
Learning Combat in NetHack

Jonathan Campbell, Clark Verbrugge
School of Computer Science
McGill University, Montréal

jcampb35@cs.mcgill.ca
clump@cs.mcgill.ca

Abstract

Combat in roguelikes involves careful strategy to best match
a large variety of items and abilities to a given opponent, and
the significant scripting effort involved can be a major bar-
rier to automation. This paper presents a machine learning
approach for a subset of combat in the game of NetHack. We
describe a custom learning approach intended to deal with
the large action space typical of this genre, and show that it is
able to develop and apply reasonable strategies, outperform-
ing a simpler baseline approach. These results point towards
better automation of such complex game environments, facil-
itating automated testing and design exploration.

Introduction
In many game genres combat can require non-trivial plan-
ning, selecting attack and defense strategies appropriate to
the situation, while also managing resources to ensure fu-
ture combat capability. This arrangement is particularly and
notoriously true of roguelikes, which often feature a wide
range of weaponry, items, and abilities that have to be well-
matched to an also widely varied range of opponents. For
game AI this becomes an interesting and complex problem,
requiring the system to choose among an extremely large set
of actions, which likewise can be heavily dependent on con-
text. As combat behaviours rest on basic movement control
and state recognition, the combined problem poses a par-
ticularly difficult challenge for learning approaches where
learning costs are a factor.

In this work we describe a machine learning approach
addressing one-on-one, player vs. monster combat in the
paradigmatic roguelike NetHack. We focus on the core com-
bat problem, applying a deep learning technique to the basic
problem of best selecting weapons, armour, and items for
optimizing combat success. To reduce the learning complex-
ity and accelerate the learning process, we build on a novel,
abstracted representation of the action set and game state.
This representation limits generality of the AI, but allows it
to focus on learning relevant combat strategy, applying the
right behaviour in the right context, and relying on well-
understood algorithmic solutions to lower-level behaviours
such as pathing.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We evaluate our learning-based results on two scenarios,
one that isolates the weapon selection problem, and one that
is extended to consider a full inventory context. Our ap-
proach shows improvement over a simple (scripted) baseline
combat strategy, and is able to learn to choose appropriate
weaponry and take advantage of inventory contents.

A learned model for combat eliminates the tedium and
difficulty of hard-coding responses for each monster and
player inventory arrangement. For roguelikes in general, this
is a major source of complexity, and the ability to learn good
responses opens up potential for AI bots to act as useful de-
sign agents, enabling better game tuning and balance con-
trol. Further automation of player actions also has advantage
in allowing players to confidently delegate highly repetitive
or routine tasks to game automation, and facilitates players
operating with reduced interfaces (Sutherland 2017).

Specific contributions of this work include:
• We describe a deep learning approach to a subset of Net-

Hack combat. Our design abstracts higher-level actions to
accelerate learning in the face of an otherwise very large
low-level action set and state space.

• We apply our design to two NetHack combat contexts,
considering both a basic weapon selection problem and an
extended context with a full inventory of combat-related
items.

• Experimental work shows the learned result is effective,
generally improving over a simple, scripted baseline. De-
tailed examination of learned behaviour indicates appro-
priate strategies are selected.

Related Work
There has been much recent interest in applying reinforce-
ment learning to video games. Mnih et al. notably proposed
the Deep Q-Network (DQN) and showed better than human-
level performance on a large set of Atari games, includ-
ing Breakout, Pong, and Q*bert (2013; 2015). Their model
uses raw pixels (frames) from the game screen for the state
space, or in a formulation proposed by (Sygnowski and
Michalewski 2017), game RAM. We use the same DQN
approach here, but with a hand-crafted game state and ac-
tion set to speed up learning, given the much larger ba-
sic action set and complex state space typical of rogue-
likes. Kempka et al. demonstrated the use of deep Q-learning

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

16

on the 3D video game Doom, similarly using visual in-
put (2016), with applications by (Lample and Chaplot 2017).
Narasimhan et al. use a deep learning approach to cap-
ture game state semantics in text-based Multi-User Dungeon
(MUD) games (2015).

Abstracted game states have been previously studied for
RTS games (Uriarte and Ontañón 2014) as well as board
games like Dots-and-Boxes (Zhuang et al. 2015), in order to
improve efficiency on otherwise intractable state spaces. We
use an abstracted state space here for the same purpose.

RL approaches have also been applied to other, more tra-
ditional types of games. The use of separate value and policy
networks combined with Monte-Carlo simulation has been
shown to do very well on the game of Go (Silver et al.
2016), while using RL to learn Nash equilibriums in games
like poker has also been studied (Heinrich and Silver 2016).
Competitions also exist for general game AI, such as the
General Video Game AI Competition (Liebana et al. 2016).

A small handful of heuristic-based automated players ex-
ist for NetHack. The ‘BotHack’ player was in 2015 the first
bot (possibly only so far) to finish the entire game. This
bot relies on hard-coded strategies for all NetHack mechan-
ics. For combat, it uses movement-based strategies like lur-
ing monsters into narrow corridors or keeping close to the
exit staircase to have an option to retreat (Krajicek 2015a;
2015b). It also prefers to use ranged weapons against mon-
sters with special close-range attacks and abilities. Although
the BotHack player has beaten the entire game once (no
small feat), its average success rate is unclear. An auto-
mated player also exists for Rogue (a 1980 predecessor to
NetHack) called Rog-O-Matic. It uses an expert-system ap-
proach, although simple learning is enabled through a per-
sistent store (Mauldin et al. 1984).

Environment
We use NetHack for our combat environment, an archetypal
roguelike made in the late ’80s that is still popular and get-
ting updates to this day. A turn-based game, it takes place on
a 2D ASCII-rendered grid, with a player avatar able to move
around, pick up items, fight monsters, and travel deeper into
the dungeon by issuing different keyboard commands.

In every level of the dungeon lurk devious monsters –
some having brute strength, others possessing nightmarish
abilities such as causing the player to turn to stone, split-
ting in two every time the player tries to attack, or shoot-
ing death rays. A player must develop strategies for each
particular monster in order to survive. These strategies typi-
cally involve the choice of a specific weapon to attack with,
armor to equip, and/or the use of special scrolls, potions,
wands, spells, and other miscellaneous items. For example,
when fighting a pudding-type monster, weapons made of
iron should not be used, since attacking with them would
cause the pudding to divide in two (NetHack Wiki 2017).

NetHack is a difficult game, with over 375 monsters that a
player must familiarize themselves with. Although detailed
statistics for the game are unavailable, on at least one server
where NetHack can be played, total ascension (win) rate was
only 0.605% of over one million completed games by mid-

2017, with the vast majority of failures arising from monster
combat (NAO public NetHack server 2017).

Items are also randomly placed throughout the dungeon.
As mentioned above, there are many different item types:
weapons (melee and ranged), armor (helms, gloves, etc.),
scrolls, potions, wands, and more. Each item can be one
of blessed, uncursed or cursed (referred to as BUC status);
blessed items are more powerful than their uncursed coun-
terparts while cursed items may cause deleterious effects.
Further, each item is made of a certain material (iron, silver,
wood, etc.); materials interact with the properties of certain
monsters (e.g., many demons are particularly susceptible to
silver weapons). Weapons and armor can also have an en-
chantment level (positive or negative) which relates to their
damage output, as well as a condition based on their material
(wood items can be burnt, iron items corroded, etc.).

Another important mechanic of NetHack is resource man-
agement. Player turns are limited by food availability, so ef-
ficient exploration and shorter combats are ideal; items are
also scarce, so their conservation for stronger monsters is
also advised. We do not deal with these issues in this paper.

Modifications
We use a modified version of NetHack to allow for exper-
iments that focus singularly on combat and item selection.
Game features that might confound experiment results were
disabled, including starvation, weight restrictions, and item
identification; we leave these issues for future work.

The ZMQ socket library is used as a basic interface be-
tween our code and the NetHack game (Hintjens 2011).
Through ZMQ we send the keyboard character(s) corre-
sponding to a chosen action, and NetHack sends back the
currently-visible game map and player attributes/statistics
(i.e., all information that is otherwise visible to a player via
the typical NetHack console interface). After each action is
taken, the player’s inventory is also queried to ensure an
accurate state. Using ZMQ sockets allows for much faster
gameplay than the typical approach of terminal emulation.

Learning Approach
We use a Deep Q-Network for our learning algorithm, de-
tailed below, as well as two trivial baseline algorithms that
approximate a beginner player’s actions.

Baseline algorithms
To compare our deep Q-network approach, we present two
simple algorithms for combat in our NetHack environment.

The first baseline equips a random weapon from its inven-
tory at the start of each combat episode, then moves towards
the monster and attacks when in range; if a ranged weapon
is chosen, the agent will line up with the monster and then
fire projectiles until supply is exhausted. If the monster is
invisible, a random move in any direction will be attempted
(moving into a monster is considered an attack, so randomly
moving has a chance to attack an invisible monster).

The second baseline has access to a wider variety of items.
It equips a random weapon and tries to equip all armor it
may have. It then follows the behavior of the former baseline

17

(approaching/attacking) 75% of the time, with the other 25%
dedicated to using a random item from its inventory (a scroll,
potion, or wand). This behavior better replicates that of a
typical player who will occasionally use an item but spend
the majority of their time on movement.

Deep Q-Network
A dueling double deep Q-network (Wang et al. 2016) with
experience replay is used for the learning agent. Although a
tabular form may be successful, a deep network allows for
generalizability and far more compact representation.

Rewards are given as follows: a small negative reward at
each timestep to inspire shorter combat, while at episode
end, a reward of 10 on monster death and -1 on player death.
Other reward weights are of course possible; our parameters
were selected based on preliminary experimentation.

Our design depends heavily on a hand-crafted state space
and action set, as described in the text below.

States The state space for video games is most generically
defined over the raw pixels from the game screen, and ac-
tions defined as the basic controller inputs, such as done
in the Atari game experiments (Mnih et al. 2013). This ap-
proach is very easy to set up and can be ported to diverse
environments, but depends on a fairly simple notion of tar-
geting and combat strategy.

In our approach we provide a more high level representa-
tion of state. Doing so allows us to more easily address ef-
fects with long temporal dependencies and better handle the
diversity of game elements and command options available
in NetHack, i.e., to focus more directly on learning combat
strategy instead of the more general context in which we also
would need to learn the basics of pathing, maze navigation,
and interpreting inventory and character status, all of which
already have well-known and efficient algorithmic solutions.

Game state is parsed from the typical game information
screen visible to a player. We encode as basic information,
• the player’s normalized experience level, health, power,

strength, and other attributes,

• the player’s current status effects (confused, stunned, blinded,
hallucinating, etc.),

• the player’s current inventory with each 〈item, enchantment,
BUC-status, condition〉 item tuple separately represented, and
with normalized 0..1 values for projectile quantity and wand
charges,

• what the player is currently wielding and wearing,

• the normalized distance between the player and monster.

Additionally, we include one-hot vectors to represent,
• the current monster being fought,

• the player’s character type,

• the player’s alignment,

and finally simple booleans for,
• whether the player has lost health this game,

• if the player is currently invisible,

• whether the player is lined up with the monster,

• if there are projectiles currently on the ground and if the player
is standing on them,

• and whether both the player and monster have recently moved
or approached the other.

Note that the actual game map is not included in the state.
This choice was made to slim down the state space and de-
crease learning times. Since combat is one-on-one, and we
already include monster-player distance and other combat-
relevant information abstractly, it is unlikely that having the
detailed game map would significantly improve success rate.
In a multi-combat scenario, however, adding the game map
to the state in conjunction with CNNs could potentially lead
to more clever movement tactics.

Actions In many games the set of actions corresponds di-
rectly to controller inputs. In NetHack, however, keyboard
commands can map to different actions depending on game
context; keyboard characters used to access inventory items,
for example, are determined by the game based on the or-
der in which the items are acquired, more or less random-
izing the command-action association in every playthrough.
In order to allow a learning agent to select an appropriate
item without the expense and complexity of incorporating a
full game history into the learning process, we also abstract
the set of actions.

Our game controls are divided into basic primitives, and
actions that map onto inventory items. For the latter, the ac-
tion performed depends on the item type. If an equippable
item (weapon/armor) is selected as the action, then that item
will be equipped. If the item is usable, it will be used instead
(scrolls are read, wands zapped at the monster, and potions
have two actions — either quaffing or throwing at the mon-
ster). Each item is represented many times in the action set,
one time for each of the different item enchantment, condi-
tion, and BUC status combinations, as the decision to use
an item strongly depends on these properties. Enchantments
are capped in the [-1, +1] range to reduce complexity.

Item actions are complemented by nine primitive actions
related to basic movement or other non-item strategies as
follows. (Note that while the associated movement keys
never change, abstracted forms are still required here since
the game map is not passed in.)

• Move one unit towards the monster.

• Move one unit to line up with the monster (to allow for projec-
tiles/wands/potions to be thrown), breaking ties in position by
choosing the position closer to the monster.

• Move one unit to line up with the monster, breaking ties in posi-
tion by choosing the position farther from the monster.

• Attack the monster with the currently-equipped melee weapon.

• Unequip the current weapon (switch to bare hands).

• Move one unit towards the closest projectile on the ground.

• Pick up a projectile on the ground under the player.

• Move one unit in a random direction.

• Wait a turn.

Many actions notably have prerequisites: you can melee
attack a monster only when in melee range, use an item only

18

if you possess it, etc. At any time, the vast majority of actions
will be missing a prerequisite; while in some cases their ab-
sence is benign (e.g., a potion can still be thrown at empty
space, if the player is not lined up with the monster), at-
tempts at actions that lack the corresponding keypress(es)
are functionally impossible. This large number of impossi-
ble actions must be dealt with to avoid very long training
times and unnecessary computation that could otherwise oc-
cur if impossible actions were given negative rewards.

Two changes to the regular Q-learning algorithm are made
to address this issue. First, we define a prerequisite func-
tion for each action; this function takes in the current game
state and outputs a boolean indicating if the action is possi-
ble to take in that state or not. With this set of functions, we
can at all times narrow the action set to that of the possible
actions. In the behaviour policy (epsilon-greedy), we then
assign zero probability to all impossible actions. Secondly,
in the Bellman update equation, when the max over the next
state is taken (maxa Q(st+1, a)), we limit the max to be over
the set of possible actions instead of all actions. These two
modifications eliminate the problem of impossible actions.

When using experience replay, the (state, action, reward,
next state) tuple must also be augmented by the list of pos-
sible actions, so that the action-values of batch updates can
be similarly affected.

Experiments
Experiments were conducted with the player in arena-style,
one-on-one combat against a slice of twelve monsters from
levels 14 to 17 (with some exclusions). The twelve monsters
at these levels have unique abilities and require a diverse
list of strategies to defeat. Some monsters curse items in the
player’s inventory or cause their weapon to deteriorate while
others have powerful melee attacks. A subset of monsters
was chosen in place of the entire monster set in order to
lower the computation time needed to learn a correct model,
although it is likely that the agent would perform on average
equally well on the entire set if trained on them (we do not
report it here, but other (lower-level) ranges were also tried,
with similar or better results).

Some monsters were excluded, even though they tech-
nically can appear in our level range: unique and non-
randomly generated ones (like shopkeepers or the Wizard
of Yendor) which require specialized strategies (10 possi-
ble), as well as shape-changers (2 possible); the latter since
monster type is expected to stay constant in an episode.

In each episode, a random monster is chosen and placed
together with the player in opposing corners of a large
(8x16) rectangular room, as seen in figure 1. The large initial
distance between player and monster allows for the player to
have several turns to get ready before encountering the mon-
ster (e.g., equipping weapons and/or armor); it also gives the
player a few turns to perform ranged attacks before the mon-
ster enters melee range. An episode terminates on player or
monster death, or after 200 actions (whichever occurs first).
200 is an excessive number of actions, but was shown to
perform better than a lower number in experiments.

The player is given a random sample of items to mimic the
inventory of a real player facing against a monster midway

Figure 1: The room used for the learning environment. The
player (‘@’ character) and monster (‘t’ character) start in
opposing corners. The bottom two lines describe the player’s
current attributes and statistics.

through the game. This sample includes one melee weapon
each per most material types (wood, iron, silver and metal),
one ranged weapon with ammunition, one random scroll,
one random potion, one random wand, and five random
pieces of armor; in total, the player is given 13 items out of a
total 186. All items are generated as being uncursed and hav-
ing no enchantment (+0). Items which require special input
behaviour (e.g., wand of wishing) are also excluded, as well
as unique ‘artifact’ items which are typically over-powered.

The player’s character/role is always set to ‘barbarian’
(out of the 13 roles available) – role determines the initial at-
tributes of the player (e.g., strength or intelligence), as well
as some special initial properties. The barbarian was chosen
for its ability to handle both melee and ranged weapons rea-
sonably well. Spellcasting is not used in our experiments so
the barbarian’s low intelligence is not a contraindication.

Experimental Results
We present results of two models, one only given weapons
and the other outfitted with the full gamut of items, and com-
pare them with the corresponding baseline algorithms.

Each model is first trained on the range of selected mon-
sters from levels 14 to 17, then tested on the same range. In
each episode, a random inventory (according to the above
rules) is generated, so no two episodes are likely to be the
same. Further, randomness exists in attack chance, damage,
and outcomes of some item effects.

Model hyperparameters
In each experiment, player level is determined by the mon-
ster’s difficulty as described below. Player level determines
starting health and chance to hit in combat, as well as other
effects that do not influence our combat environment.

For the weapons-only scenario, the player level is two lev-
els higher than the monster difficulty, which allows some
player survivability and reflection of correct weapon choice
in results. For the full items case, it is set to three lower than

19

he
ll
ho
un
d

tr
ap
p
er

lic
h

di
se
nc
ha
nt
er

ca
pt
ai
n

ic
e
de
vi
l

ba
lu
ch
it
he
ri
um

na
lf
es
hn
ee

gu
ar
di
an

na
ga

ol
og

ha
i

pi
t
fie
nd

na
zg
ul

he
ll
ho
un
d

tr
ap
p
er

lic
h

di
se
nc
ha
nt
er

ca
pt
ai
n

ic
e
de
vi
l

ba
lu
ch
it
he
ri
um

na
lf
es
hn
ee

gu
ar
di
an

na
ga

ol
og

ha
i

pi
t
fie
nd

na
zg
ul

Figure 2: Success rates of the DQN (solid black) vs. base-
line (grey) on selected monsters from levels 14 to 17. Verti-
cal scale shows percentage of successful combat encounters
from 0-100%. Models with weapons only are on top; full
items on bottom.

the monster difficulty, since the armor increases survivability
in general. Other parameterizations are of course possible.

Each of the two DQN models use an epsilon-greedy be-
haviour policy with epsilon linearly annealed from 1 to 0
through the course of training (with a value of 0 used for
evaluation). The weapons-only model is trained over 1 mil-
lion actions while the full items model is trained over 2 mil-
lion. Each use an experience replay buffer of the most recent
1 million actions. Discount rate was 0.9.

The architecture of the neural network is as follows: an
input layer of size equal to state length, followed by a dense
layer of 128 units, a dense layer of 64 units, and an output
layer of size equal to the number of actions. Adam was used
for the optimizer with a learning rate of 0.001. The keras-
rl (Plappert 2016) library was used for the implementation.

Weapons only
The results for the models that only consider weapons are
presented in figure 2 (top). As seen in the figure, the DQN
does better against all monsters than the baseline, with the
difference on some monsters (like the trapper or disen-
chanter) being more pronounced than others. The model
does worst on the lich and nalfeshnee, monsters that can
curse items in the player’s inventory rendering them ineffec-

he
ll
ho
un
d

tr
ap
p
er

lic
h

di
se
nc
ha
nt
er

ca
pt
ai
n

ic
e
de
vi
l

ba
lu
ch
it
he
ri
um

na
lf
es
hn
ee

gu
ar
di
an

na
ga

ol
og

ha
i

pi
t
fi
en
d

na
zg
ul

other

equip ranged weapon

projectiles

tsurugi

dwarvish mattock

scalpel

elven dagger

random move

wait

equip bare hands

line up (farther)

attack monster

approach

he
ll
ho
un

d

tr
ap
p
er

lic
h

di
se
nc
ha
nt
er

ca
pt
ai
n

ic
e
de
vi
l

ba
lu
ch
it
he
ri
um

na
lf
es
hn

ee

gu
ar
di
an

na
ga

ol
og

ha
i

pi
t
fi
en
d

na
zg
ul

other

wand of death

wand of cancellation

wand of sleep

wand of lightning

potion of gain ability

tsurugi

random move

wait

line up (closer)

attack monster

approach

Figure 3: Actions taken by the DQN models in successful
episodes on monsters from levels 14 to 17 (weapons-only
model on top, full items on bottom). Vertical scale shows
percentage of taken actions from 0-100%. Each action is
counted once per episode; actions that in total make up less
than 3% of all chosen actions and less than 3% of actions
taken against an individual monster are grouped together in
the ‘other’ category. Throwing any type of projectile was
grouped into one category as well as equipping any type of
ranged weapon. All the items present here are +0 and un-
cursed, omitted for brevity.

20

tive. Meanwhile, monsters like the guardian naga or Nazgul
have powerful paralyzing attacks (whose effects would only
show up after the combat has ended) but are otherwise easily
defeated by any attack.

To get a better sense of what items the model prefers to
use for each monster, the agent’s actions per monster are
summarized in figure 3 (top). Each action is counted once
per episode (de-emphasizing repeated attacks, but allowing
us to verify that singular actions like equipping are per-
formed). The tsurugi is equipped in a disproportionate num-
ber of episodes simply because it is always present in half of
all episodes (since there are only two metal weapons in the
game). Further, it is preferred over the other metal weapon
(scalpel) as well as all other weapons due to its high damage
output and its use of the two-handed sword skill, which is
one of the two random starting skills for the barbarian.

We see that the approach action was used in nearly every
episode, while the lining up action was also taken—this ac-
tion is in many instances the same as approach, but in some
cases also lines up with the monster to allow for a ranged
attack or wand zap/potion throw. The agent does not seem
to distinguish much between approaching or lining up, with
both present in the majority of all monster episodes.

Random moves are used often against the trapper, which
has a special attack that envelops the player. When en-
veloped, a move in any direction is considered an attack.

Regarding number of actions taken per game, the
weapons-only baseline takes about 40 actions on average to
resolve a combat (i.e., either player or monster dying), while
the DQN model takes about 55 actions. The DQN model
sometimes takes wasteful actions (e.g., cycling through a
few weapons) before approaching the monster, possibly
caused by insufficient learning time.

All items
Results for the models that can use the full set of items
are presented in figure 2 (bottom). The difference between
the DQN and baseline is less pronounced here, and gener-
ally results are the same or lower than the weapons-only
DQN model. Even though we doubled learning time (to 10
hours), this did not fully compensate for the greater num-
ber of actions. Baseline performance was also worse than
the weapons-only baseline, which is easily explained since a
certain number of the items used by the baseline can have
adverse effects (e.g., a scroll that destroys a piece of the
player’s armor). It is also possible that, for harder monsters
like the lich, the models are hitting a barrier determined by
their inventory, and the best strategy may simply be avoid-
ance or retreat. One outlier in the difference between the
two baselines is the trapper, on which the all-items baseline
excels; this difference could be attributed to the armor that
the baseline equips, which allows the player to survive long
enough when engulfed by the trapper to escape.

Actions taken by the DQN model (with each action
counted once per episode) are shown in figure 3 (bottom).
Here again the tsurugi was the most favored weapon. Only
one potion, that of gain ability, is used with any frequency
(it has a chance to increase the player’s success in com-
bat). Scrolls are not used often since the majority are in-

effective in combat or have limited effects. A few wands
are used often: lightning (deals damage), sleep (causes the
monster to stop moving), cancellation (removes a monster’s
special abilities), and death (kills a monster immediately).
The wands were used most on the nalfeshnee and disen-
chanter, two monsters with powerful special abilities (item-
cursing and weapon-disenchanting). We would expect the
same wands to be used against the lich, but they are not. The
lich in fact has a higher success rate than either the nalfesh-
nee or disenchanter, suggesting that different, more varied
strategies (in the ‘other’ category) are used to defeat it.

No ranged weapon/projectile usage breaks through the
3% barrier against any monster here, which may be at-
tributable to the availability of wands, of which many are
more powerful than ranged weapons.

The larger ‘other’ section here compared to the weapons-
only model is due to the much higher number of total pos-
sible items present in the agent’s inventory (186 vs. 46); in
many episodes few of the most useful items will be avail-
able, so suboptimal items would be used instead.

Conclusions and Future Work
Combat in games like roguelikes is a complex task and a
roadblock in developing successful automated players. Ma-
chine learning can alleviate the need for hard-coded heuris-
tics or rules for a bot to follow. In this paper we described
such an approach to a one-on-one combat environment in
the roguelike NetHack. Our design, which uses a Deep Q-
Network, employs a high level of abstraction over the Net-
Hack game state and action set to reduce the complexity in-
volved in the game. Our model outperforms easier to imple-
ment baseline combat strategies, trading long, but automated
learning costs for better performance.

An ideal next step for this work would be to integrate it
with an automated player for the entire game of NetHack,
possibly in conjunction with other, non-learning approaches
for other game issues (such as exploration). In terms of im-
proving the model itself, running experiments on a more ex-
haustive NetHack environment would further improve gen-
erality, and it would be interesting to consider more complex
room configurations (including more dungeon features like
fountains and stair-access) as well as investigating multi-
combat scenarios, where resource management and pro-
longed status effects come into play. Addressing greater
complexity of course requires larger training times.

Generality can also be explored by applying our approach
to other roguelike games. We are also interested in direct
comparison with the BotHack player. This may provide a
more focused upper bound for evaluating performance, al-
though its hard-coded combat strategy is not well tuned to
our limited, single-room test environment, and it would also
require significant effort to integrate our customizations and
environment with BotHack’s Clojure-based code.

Acknowledgements
This work was supported by the Natural Science and Engi-
neering Research Council of Canada.

21

References
Heinrich, J., and Silver, D. 2016. Deep reinforcement learn-
ing from self-play in imperfect-information games. In NIPS
Deep Reinforcement Learning Workshop.
Hintjens, P. 2011. 0MQ - the guide. http://zguide.zeromq.
org/page:all.
Kempka, M.; Wydmuch, M.; Runc, G.; Toczek, J.; and
Jaskowski, W. 2016. ViZDoom: A Doom-based AI research
platform for visual reinforcement learning. In IEEE Confer-
ence on Computational Intelligence and Games, CIG 2016,
Santorini, Greece, September 20-23, 2016, 1–8.
Krajicek, J. 2015a. BotHack - a Nethack bot framework.
https://github.com/krajj7/BotHack.
Krajicek, J. 2015b. Framework for the implementation of
bots for the game NetHack. Master’s thesis, Charles Univer-
sity in Prague.
Lample, G., and Chaplot, D. S. 2017. Playing FPS
games with deep reinforcement learning. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA., 2140–
2146.
Liebana, D. P.; Samothrakis, S.; Togelius, J.; Schaul, T.; and
Lucas, S. M. 2016. General video game AI: Competition,
challenges and opportunities. In Schuurmans, D., and Well-
man, M. P., eds., AAAI Conference on Artificial Intelligence,
4335–4337. AAAI Press.
Mauldin, M. K.; Jacobson, G.; Appel, A.; and Hamey, L.
1984. ROG-O-MATIC: A belligerent expert system. In Pro-
ceedings of the Fifth Biennial Conference of the Canadian
Society for Computational Studies of Intelligence, volume 5.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with deep reinforcement learning. In NIPS Deep
Learning Workshop.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
NAO public NetHack server. 2017. NetHack – top types of
death. https://alt.org/nethack/topdeaths.html.
Narasimhan, K.; Kulkarni, T. D.; and Barzilay, R. 2015.
Language understanding for text-based games using deep
reinforcement learning. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, 1–11.
NetHack Wiki. 2017. Black pudding — NetHack wiki.
https://nethackwiki.com/wiki/Black pudding.
Plappert, M. 2016. keras-rl. https://github.com/
matthiasplappert/keras-rl.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,

D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature 529:484–503.
Sutherland, K. 2017. Playing roguelikes when you can’t see
— Rock, Paper, Shotgun. https://www.rockpapershotgun.
com/2017/04/05/playing-roguelikes-when-you-cant-see.
Sygnowski, J., and Michalewski, H. 2017. Learning from
the memory of Atari 2600. In Cazenave, T.; Winands, M. H.;
Edelkamp, S.; Schiffel, S.; Thielscher, M.; and Togelius, J.,
eds., Computer Games: 5th Workshop on Computer Games,
CGW 2016, and 5th Workshop on General Intelligence in
Game-Playing Agents, GIGA 2016, Held in Conjunction
with the 25th International Conference on Artificial Intel-
ligence, IJCAI 2016, New York, USA, July 9-10, 2016, Re-
vised Selected Papers, 71–85. Cham: Springer International
Publishing.
Uriarte, A., and Ontañón, S. 2014. Game-tree search over
high-level game states in RTS games. In Artificial Intelli-
gence and Interactive Digital Entertainment.
Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanctot,
M.; and De Freitas, N. 2016. Dueling network architec-
tures for deep reinforcement learning. In Proceedings of the
33rd International Conference on International Conference
on Machine Learning - Volume 48, ICML’16, 1995–2003.
JMLR.
Zhuang, Y.; Li, S.; Peters, T. V.; and Zhang, C. 2015. Im-
proving Monte-Carlo tree search for dots-and-boxes with a
novel board representation and artificial neural networks.
In IEEE Conference on Computational Intelligence and
Games, CIG 2015, 314–321.

22

