. They
may be subject to aesthetic considerations; for example, the
Pokémon type chart (Figure 1) contains only four distinct
values 0, 1

2 , 1, 2, these being determined by intuitive rela-
tions between the types (e.g. fire burns grass, so Fire does
double damage against Grass). Or the strategies may be dif-
ferent values of a numerical in-game statistic, with the pay-
off matrix being determined by a pre-existing mathematical
equation (for example, hit probability = accuracy - evasion).

Rather, it is more common to adjust the strength of each
strategy rather than the payoff matrix directly. Therefore, we
assign a handicap variable hri to each strategy i of the row
player (the maximizer); likewise we assign a handicap hcj

to each strategy j of the column player (the minimizer). A
high handicap indicates that the strategy is too strong at its
initial state and should be made weaker. The unit cost (in e.g.
money, time...) for employing a strategy is a common bal-
ancing knob; an overperforming strategy can be made more
expensive, thus allowing “less” of that strategy to be em-
ployed. Alternatively, the effectiveness of the strategy could
be decreased, such as by reducing the base damage for an
attacker strategy, or hit points for a defender strategy.

We then define each element of the payoff matrix of the
game using handicap functions whose arguments are the cor-
responding row and column handicaps:

Fij = Fij (hri, hcj) (1)

This represents how changing the handicap for the strate-
gies i and j changes the relative advantage between the two
strategies. For example, if maximizer strategy i’s handicap
increases, each minimizer strategy j will tend to do better
against it, reducing the payoff.

Problem Definition Given...

• n × m handicap functions that define a payoff matrix as
in Equation 1.

• A desired Nash equilibrium with strictly positive strat-
egy weight vectors wr, wc with one element for each of
the row and column strategies respectively. As probability
distributions, each of these must sum to 1.

• A desired value v of the game (i.e. expected payoff at
Nash equilibrium).

...find handicap variable vectors hr, hc—again, one
element for each of the row and column strategies
respectively—such that the zero-sum game defined by the
resulting F has that Nash equilibrium and value. Specifi-
cally, this means at the desired Nash equilibrium all strate-
gies have expected payoff pr,pc for their player equal to the
desired value of the game (negated for the column player):

pri =
∑
j

wcjFij = v ∀i

pcj = −
∑
i

wriFij = −v ∀j (2)
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Figure 2: Handicaps that produce a uniform Nash equilibrium for our simplified Pokémon game, plotted against the Nash
equilibrium of the original game. The attacker is the maximizer (left plot) and the defender is the minimizer (right plot). The
handicap and the Nash equilibrium of the initial game are correlated, following the intuition that over-represented strategies
should be weakened (“nerfed”). However, the correlation can be weak. For example, Steel defense gets a high handicap because
it is strong against a wide variety of attack types; however, it is only rarely played in the initial Nash equilibrium because it is
weak against the most dominant attack type, namely Ground.

We will occasionally concatenate vectors for the rows and
columns into a single vector, which we will denote using
unsubscripted vectors:

h =

[
hr

hc

]
p =

[
pr

pc

]
w =

[
wr

wc

]
(3)

3 Multiplicative Handicaps

3.1 Example: Pokémon Types

In the Pokémon series of games, each attack and each de-
fending Pokémon has an associated type. Consider a simpli-
fied version of this game where an attacker chooses the type
of the attack and a defender chooses the type of the defend-
ing Pokémon, with the attacker trying to maximize the dam-
age dealt and the defender trying to minimize it. Each type
has an associated attack and defense statistic, with the dam-
age dealt being proportional to the ratio between the attack-
ing type’s attack statistic and the defending type’s defense
statistic. A multiplier is applied to the damage dealt depend-
ing on the type of the attack and the type of the defending
Pokémon according to the type chart shown in Figure 1. We
wish to balance this game by setting the attack and defense
statistics for each type so that the game’s Nash equilibrium
is the uniform distribution over each player’s strategies.

The handicaps that produce this uniform Nash equilib-
rium are shown in Figure 2 and are contrasted with the Nash
equilibrium of the original game. The computation took 4
ms on a single desktop computer.

3.2 Formalization and Algorithm

Let us now formalize this example and present an algorithm
for finding the solution:
• Maximizer and minimizer ⇔ attacker and defender.
• Pokémon types ⇔ strategies. In general there are n for the

maximizer and m for the minimizer.

• Handicap ⇔ inverse of attack or defense statistic (for each
strategy).

• Payoff ⇔ damage done; we desire that the expected dam-
age done is v.

Finally, the handicap functions are based on an “initial”
n×m nonnegative matrix A, in this example the type chart
(Figure 1), according to:

Fij (hri, hcj) =
hcj

hri
Aij (4)

that is, the entries of the payoff matrix are the ratio of the
corresponding column and row handicaps times some initial
payoff.

In this case our problem of finding the handicaps hr,hc

that produce a desired Nash equilibrium is equivalent to find-
ing a scaling of the rows and columns of A such that the
row and column sums, weighted by the probabilities of the
desired Nash equilibrium, sum to v. Conveniently, there is
an existing algorithm due to Sinkhorn and Knopp (1967;
1967) that does just that. It is exceedingly simple:

1. Divide each row by its (weighted) sum.
2. Divide each column by its (weighted) sum.
3. Repeat until convergence.

Sinkhorn and Knopp (1967) showed that in the case where
A is square and the weights are uniform, a unique solution
exists if and only if A has total support; and that the algo-
rithm converges to said solution. (A matrix has total support
if every edge in the bipartite graph defined by its nonzero el-
ements is part of a perfect matching.) Sinkhorn (1967) soon
extended the algorithm to positive rectangular matrices with
weights.1

1The same problem and algorithm has found applications as di-
verse as computer graphics (Solomon et al. 2015), web page rank-
ing (Knight 2008), and voting (Smith 2005).
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Chance to wound (out of 6)

Payoff matrix and handicaps after balancing

7th Edition 8th Edition

Figure 3: Wound tables for Warhammer 40,000. Depending on the Strength (S) of the attacker and the Toughness (T) of the
defender, a given hit has some probability of causing a wound. Tables for both 7th and 8th edition have been included. Top: The
chance to wound out of 6 (Games Workshop 2017; Rodriguez 2017). Bottom: The resulting payoff matrix after balancing with
a multiplicative handicap function along with the handicaps (“SH” for Strength and “TH” for Toughness). The payoff matrix is
normalized so that the game has a value of 1; the handicaps so that a S or T of 1 has handicap 1.
Additional commentary: Like many wargames, Warhammer 40,000 uses a points system in order to balance the strength of
two opposing armies. As such the handicaps could be interpreted as a cost multiplier to assign to each Strength or Toughness
value. The large number of immunities (i.e. 0 chance to wound) in the 7th edition table creates a sharp escalation of handicaps as
S and T increase, as well as relatively hard counters in the resulting payoff matrix (i.e. many S-T matchups having payoff much
lower or much greater than the value of the game). If desired, these could be dampened by lowering the weight of strategies
that have a large number of immunities; indeed, extreme values of S and T tend to be rare in the actual game. The 8th edition
table changes the probabilities from being based on the difference of S and T to being based on their ratio, and removes the
immunities. This results in the handicaps increasing less sharply with S and T, as well as softer counters. More subtle changes
include whether it is better to choose a slightly higher or slightly lower number than one’s opponent.

3.3 Example: Unit Attributes

What we model as a strategy is not limited to unordered col-
lections of items. In the context of a roleplaying, tactics, or
strategy game, we can model unit attributes by considering
each possible value for an attribute to be a strategy, with a
better value for such an attribute to be offset by a worse value
for some other attribute (e.g. cost, damage, or hit points).

For example, consider the wound roll in Warhammer
40,000 (Games Workshop 2017):

Wound Roll: If an attack scores a hit, you will then
need to roll another [6-sided] dice to see if the at-
tack successfully wounds the target. The roll required
is determined by comparing the attacking weapon’s
Strength characteristic with the target’s Toughness
characteristic, as shown on the following table:

The appropriate tables for the wound roll are shown in Fig-
ure 3 for the 7th and 8th editions of the game, along with
the handicaps that produce a uniform Nash equilibrium and
the resulting payoff matrix. The computation took 5 ms for

each on a single desktop computer. Additional commentary
can be found in the caption.

4 Monotone Handicaps

While multiplicative handicaps (Equation 4) are applicable
to many cases and admit a simple algorithm, it is quite a
narrow class. In particular:

• The payoffs are unbounded with respect to handicaps, and
therefore cannot represent probabilities.

• They are inherently asymmetric—there is no obvious way
of representing cases where both players are choosing
from the same set of strategies.

Let us therefore consider a more general class of hand-
icap functions Fij (hri, hcj), with the goal of expressing
our problem as an optimization problem, i.e. one of finding
the minimum or zero of some objective function. We could
then apply standard nonlinear optimization methods such as
Levenberg-Marquardt; see (Madsen, Nielsen, and Tingleff
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2004) for a survey. However, merely expressing our problem
as an optimization problem still leaves some major questions
unanswered:

• What does the solution space look like? Could there be
multiple solutions?

• Are there optimization methods likely—or better yet,
guaranteed—to find a solution (if one exists)?

To produce satisfactory answers, we make the assumption
that the handicap functions are strictly monotone:

Fij (hri, hcj) < Fij (hri + x, hcj)
Fij (hri, hcj) > Fij (hri, hcj + x)

}
∀ i, j, hri, hcj

x > 0
(5)

Monotonicity is usually a reasonable assumption to make:
in practical terms, it means that an increase in a strategy’s
handicap is always bad for the player employing it regardless
of the opposing strategy.

Additionally, we will assume that v = 0, which we can
do without loss of generality by subtracting v from all of the
handicap functions Fij .

4.1 Two-Parameter Monotone Handicaps

We start with the more general case where the handicap
functions take the two corresponding handicap variables as
independent parameters. We can express our problem as a
least-squares problem in terms of the expected payoff of
each strategy at the desired Nash equilibrium, weighted by
their probabilities at that equilibrium. Unfortunately this
problem is not convex, which rules out some powerful guar-
antees on the efficiency of optimization methods (Boyd and
Vandenberghe 2004). However, we can show a weaker but
still useful property. Suppose that the Fij are differentiable
and strictly monotone (Equation 5). This is enough to guar-
antee that the gradient of the objective function is zero if
and only if it is a global minimum, a property called invexity
(Ben-Israel and Mond 1986). Furthermore, any such point is
a “perfect” solution; that is, the expected payoff of all strate-
gies is exactly 0 at the desired Nash equilibrium. (Note that
such a solution is not guaranteed to exist—for example, if
all Fij are bounded strictly below 0.) This at least eliminates
one major failure case of nonconvex optimization, that of
getting stuck in a local minimum that is not a global mini-
mum.

Theorem 1. Let the Fij be differentiable and strictly mono-
tone functions as defined in Equation 5. Consider the
weighted sum-of-squares error in expected payoffs of strate-
gies at the desired Nash equilibrium

z (h) = p (h) · (w � p (h)) (6)

where � denotes elementwise multiplication. Then ∇z = 0
if and only if p = 0.

Proof. Since the least possible value for the objective func-
tion is 0, the gradient must be zero at any point that achieves
an objective of 0.

In the other direction, consider a single component of the
gradient corresponding to a row strategy i, which is 0 if the

overall gradient is zero:

(∇z)ri =
dz

dhri
=

d

dhri
p · (w � p)

= 2
dp

dhri
· (w � p)

= 2
∑
k

wrkprk
dprk
dhri

+ 2
∑
j

wcjpcj
dpcj
dhri

(7)

Substituting in the derivatives of the expected payoffs
(Equation 2), namely

dprk
dhri

=

{ ∑
j wcj

dFri

dhri
for k = i

0 for k �= i

dpcj
dhri

= −wri
dFij

dhri
(8)

we have

(∇z)ri = 2wripri
∑
j

wcj
dFri

dhri
− 2

∑
j

wcjpcjwri
dFij

dhri

= 2wri

∑
j

wcj (pri − pcj)
dFij

dhri
(9)

This applies symmetrically to column strategies as well.
Now, select a strategy I with the largest absolute value of

expected payoff |prI |. We will only explicitly treat the case
that this strategy belongs to the row player, but a symmetric
argument applies if it belongs to the column player. Given
that prI has the largest absolute value of all expected pay-
offs, each prI − pcj either has the same sign as prI or is 0.
Furthermore, given that all the weights w are strictly posi-
tive and the Fij has strictly negative derivative, the only way
that a term is 0 is if pcj = prI , and the sum (∇z)rI = 0 only
if pcj = prI for all column strategies j.

But now we can use the symmetric argument in the other
direction to prove that all pri = pcj = prI for all row strate-
gies i. The expected payoff of the game if both players play
the desired Nash equilibrium must be the same whether we
sum the rows or columns first, that is∑

i,j

wriwcjFij =
∑
i

wripri = −
∑
j

wcjpcj (10)

Since all row and column weights sum to 1, we have prI =
−prI , which means prI = 0, and therefore all strategies
have 0 expected payoff.

4.2 One-Parameter Monotone Handicaps

Guaranteeing that all critical points are global minima is
good, but we can do better if the handicap functions can be
expressed as one-parameter functions of the difference be-
tween the corresponding row and column handicaps:

Fij (hri, hcj) = Fij (hcj − hri) (11)

Another way of putting this condition is that adding any
global offset to all of the handicaps does not change any of
the entries of the payoff matrix. The monotone assumption
(Equation 5) is kept by assuming these functions are strictly
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monotonically increasing. Note that we can express payoffs
that depend on the ratio of the handicaps, such as the multi-
plicative handicaps of Equation 4, by replacing the handicap
variables with their logarithms.

We can define a strictly monotone operator that is zero
when we are at a solution to our problem. Finding such a
zero is a special case of the variational inequality problem,
which for strictly monotone operators this is guaranteed to
have at most one solution (up to a global offset), and for
which there exist algorithms with guaranteed convergence;
see Edwards (2013) for a survey. Note that this notion of
monotone operators is distinct from the previous notion of
monotone handicap functions.

We begin by defining a non-strictly monotone operator
T : Rn+m → R

n+m:

T (h) = −w � p (h) (12)

This operator maps each handicap to the negative of the ex-
pected payoff of the corresponding strategy at the desired
Nash equilibrium, times the weight of that strategy. Since
all weights are strictly positive, this is zero if and only if all
strategies have an expected payoff of 0 at the desired Nash
equilibrium. Therefore our problem reduces to finding a zero
of T . We now show that T is a monotone operator:

Theorem 2. Let the handicap functions Fij be strictly
monotone increasing. The operator T then satisfies the
monotone property

(h′ − h) · (T (h′)− T (h)) ≥ 0 ∀h′,h (13)

Proof. Let the prefix Δ denote the difference of a quantity
from when the handicaps are h′ minus when the handicaps
are h. Expanding the left side of Equation 13 yields

(h′ − h) · (T (h′)− T (h))

=−Δhr · (wr �Δpr)−Δhc · (wc �Δpc)

=−
∑
i

Δhriwri

∑
j

wcjΔFij

+
∑
j

Δhcjwcj

∑
i

wriΔFij

=
∑
i,j

wriwcjΔFijΔ(hcj − hri) (14)

Since the Fij are strictly monotone increasing ΔFij has the
same sign as the change in its argument Δ(hcj − hri), so
the terms in this sum are always nonnegative and the sum is
always nonnegative.

Note that adding the same global offset to all handicaps
does not change F , so we can fix the handicap of one
strategy—say, the first row strategy—at 0 and delete it from
the input of T . Likewise, by observing Equation 10 again,
if the expected payoffs for all strategies except one are 0,
the payoff of that last strategy must also be 0. Therefore to-
wards finding a zero of T we may also delete the first row
payoff from the output. If we perform this deletion, we have
a strictly monotone operator:

Theorem 3. Fix hr0 = 0, delete it from the input h of T , and
delete the corresponding element −wr0pr0 from the output
of T . The resulting operator T̄ : Rn+m−1 → R

n+m−1 then
satisfies the strict monotone property(

h̄′ − h̄
) · (T̄ (

h̄′)− T̄
(
h̄
))

> 0 ∀h̄′ �= h̄ (15)

Proof. Let overbars, as in T̄ , denote quantities with the first
row strategy removed. Observe that

T

([
0
h̄

])
=

[ −wr0pr0
−w̄ � p̄

]
=

[ −wr0pr0
T̄
(
h̄
) ]

(16)

Since the first row here does not contribute to the dot prod-
uct of Equation 13, the inequality is saturated for T if and
only if it is saturated for T̄ . When does this happen? Look-
ing at Equation 14 we see that, since all weights are strictly
positive, each term is 0 if and only if Δhri = Δhcj . For the
sum to be 0 all Δhri,Δhcj must be equal. Fixing hr0 = 0
implies that the change in that handicap is also Δhr0 = 0
for any h′,h. Together, this means that the sum is 0 only if
all Δhri,Δhcj = 0, or in other words, h′ = h.

Likewise, when we fix hr0 = 0, h̄′ = h̄ if and only if
h′ = h. Putting this together, the inequality is saturated only
when h̄′ = h̄, so the inequality is strict for h̄′ �= h̄.

This guarantees convergence for some existing algorithms
(Edwards 2013). Furthermore, the solution is unique (up to
the choice of global offset), if it exists, since letting h̄′ and h̄
be two distinct solutions would contradict Equation 15. The
global offset does not change the resulting payoff matrix,
so the difference between solutions is therefore only an aes-
thetic choice and not a game-mechanical one. In contrast,
in the two-parameter case the solution space may be more
complicated, and different solutions could even have differ-
ent payoff matrices, as in the following example when all
handicaps are set to the same value x:

F =

[
2c0 − r0 c1 − 2r0
c0 − 2r1 2c1 − r1

]
⇒

[
x −x
−x x

]
(17)

4.3 Symmetric Games

Finally, we show that these properties apply analogously to
symmetric games, where the strategies available to the two
players are identical (and not merely sharing the same names
as in the Pokémon example). Specifically:

• Both players have the same number of strategies (n = m),
and the payoff matrix is square.

• ws � wr = wc; i.e. the desired Nash equilibrium
weights are the same for both players.

• Likewise, hs � hr = hc; i.e. the handicaps are con-
strained to be the same for both players.

• Fij (hsi, hsj) = −Fji (hsj , hsi); i.e. the payoff matrix F
is skew-symmetric for all i, j,hs. Along with the weights
this ensures that ps � pr = pc.

• v = 0; i.e. the desired value of the game is 0.
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Theorem 4. In the symmetric case, let ∇sz be the derivative
of the least-squares error (Equation 6) with respect to the
shared handicaps hs. Then ∇sz = 0 if and only if p = 0.

Proof. ∇sz = ∇rz +∇cz where ∇r,∇c are the gradients
with respect to the row and column handicaps hr,hc only.
But by symmetry ∇rz = ∇cz, so ∇sz = 0 if and only if
∇rz = ∇cz = 0. Thus this reduces to Theorem 1.

Theorem 5. In the symmetric case, define the operator Ts :
R

n → R
n as follows:

Ts (hs) = −ws � ps (hs) (18)

Fix hs0 = 0, delete it from the input hs of Ts, and delete
the corresponding element −ws0ps0 from the output of Ts.
Then the resulting operator T̄s : R

n−1 → R
n−1 satisfies the

strict monotone property of Equation 15.

Proof. Observe that we can input h̄s into the operator T̄ of
Theorem 3:

T̄

⎛
⎝
⎡
⎣ h̄s

0
h̄s

⎤
⎦
⎞
⎠ =

[ −w̄s � p̄s

−ws0ps0
−w̄s � p̄s

]
=

⎡
⎣ T̄s

(
h̄s

)
−ws0ps0
T̄s

(
h̄s

)
⎤
⎦ (19)

The middle 0 element, resulting from fixing hs0 = 0, does
not contribute to the dot product of Equation 15, so the dot
product is simply half as much for T̄s as it is for T̄ . Therefore
since T̄ is strictly monotone, so is T̄s.

4.4 Example: Matchup Charts

Initial matchup chart

After balancing using a logistic handicap

Figure 4: Super Street Fighter 2 Turbo matchup chart before
and after balancing using a logistic handicap function. The
values represent the expected win rate for the row player and
have been color-coded with red favoring the row player and
blue favoring the column player. Data from (nohoho 2008);
see also commentary by Sirlin (2014).

Communities of games, particularly fighting games, often
generate matchup charts: a matrix whose entries Aij are the
predicted win rate if one player picks character i and their
equally-skilled opponent picks character j. Jaffe (2013) in-
vestigated matchup charts and the range of possible mixed
strategies that achieve some minimum win rate.

Here we analyze matchup charts in terms of handicaps.
Inspired by Elo ratings, originally created to rate chess play-
ers (see (Sismanis 2010) for recent developments), we use
a logistic function as our handicap function, with the argu-
ment being the difference of the row and column handicaps
plus a constant describing the specific matchup:

Fij (hri, hcj) =
1

1 + e−(hcj−hri+αij)
− 1

2
(20)

where αij is chosen so that setting all handicaps to 0 repro-
duces the original matchup chart minus 1

2 , i.e. Fij (0, 0) =

Aij − 1
2 . Note that this handicap function is strictly mono-

tone, symmetric, and one-parameter. Figure 4 shows the re-
sult of this balancing process when applied to a Super Street
Fighter 2 Turbo matchup chart. The computation took 4 ms
on a single desktop computer.

5 Conclusion

We have presented a formalization of balance in terms of
zero-sum games and shown that it is amenable to optimiza-
tion techniques under the assumption of monotonicity. Our
open-source implementation, based on SciPy (Jones et al.
2001), is available at https://github.com/ajul/zerosum.

However, even within our setting there remain major chal-
lenges to be addressed. We discuss a couple here.

The Modeling Challenge This formalization reduces the
problem of balancing n × m possible pairwise matchups
between strategies to modeling the individual pairwise
matchups. A strength of our formulation is that we can easily
slot in alternative such pairwise models, and it is thus poten-
tially applicable to a wide variety of games. However, even
evaluating two strategies against each other can be nontriv-
ial.

For example, our fighting game matchup chart example
(Figure 4) demonstrates that our algorithm works in the
mathematical and computational sense. However, it is not
clear whether the logistic handicap function itself is an ac-
curate model, nor how to interpret the resulting handicaps
quantitatively in terms of what should be changed about the
characters in order to achieve a balanced game. After all, the
actual win rates are determined by the fighting game proper
that takes place after character selection, the dynamics of
which are difficult to model analytically.

While perfectly accurate models may often be out of
reach, approximate, learning, and/or player analytics ap-
proaches could produce good enough results to be use-
ful. For example, learning-based approaches were used by
Stanescu et al. (2013; 2015) in determining the outcome
when two armies battle in Starcraft.
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Figure 5: As Figure 2, but including dual types for the defender. To avoid excessive clutter, only defender types that have
nonzero probability in the Nash equilibrium of the initial game are shown.

The Combinatoric Challenge Throughout this paper we
have assumed that there is one handicap variable per strat-
egy. This may be appropriate when all strategies are individ-
ually and explicitly specified. However, often this is not the
case; rather, the strategies ultimately available to the player
might be defined in a combinatorial fashion from the ele-
ments that handicaps are applied to.

In some cases balancing pairwise matchups between in-
dividual elements may still be a useful estimate; for exam-
ple, in our Warhammer 40,000 example (Figure 3) the re-
sult of the algorithm could provide a quick initial estimate
for how to price individual units, even if does not consider
entire armies. The quality of this estimate will of course de-
pend on unmodeled factors such as unit synergies, targeting
mechanics, and so forth.

In other cases this can be reasonably resolved by sim-
ply enumerating the possible combinations. For example, in
the actual Pokémon games, defending Pokémon may have
up to two types, not necessarily just one—Figure 1 shows
just such an example of a Grass/Flying dual-type Pokémon.
However, given that every combination of types exists in the
game if and only if there is a Pokémon with that combination
of types, and that each Pokémon has its own defense statis-
tic, it is reasonable to consider every combination of types
as a strategy. And while the number of strategies increases
to a few hundred, the optimization is still computationally
feasible (40 ms on a single desktop computer). The result is
shown in Figure 5.

However, these are not always the case. For example, in
the actual Pokémon games the player has a party of six
Pokémon, and each Pokémon may have four moves (attacks)
to choose from, increasing the number of strategies to an in-
tractable level if we consider entire parties. Or for a concep-
tually simpler but also intractable scenario, consider a deck-
building game: Given n card choices and a fixed deck size k,
the number of possible decks grows as Θ

(
nk

)
. This poses

several problems:
• nk is a massive number for typical n, k. It is often infea-

sible to even enumerate all possible decks.

• nk is also much larger than the number of cards, which
are the elements that handicaps are applied to—in other
words, generally the designer can modify specific cards
but not specific decks. With fewer handicap variables than
decks, we cannot expect that every Nash equilibrium is
possible.

• Finally, it is not even clear that having a fully mixed Nash
equilibrium on decks would be desirable, even if it were
achievable.

Future work might define a more reasonable objective for
cases like these and find an algorithm to achieve that objec-
tive.
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