
Combining Strategic Learning and
Tactical Search in Real-Time Strategy Games

Nicolas A. Barriga, Marius Stanescu, Michael Buro
Department of Computing Science

University of Alberta, Canada
{barriga|astanesc|mburo}@ualberta.ca

Abstract

A commonly used technique for managing AI complexity in
real-time strategy (RTS) games is to use action and/or state
abstractions. High-level abstractions can often lead to good
strategic decision making, but tactical decision quality may
suffer due to lost details. A competing method is to sample the
search space which often leads to good tactical performance
in simple scenarios, but poor high-level planning.
We propose to use a deep convolutional neural net-
work (CNN) to select among a limited set of abstract ac-
tion choices, and to utilize the remaining computation time
for game tree search to improve low level tactics. The CNN
is trained by supervised learning on game states labelled by
Puppet Search, a strategic search algorithm that uses action
abstractions. The network is then used to select a script — an
abstract action — to produce low level actions for all units.
Subsequently, the game tree search algorithm improves the
tactical actions of a subset of units using a limited view of the
game state only considering units close to opponent units.
Experiments in the μRTS game show that the combined al-
gorithm results in higher win-rates than either of its two inde-
pendent components and other state-of-the-art μRTS agents.
To the best of our knowledge, this is the first successful appli-
cation of a convolutional network to play a full RTS game on
standard game maps, as previous work has focused on sub-
problems, such as combat, or on very small maps.

1 Introduction
In recent years, numerous challenging research problems
have attracted AI researchers to using real-time strat-
egy (RTS) games as test-bed in several areas, such as case-
based reasoning and planning (Ontañón et al. 2007), evo-
lutionary computation (Barriga, Stanescu, and Buro 2014),
machine learning (Synnaeve and Bessière 2011), deep learn-
ing (Usunier et al. 2017; Foerster et al. 2017; Peng et al.
2017) and heuristic and adversarial search (Churchill and
Buro 2011; Barriga, Stanescu, and Buro 2015). Functioning
AI solutions to most RTS sub-problems exist, but combining
those doesn’t come close to human level performance1.

To cope with large state spaces and branching factors
in RTS games, recent work focuses on smart sampling of

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.cs.mun.ca/∼dchurchill/starcraftaicomp/
report2015.shtml#mvm

the search space (Churchill and Buro 2013; Ontañón 2017;
2016; Ontañón and Buro 2015) and state and action abstrac-
tions (Uriarte and Ontañón 2014; Stanescu, Barriga, and
Buro 2014; Barriga, Stanescu, and Buro 2017b). The first
approach produces strong agents for small scenarios. The
latter techniques work well on larger problems because of
their ability to make good strategic choices. However, they
have limited tactical ability, due to their necessarily coarse-
grained abstractions. One compromise would be to allocate
computational time for search-based approaches to improve
the tactical decisions, but this allocation would come at the
expense of allocating less time to strategic choices.

We propose to train a deep convolutional neural net-
work (CNN) to predict the output of Puppet Search, thus
leaving most of the time free for use by a tactical search al-
gorithm. Puppet Search is a strategic search algorithm that
uses action abstractions and has shown good results, partic-
ularly in large scenarios. We will base our network on pre-
vious work on CNNs for state evaluation (Stanescu et al.
2016), reformulating the earlier approach to handle larger
maps.

This paper’s contributions are a network architecture ca-
pable of scaling to larger map sizes than previous ap-
proaches, a policy network for selecting high-level actions,
and a method of combining the policy network with a tacti-
cal search algorithm that surpasses the performance of both
individually.

The remainder of this paper is organized as follows: Sec-
tion 2 discussed previous related work, Section 3 describes
our proposed approach and Section 4 provides experimental
results. We then conclude and outline future work.

2 Related Work

Ever since the revolutionary results in the ImageNet compe-
tition (Krizhevsky, Sutskever, and Hinton 2012), CNNs have
been applied successfully in a wide range of domains. Their
ability to learn hierarchical structures of spatially invariant
local features make them ideal in settings that can be rep-
resented spatially. These include uni-dimensional streams in
natural language processing (Collobert and Weston 2008),
two-dimensional board games (Silver et al. 2016), or three-
dimensional video analysis (Ji et al. 2013).

These diverse successes have inspired the application of
CNNs to games. They have achieved human-level perfor-

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

9

Table 1: Input feature planes for Neural Network. 25 planes for the evaluation network and 26 for the policy network.

Feature # of planes Description
Unit type 6 Base, Barracks, worker, light, ranged, heavy
Unit health points 5 1, 2, 3, 4, or ≥ 5
Unit owner 2 Masks to indicate all units belonging to one player
Frames to completion 5 0−25, 26−50, 51−80, 81−120, or ≥ 121
Resources 7 1, 2, 3, 4, 5, 6−9, or ≥ 10
Player 1 Player for which to select strategy

mance in several Atari games, by using Q-learning, a well
known reinforcement learning (RL) algorithm (Mnih et al.
2015). But the most remarkable accomplishment may be Al-
phaGo (Silver et al. 2016), a Go playing program that last
year defeated Lee Sedol, one of the top human profession-
als, a feat that was thought to be at least a decade away.
As much an engineering as a scientific accomplishment, it
was achieved using a combination of tree search and a se-
ries of neural networks trained on millions of human games
and self-play, running on thousands of CPUs and hundreds
of GPUs.

These results have sparked interest in applying deep learn-
ing to games with larger state and action spaces. Some lim-
ited success has been found in micromanagement tasks for
RTS games (Usunier et al. 2017), where a deep network
managed to slightly outperform a set of baseline heuris-
tics. Additional encouraging results were achieved for the
task of evaluating RTS game states (Stanescu et al. 2016).
The network significantly outperforms other state-of-the-art
approaches at predicting game outcomes. When it is used
in adversarial search algorithms, they perform significantly
better than using simpler evaluation functions that are three
to four orders of magnitude faster.

Most of the described research on deep learning in multi-
agent domains assumes full visibility of the environment
and lacks communication between agents. Recent work ad-
dresses this problem by learning communication between
agents alongside their policy (Sukhbaatar, Szlam, and Fer-
gus 2016). In their model, each agent is controlled by a
deep network which has access to a communication chan-
nel through which they receive the summed transmissions
of other agents. The resulting model outperforms models
without communication, fully-connected models, and mod-
els using discrete communication on simple imperfect in-
formation combat tasks. However, symmetric communica-
tion prevents handling heterogeneous agent types, limitation
later removed by (Peng et al. 2017) which use a dedicated bi-
direction communication channel and recurrent neural net-
works. This would be an alternative to the search algorithm
we use for the tactical module on section 4.3, in cases where
there is no forward model of the game, or there is imperfect
information.

A new search algorithm that has shown good results par-
ticularly in large RTS scenarios, is Puppet Search (Bar-
riga, Stanescu, and Buro 2015; 2017a; 2017b). It is an ac-
tion abstraction mechanism that uses fast scripts with a
few carefully selected choice points. These scripts are usu-

ally hard-coded strategies, and the number of choice points
will depend on the time constraints the system has to meet.
These choice points are then exposed to an adversarial look-
ahead procedure, such as Alpha-Beta or Monte Carlo Tree
Search (MCTS). The algorithm then uses a forward model
of the game to examine the outcome of different choice com-
binations and decide on the best course of action. Using a re-
stricted set of high-level actions results in low branching fac-
tor, enabling deep look-ahead and favouring strong strategic
decisions. Its main weakness is its rigid scripted tactical mi-
cromanagement, which led to modest results on small sized
scenarios where good micromanagement is key to victory.

3 Algorithm Details

We build on previous work on RTS game state evalua-
tion (Stanescu et al. 2016) applied to μRTS (see figure 1).
This study presented a neural network architecture and ex-
periments comparing it to simpler but faster evaluation func-
tions. The CNN-based evaluation showed a higher accuracy
at evaluating game states. In addition, when used by state-
of-the-art search algorithms, they perform significantly bet-
ter than the faster evaluations. Table 1 lists the input features
their network uses.

The network itself is composed of two convolutional lay-
ers followed by two fully connected layers. It performed
very well on 8×8 maps. However, as the map size in-
creases, so does the number of weights on the fully con-
nected layers, which eventually dominates the weight set.
To tackle this problem, we designed a fully convolutional
network (FCN) which only consists of intermediate convo-
lutional layers (Springenberg et al. 2014) and has the ad-
vantage of being an architecture that can fit a wide range of
board sizes.

Table 2 shows the architectures of the evaluation network
and the policy network we use, which only differ in the first
and last layers. The first layer of the policy network has an
extra plane which indicates which player’s policy it is com-
puting. The last layer of the evaluation network has two out-
puts, indicating if the state is a player 1 or player 2 win,
while the policy network has four outputs, each correspond-
ing to one of four possible actions. The global averaging
used after the convolutional layers does not use any extra
weights, compared to a fully connected layer. The benefit is
that the number of network parameters does not grow when
the map size is increased. This allows for a network to be
quickly pre-trained on smaller maps, and then fine-tuned on
the larger target map.

10

Figure 1: μRTS screenshot from a match between scripted
LightRush and HeavyRush agents. Light green squares are
resources, dark green are walls, dark grey are barracks and
light grey the bases. Numbers indicate resources. Grey cir-
cles are worker units, small yellow circles are light com-
bat units and big yellow ones are heavy combat units. Blue
lines show production, red lines an attack and grey lines
moving direction. Units are outlined blue (player 1) and
red (player 2). μRTS can be found at https://github.com/
santiontanon/microrts.

Puppet Search requires a forward model to examine the
outcome of different actions and then choose the best one.
Most RTS games do not have a dedicated forward model or
simulator other than the game itself. This is usually too slow
to be used in a search algorithm, or even unavailable due
to technical constraints such as closed source code or being
tied to the graphics engine. Using a policy network for script
selection during game play allows us to bypass the need for
a forward model of the game. Granted, the forward model is
still required during the supervised training phase, but exe-
cution speed is less of an issue in this case, because training
is performed offline. Training the network via reinforcement
learning would remove this constraint completely.

Finally, with the policy network running significantly
faster (3ms versus a time budget of 100ms per frame for
search-based agents) than Puppet Search we can use the un-
used time to refine tactics. While the scripts used by Pup-
pet Search and the policy network represent different strate-
gic choices, they all share very similar tactical behaviour.
Their tactical ability is weak in comparison to state-of-the-
art search-based bots, as previous results (Barriga, Stanescu,
and Buro 2017b) suggest.

For this reason, the proposed algorithm combines an
FCN for strategic decisions and an adversarial search algo-

Table 2: Neural Network Architecture

Evaluation Network Policy Network
Input 128x128, 25 planes Input 128x128, 26 planes

2x2 conv. 32 filters, pad 1, stride 1, LReLU
Dropout 0.2

3x3 conv. 32 filters, pad 0, stride 2, LReLU
Dropout 0.2

2x2 conv. 48 filters, pad 1, stride 1, LReLU
Dropout 0.2

3x3 conv. 48 filters, pad 0, stride 2, LReLU
Dropout 0.2

2x2 conv. 64 filters, pad 1, stride 1, LReLU
Dropout 0.2

3x3 conv. 64 filters, pad 0, stride 2, LReLU
Dropout 0.2

1x1 conv. 64 filters, pad 0, stride 1, LReLU
1x1 conv. 2 filters 1x1 conv. 4 filters

pad 0, stride 1, LReLU pad 0, stride 1, LReLU
Global averaging over 16x16 planes

2-way softmax 4-way softmax

rithm for tactics. The strategic component handles macro-
management: unit production, workers, and sending combat
units towards the opponent. The tactical component handles
micro-management during combat.

The complete procedure is described by Algorithm 1. It
first builds a limited view of the game state, which only in-
cludes units that are close to opposing units (line 2). If this
limited state is empty, all available computation time is as-
signed to the strategic algorithm, otherwise, both algorithms
receive a fraction of the total time available. This fraction is
decided empirically for each particular algorithm combina-
tion. Then, in line 9 the strategic algorithm is used to com-
pute actions for all units in the state, followed by the tacti-
cal algorithm that computes actions for units in the limited
state. Finally, the actions are merged (line 11) by replacing
the strategic action in case both algorithms produced actions
for a particular unit.

Algorithm 1 Combined Strategy and Tactics
1: procedure GETCOMBINEDACTION(state, stratAI,

tactAI,
stratT ime,
tactT ime)

2: limState ← EXTRACTCOMBAT(state)
3: if ISEMPTY(limState) then
4: SETTIME(stratAI, stratT ime+ tactT ime)
5: else
6: SETTIME(stratAI, stratT ime)
7: SETTIME(tactAI, tactT ime)
8: end if
9: stratActions ← GETACTION(stratAI, state)

10: tactActions ← GETACTION(tactAI, limState)
11: return MERGE(stratActions, tactActions)
12: end procedure

11

4 Experiments and Results

All experiments were performed in machines running Fe-
dora 25, with an Intel Core i7-7700K CPU, with 32GB of
RAM and an NVIDIA GeForce GTX 1070 with 8GB of
RAM. The Java version used for μRTS was OpenJDK 1.8.0,
Caffe git commit 365ac88 was compiled with g++ 5.3.0, and
pycaffe was run using python 2.7.13.

The Puppet Search version we used for all the follow-
ing experiments utilizes alpha-beta search over a single
choice point with four options. The four options are Work-
erRush, LightRush, RangedRush and HeavyRush, and were
also used as baselines in the following experiments. More
details about these scripts can be found in (Stanescu et al.
2016).

Two other recent algorithms were also used as bench-
marks, Na¨veMCTS (Ontañón 2013) and Adversarial Hier-
archical Task Networks (AHTNs) (Ontañón and Buro 2015).
Na¨veMCTS is an MCTS variant with a sampling strat-
egy that exploits the tree structure of Combinatorial Multi-
Armed Bandits — bandit problems with multiple variables.
Applied to RTS games, each variable represents a unit, and
the legal actions for each of those units are the values that
each variable can take. Naı̈veMCTS outperforms other game
tree search algorithms on small scenarios. AHTNs are an al-
ternative approach, similar to Puppet Search, that instead of
sampling from the full action space, uses scripted actions to
reduce the search space. It combines minimax tree search
with HTN planning.

All experiments were performed on 128x128 maps ported
from the StarCraft: Brood War maps used for the AIIDE
competition. These maps, as well as implementations of
Puppet Search, the four scripts, AHTN and Naı̈veMCTS are
readily available in the μRTS repository.

4.1 State Evaluation Network

The data for training the evaluation network was generated
by running games between a set of bots using 5 different
maps, each with 12 different starting positions. Ties were
discarded, and the remaining games were split into 2190
training games, and 262 test games. 12 game states were
randomly sampled from each game, for a total of 26,280
training samples and 3,144 test samples. Data is labelled by
a Boolean value indicating whether the first player won. All
evaluation functions were trained on the same dataset.

The network’s weights are initialized using Xavier initial-
ization (Glorot and Bengio 2010). We used adaptive moment
estimation (ADAM) (Kingma and Ba 2014) with default val-
ues of β1 = 0.9, β2 = 0.999, ε = 10−8 and a base learning
rate of 10−4. The batch size was 256.

The evaluation network reaches 95% accuracy in classify-
ing samples as wins or losses. Figure 2 shows the accuracy
of different evaluation functions as game time progresses.
The functions compared are the evaluation network, Lanch-
ester (Stanescu, Barriga, and Buro 2015), the simple linear
evaluation with hard-coded weights that comes with μRTS,
and a version of the simple evaluation with weights opti-
mized using logistic regression. The network’s accuracy is
even higher than previous results in 8x8 maps (Stanescu et

al. 2016). The accuracy drop of the simple evaluation in the
early game happens because it does not take into account
units currently being built. If a player invests resources in
units or buildings that take a long time to complete, its score
lowers, despite the stronger resulting position after their
completion. The other functions learn appropriate weights
to mitigate this issue.

Table 5 shows the performance of PuppetSearch when us-
ing the Lanchester evaluation function and the neural net-
work. The performance of the network is significantly better
(P-value = 0.0011) than Lanchester’s, even though the net-
work is three orders of magnitude slower. Evaluating a game
state using Lanchester takes an average of 2.7μs, while the
evaluation network uses 2,574μs.

Table 6 shows the same comparison, but with Puppet
Search searching to a fixed depth of 4, rather than having
100ms per frame. The advantage of the neural network is
much more clear, as execution speed does not matter in this
case. (P-value = 0.0044)

4.2 Policy Network

We used the same procedure as in the previous subsection,
but now we labelled the samples with the outcome of a 10
second Puppet Search using the evaluation network. The re-
sulting policy network has an accuracy for predicting the
correct puppet move of 73%, and a 95% accuracy for pre-
dicting any of the top 2 moves.

Table 3 shows the policy network coming close to Puppet
Search and defeating all the scripts.

4.3 Strategy and Tactics

Finally, we compare the performance of the policy network
and Puppet Search as the strategic part of a combined strate-
gic/tactical agent. We will do so by assigning a fraction of
the allotted time to the strategic algorithm and the remainder
to the tactical algorithm, which will be Naı̈veMCTS in our
experiments. We expect the policy network to perform bet-
ter in this scenario, as it runs significantly faster than Puppet

Figure 2: Comparison of evaluation accuracy between the
neural network and the built-in evaluation function in μRTS.
The accuracy of predicting the game winner is plotted
against game time. Results are aggregated in 200-frame
buckets. Shaded areas represent one standard error.

12

Table 3: Policy network versus Puppet Search: round-robin tournament using 60 different starting positions per match-up.

PS Policy Light Heavy Ranged Worker Avg.
Net. Rush Rush Rush Rush

PS - 55.8 87.5 66.67 91.7 93.3 65.8
Policy net. 44.2 - 94.2 71.7 100 61.7 61.9
LightRush 12.5 5.8 - 71.7 100 100 48.3
HeavyRush 33.3 28.3 28.3 - 100 100 48.3
RangedRush 8.3 0 0 0 - 100 18.1
WorkerRush 6.7 38.3 0 0 0 - 7.5

Table 4: Mixed Strategy/Tactics agents: round-robin tournament using 60 different starting positions per match-up.

Policy PS PS Policy Light Heavy Ranged AHTN Worker Naı̈ve Avg.
Naı̈ve Naı̈ve Network Rush Rush Rush P Rush MCTS

Policy net.-Naı̈ve - 56.7 97.5 100.0 100.0 95.8 100.0 72.5 74.2 98.3 88.3
PS-Naı̈ve 43.3 - 81.7 79.2 90.0 94.2 93.3 90.0 90.8 93.3 84.0
PS 2.5 18.3 - 63.3 86.7 69.2 92.5 96.7 95.0 93.3 68.6
Policy net. 0.0 20.8 36.7 - 94.2 71.7 100.0 57.5 61.7 97.5 60.0
LightRush 0.0 10.0 13.3 5.8 - 71.7 100.0 100.0 100.0 96.7 55.3
HeavyRush 4.2 5.8 30.8 28.3 28.3 - 100.0 100.0 100.0 74.2 52.4
RangedRush 0.0 6.7 7.5 0.0 0.0 0.0 - 100.0 100.0 86.7 33.4
AHTN-P 27.5 10.0 3.3 42.5 0.0 0.0 0.0 - 64.2 68.3 24.0
WorkerRush 25.8 9.2 5.0 38.3 0.0 0.0 0.0 35.8 - 71.7 20.6
Naı̈veMCTS 1.7 6.7 6.7 2.5 3.3 25.8 13.3 31.7 28.3 - 13.3

Search while maintaining similar action performance.
The best time split between strategic and tactical algo-

rithm was determined experimentally to be 20% for Puppet
Search and 80% for Naı̈veMCTS. The policy network uses a
fixed time (around 3ms), and the remaining time is assigned
to the tactical search.

Table 4 shows that both strategic algorithms greatly ben-
efit from blending with a tactical algorithm. The gains are

Table 5: Evaluation network versus Lanchester: round-robin
tournament using 60 different starting positions per match-
up and 100ms of computation time.

PS PS Light Heavy Avg.
CNN Lanc. Rush Rush

PS CNN - 59.2 89.2 72.5 73.6
PS Lanc. 40.8 - 64.2 67.5 57.5
LightRush 10.8 35.8 - 71.7 39.4
HeavyRush 27.5 32.5 28.3 - 29.4

Table 6: Evaluation network versus Lanchester: round-robin
tournament on 20 different starting positions per match-up,
searching to depth 4.

PS PS Light Heavy Avg.
CNN Lanc. Rush Rush

PS CNN - 80 95 82.5 85.8
PS Lanc. 20 - 82.5 90 64.2
LightRush 5 17.5 - 70 30.8
HeavyRush 17.5 10 30 - 19.2

more substantial for the policy network, which now scores
56.7% against its Puppet Search counterpart. It also has a
4.3% higher overall win rate despite markedly poorer results
against WorkerRush and AHTN-P. These seems to be due to
a strategic mistake on the part of the policy network, which,
if its cause can be detected and corrected, would lead to even
higher performance.

5 Conclusions and Future Work
We have extended previous research that used CNNs to ac-
curately evaluate RTS game states in small maps to larger
map sizes usually used in commercial RTS games. The av-
erage win prediction accuracy at all game times is higher
compared to smaller scenarios. This is probably the case be-
cause strategic decisions are more important than tactical de-
cisions in larger maps, and strategic development is easier to
quantify by the network. Although the network is several or-
ders of magnitude slower than competing simpler evaluation
functions, its accuracy makes it more effective. When the
Puppet Search high-level adversarial search algorithm uses
the CNN, its performance is better than when using simpler
but faster functions.

We also trained a policy network to predict the outcome
of Puppet Search. The win rate of the resulting network is
similar to that of the original search, with some exceptions
against specific opponents. However, while slightly weaker
in playing strength, a feed-forward network pass is much
faster. This speed increase created the opportunity for using
the saved time to fix the shortcomings introduced by high-
level abstractions. A tactical search algorithm can micro-
manage units in contact with the enemy, while the policy
chosen by the network handles routine tasks (mining, march-

13

ing units toward the opponent) and strategic tasks (training
new units). The resulting agent was shown to be stronger
than the policy network alone in all tested scenarios, but
can only partially compensate for the network’s weaknesses
against specific opponents.

Looking into the future, we recognize that most tac-
tical search algorithms, like the MCTS variant we used,
have the drawback of requiring a forward model of the
game. Using machine learning techniques to make tactical
decisions would eliminate this requirement. However, this
has proved to be a difficult goal, as previous attempts by
other researchers have had limited success on simple scenar-
ios (Usunier et al. 2017; Synnaeve and Bessière 2016). Re-
cent research avenues based on integrating concepts such as
communication (Sukhbaatar, Szlam, and Fergus 2016), unit
grouping and bidirectional recurrent neural networks (Peng
et al. 2017) suggest that strong tactical networks might soon
be available.

The network architecture presented in this paper, being
fully convolutional, can be used on maps of any (reasonable)
size without increasing its number of parameters. Hence,
future research could include assessing the speed-up ob-
tained by taking advantage of transfer learning from smaller
maps to larger ones. Also of interest would be to determine
whether different map sizes can be mixed within a train-
ing set. It would also be interesting to investigate the per-
formance of the networks on maps that have not previously
been seen during training .

Because the policy network exhibits some weaknesses
against specific opponents, further experiments should be
performed to establish whether this is due to a lack of ap-
propriate game state samples in the training data or other
reasons. A related issue is our reliance on labelled train-
ing data, which could be resolved by using reinforcement
learning techniques, such as DQN (deep Q network) learn-
ing. However, full RTS games are difficult for these tech-
niques, mainly because the only available reward is the
outcome of the game. In addition, action choices near the
endgame (close to the reward), have very little impact on
the outcome of the game, while early ones (when there is
no reward), matter most. There are several strategies avail-
able that could help overcome these issues, such as curricu-
lum learning (Bengio et al. 2009), reward shaping (Devlin,
Kudenko, and Grześ 2011), or implementing double DQN
learning (Hasselt, Guez, and Silver 2016). These strategies
have proved useful on adversarial games, games with sparse
rewards, or temporally extended planning problems respec-
tively.

References

Barriga, N. A.; Stanescu, M.; and Buro, M. 2014. Build-
ing placement optimization in real-time strategy games. In
Workshop on Artificial Intelligence in Adversarial Real-
Time Games, AIIDE.

Barriga, N. A.; Stanescu, M.; and Buro, M. 2015. Puppet
Search: Enhancing scripted behaviour by look-ahead search
with applications to Real-Time Strategy games. In Eleventh

Annual AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment (AIIDE), 9–15.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017a. Com-
bining scripted behavior with game tree search for stronger,
more robust game ai. In Game AI Pro 3: Collected Wisdom
of Game AI Professionals. CRC Press. chapter 14.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017b. Game
tree search based on non-deterministic action scripts in real-
time strategy games. IEEE Transactions on Computational
Intelligence and AI in Games (TCIAIG).
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th an-
nual international conference on machine learning, 41–48.
ACM.
Churchill, D., and Buro, M. 2011. Build order optimization
in StarCraft. In AI and Interactive Digital Entertainment
Conference, AIIDE (AAAI), 14–19.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In IEEE
Conference on Computational Intelligence in Games (CIG),
1–8. IEEE.
Collobert, R., and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, 160–167. ACM.
Devlin, S.; Kudenko, D.; and Grześ, M. 2011. An empirical
study of potential-based reward shaping and advice in com-
plex, multi-agent systems. Advances in Complex Systems
14(02):251–278.
Foerster, J.; Nardelli, N.; Farquhar, G.; Torr, P. H. S.; Kohli,
P.; and Whiteson, S. 2017. Stabilising experience replay for
deep Multi-Agent reinforcement learning. In Thirty-fourth
International Conference on Machine Learning.
Glorot, X., and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Inter-
national conference on artificial intelligence and statistics,
249–256.
Hasselt, H. v.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence,
2094–2100. AAAI Press.
Ji, S.; Xu, W.; Yang, M.; and Yu, K. 2013. 3d convolu-
tional neural networks for human action recognition. IEEE
transactions on pattern analysis and machine intelligence
35(1):221–231.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. CoRR abs/1412.6980.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.

14

Ontañón, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In Pro-
ceedings of the 24th International Conference on Artificial
Intelligence (IJCAI), 1652–1658.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2007.
Case-based planning and execution for real-time strategy
games. In ICCBR ’07, 164–178. Berlin, Heidelberg:
Springer-Verlag.
Ontañón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
AIIDE.
Ontañón, S. 2016. Informed monte carlo tree search for
real-time strategy games. In Computational Intelligence and
Games (CIG), 2016 IEEE Conference on, 1–8. IEEE.
Ontañón, S. 2017. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665–702.
Peng, P.; Yuan, Q.; Wen, Y.; Yang, Y.; Tang, Z.; Long, H.;
and Wang, J. 2017. Multiagent Bidirectionally-Coordinated
nets for learning to play StarCraft combat games.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of go with deep neural networks and tree search. Na-
ture 529(7587):484–489.
Springenberg, J. T.; Dosovitskiy, A.; Brox, T.; and Ried-
miller, M. 2014. Striving for simplicity: The all convolu-
tional net. arXiv preprint arXiv:1412.6806.
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014. Hierarchi-
cal adversarial search applied to real-time strategy games.
In Proceedings of the Tenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE),
66–72.
Stanescu, M.; Barriga, N. A.; and Buro, M. 2015. Using
Lanchester attrition laws for combat prediction in StarCraft.
In Eleventh Annual AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (AIIDE), 86–
92.
Stanescu, M.; Barriga, N. A.; Hess, A.; and Buro, M. 2016.
Evaluating real-time strategy game states using convolu-
tional neural networks. In IEEE Conference on Computa-
tional Intelligence and Games (CIG).
Sukhbaatar, S.; Szlam, A.; and Fergus, R. 2016. Learning
multiagent communication with backpropagation. In Lee,
D. D.; Sugiyama, M.; Luxburg, U. V.; Guyon, I.; and Gar-
nett, R., eds., Advances in Neural Information Processing
Systems 29. Curran Associates, Inc. 2244–2252.
Synnaeve, G., and Bessière, P. 2011. A Bayesian model
for plan recognition in RTS games applied to StarCraft.
In AAAI., ed., Proceedings of the Seventh Artificial Intel-
ligence and Interactive Digital Entertainment Conference
(AIIDE 2011), Proceedings of AIIDE, 79–84.
Synnaeve, G., and Bessière, P. 2016. Multiscale Bayesian
modeling for RTS games: An application to StarCraft AI.
IEEE Transactions on Computational intelligence and AI in
Games 8(4):338–350.

Uriarte, A., and Ontañón, S. 2014. Game-tree search over
high-level game states in RTS games. In Proceedings of the
Tenth AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, AIIDE’14, 73–79.
Usunier, N.; Synnaeve, G.; Lin, Z.; and Chintala, S. 2017.
Episodic exploration for deep deterministic policies: An ap-
plication to starcraft micromanagement tasks. In 5th Inter-
national Conference on Learning Representations.

15

