
MimicA: A General Framework
for Self-Learning Companion AI Behavior

Travis Angevine and Foaad Khosmood
Department of Computer Science and Software Engineering

California Polytechnic State University
San Luis Obispo, California, USA

Abstract

We explore fully autonomous companion characters within
the context of Real Time Strategy games. Non-player Char-
acters that are controlled by Artificial Intelligence to some de-
gree, have been a feature of Role Playing games for decades.
But RTS games rarely have a player avatar, and thus no
real companions. The universe of RTS games where both
an avatar and a companion character exist is small. Most
friendly RTS units are semi-autonomous at best, requiring
player micromanagement of their behavior. We present Mim-
icA, a real-time framework to govern AI companion behavior
by modeling that of the current player. Built for the Unity
engine, MimicA is a learn-by-demonstration framework that
differs from existing practices in that the behavior is fully au-
tonomous, does not rely on previous modeling exercises and
is designed to be generalized and extensible. We analyze and
discuss MimicA through a thirty-person user study with our
own demonstration game, Lord of Towers. We find that 22
out of 30 participants (73%) indicate they enjoyed the game,
and this self-reported enjoyment was on par with “traditional
tower defense games”. 63% agree that MimicA controlled
NPCs are doing what the player would do while 20% dis-
agree. Similarly, 53% realize the NPCs are learning from the
player while 20% do not. We also show that NPC with un-
derlying Decision Tree and Naive Bayes algorithms are better
than KNN in making the player realize the learning nature of
the NPC.

Introduction
As video games have developed from the early days of Pong
(Atari Incorporated 1972) and Tetris (Sega 1989) to 21st
century hits like World of Warcraft (Blizzard Entertainment
2004) and Call of Duty: Modern Warfare (Infinity Ward
2007), they have evolved in their style, depth, and difficulty.
The range and depth of artificial intelligence (AI) techniques
used by the non-player characters (NPCs) in the games, have
grown as well. AI-controlled characters include enemies
that oppose the player, functional characters that may sup-
port the player indirectly in shops or quests, and companion
characters that work alongside the character, often for the
purpose of amplifying or complementing the player avatar’s
abilities.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Previous research has focused on making these types of
characters believable (i.e. more human) (Livingstone 2006),
and to make them player-like (i.e. more complex with varied
behaviors and responses). While much work has gone into
developing highly sophisticated AI for adversarial charac-
ters, less has been done for companion characters (Bakkes,
Spronck, and Postma 2005)(McGee and Abraham 2010),
and almost none for companions within Real Time Strat-
egy (RTS) games. Major contemporary trends in compan-
ion AI development are toward either creating fully au-
tonomous companions, or creating companions that are still
controlled by the player to some degree (Tremblay and Ver-
brugge 2013).

This work falls into the first category by focusing on de-
veloping characters that behave completely without explicit
player direction.

Good AI companions will aid in increasing the fun and
immersion of a game (Tremblay and Verbrugge 2013), as
well as providing more believable player-NPC interactions.
They could allow for more complex strategies to be used
both by game developers and the players because the NPCs
working with the players will be closer in level of compe-
tence to the current state of enemy NPCs. Additionally,
smarter AI companions could avoid the problems mentioned
previously in the reviews of Skyrim companions. MimicA
aims to provide better experiences through the creation of
fully autonomous companions based on a model of the main
character.

To evaluate MimicA, we must first establish that it can
produce NPC agents that achieve the goal of imitating a
particular player. Second, we want to make sure the NPC
is actually useful and not a hindrance to game enjoyment.
Third, we’d like to compare and contrast the three MimicA-
supported machine learning algorithms. Evaluations are
based on a thirty person survey where each subject plays
the game with one of three algorithms and fills out an online
survey after their session.

Related Work
Several important lines of research in player modeling serve
as guides and background for this paper. (Van Hoorn et al.
2009) examine direct and indirect player modeling in con-
text of auto racing games. Using machine learning, the
authors create autonomous vehicle controllers with training

Player Analytics: Papers from the AIIDE Workshop
AAAI Technical Report WS-16-23

122

data provided either entirely based on human play sessions,
or one evolved with the help of additional domain-dependent
metrics specified by the authors. A similar dichotomy is pur-
sued in (Holmgård et al. 2014) where “model-free” player
“clones” are compared with model-based “personas” gener-
ated with the help of some domain knowledge. (Pedersen,
Togelius, and Yannakakis 2009) generate parametrized Su-
per Mario levels and correlate them to player feedback re-
garding feelings such as fun, frustration and challenge.

Two systems provide related work to MimicA: jLOAF
and Darmok 2.

The java learning by observation framework (jLOAF)
is a similar framework presented in (Floyd and Esfandiari
2011b) and followed up in (Floyd and Esfandiari 2011a).
The framework aims to aid in the development of agents in
different environments, where the agents learn the behaviors
they will perform without explicitly being told about neces-
sary tasks or goals. They use case-based reasoning for action
determination, and the framework breaks actions and inputs
into atomic and complex parts in order to better represent
possible inputs to the system and actions to perform.

Darmok 2 (D2) is a real-time case based planning system
for RTS games developed by (Ontanón et al. 2009). D2 is
a planning system designed to be domain independent, ca-
pable of learning how to play RTS games through human
demonstration. D2 uses demonstrations, plans, and cases in
order to operate effectively. Demonstrations in D2 are rep-
resented as time, state, action triples. Since actions in RTS
games are not always successful, D2 adds more than just
preconditions and post-conditions to the actions, including
success conditions, failure conditions, and pre-failure con-
ditions. Demonstrations can then be combined into plans
consisting of transitions and states. These plans are then
stored as cases. Cases also contain episodes, which is an
object containing the outcome of a plan when executed at a
specific game state. In addition to human demonstrations,
D2 requires a set of goals, set beforehand on a per domain
basis, that it looks for in the plans that are obtained from
the demonstrations. After D2 has a case base which it will
operate off of, when it retrieves a plan from the case base it
attempts to modify the plan to fit the specific situation before
acting on that plan.

We aim for a system with total autonomy which (Togelius,
De Nardi, and Lucas 2007) call “imitation”, and (Holmgård
et al. 2014) calls “clones”. In addition, we aim for a gener-
alizable system with no expert goals defined, and with focus
entirely on the current player. Thus we do not consider using
training data from other individuals or data collected offline.

The MimicA System

MimicA is a two part system consisting of action observa-
tion and action determination. Each part is outlined in this
section, followed by a brief discussion of how a game devel-
oper would interface with our framework. Figure 1 shows
a general flow diagram for how the MimicA system works,
in order to provide reference for the steps outlined in this
section.

Figure 1: A flow diagram for MimicA

Model Building
MimicA is built to interact with a game through observa-
tion of actions performed by the player in the current game
session. These can be any move, or possible lack of move,
that a player of the game could make through the normal
course of gameplay using intended interfaces. Specific state
information about the action, such as where it was triggered,
is maintained in order to provide the system with context.
However, details about the exact object (target) that the ac-
tion was performed on are not maintained for two reasons.

First, the exact object may change in the game. For exam-
ple, an attack action could be performed; however storing
the specific enemy that was attacked is not useful because
that exact enemy may not exist the next time an attack ac-
tion needs to be performed. Secondly, we want the system to
be as generic as possible. It should determine through game
play what needs to be done and where. So using the attack
example, while the same enemy might still be in the game
when the AI determines what to do next, it may be better for
the AI to attack a different enemy, based on the current state
of the game.

Any time an action is performed by the player it is paired
with the state of the game at that moment in time, and
recorded by the system. The game state is represented by
a vector of features that are designed to capture any and all
important aspects of the game at any given point. The game
designer, through an interface with the MimicA library, pro-
vides this game state, or feature vector. It is left up to the
designer to decide what features to include. Once the feature
vector has been created, and it has been paired with the ac-
tion that was just performed, this vector-action pair is stored
in memory for later processing.

Action Determination
When the AI companion needs to determine what action to
perform next, it once again creates a vector for the current
game state. MimicA offers three different supervised clas-
sifiers to determine which action to take based on the cre-
ated vector: K-Nearest Neighbor, Decision Tree, and Naive
Bayes.

API
MimicA, in its current state, is developed in C# for the Unity
game engine. A basic class diagram can be seen in figure

123

Figure 2: A class diagram for MimicA and its basic interac-
tion with a game that uses it

2. The game developer is required to extend the GameStat-
eVector class and implement the Event interface. The game
developer’s GameStateVector class will contain all of the
state information, through private instance variables, that are
important to determining what action to perform next. They
are then able to interface with MimicA through the “Game-
Data” class in order to add new state-action pairs to the dic-
tionary, train the classifier if necessary, and request the next
action to perform.

MimicA in Lord of Towers
As part of this project we develop a tower defense game,
Lord of Towers, to go along with MimicA and aid in validat-
ing the features of the system. A few notable things about
the game are that the player has a physical presence in the
game, there is no pre-defined path for the enemies, and after
a certain amount of time, the player character will always
die, but the game is meant to continue with the companion
character. The player is meant to become an observer at
that point until the true end of the game. Like other tower
defense games, a critical number of “breaches” of enemies
reaching the base constitutes failure and ends the game.

The basic back-story is that a village is under attack by
hordes of aliens. The player is the only person with skills to
construct towers and fight back against the enemies. How-
ever, the player’s character is already injured and will be
dead soon. The only hope is for the player to hold out long
enough until the village can produce more champions who
are being trained by watching the player. Once the player is
dead, the other champions will continue to resist.

At the beginning, only the player is available to defend,
as in normal tower defense games. After a preset duration
of time, the first companion is introduced and will proceed
to assist the player by performing any of the tasks that the
player has performed previously. Second and third com-
panions will join the game in order with passage of time.
These companions operate based on the same stored player-
derived data as the first companion, however all of them are
able to move independently. After a preset timer expires, the
player is removed from play and the companions are left to

fend for themselves. At that point, MimicA stops recording
state/action pairs, and the model building part of the system
is completed.

Game State Representation
The game state in Lord of Towers is represented by a vector
of about 250 values that update within the game loop. One
of the challenges of the design was how to represent spacial
references within the vector. Our solution includes both rela-
tive and absolute positioning. The 2D game space is divided
into six rectangular sectors, and statistics from each sector
are included in the vector. Separately, a set of features de-
scribing the sector the player avatar was currently in is also
included. Some relative distances such as distance to “near-
est tower” and “nearest enemy” are recorded as well. Below
we outline the different sets of values used to construct the
feature vector.

• General Game State

– Current avatar health
– Number of enemies currently in combat with the avatar
– Current score
– Resources available
– Total number of enemies of different types currently on

screen
– Distance of the closest enemy to the base
– Distance of the closest enemy to player avatar
– Number of companions currently alive

• Towers and Walls

– A histogram of the last N readings of health (hit points)
of all towers by sector (a typical number for N is 5)

– Health of all walls by sector
– List of sectors where at least one tower is under attack
– List of sectors where at least one wall is under attack

• Previous Actions

– Previous N actions performed
– Time elapsed since each of the N actions were per-

formed

The game models resources. Resources are spent on
building creation and repair. They are earned based on
enemy destruction. The resources are shared amongst the
player and all the companions.

The game allows the player to do four general actions:
build a new building (tower, wall, medical center), repair a
building, fight an enemy and stand guard. Build and repair
are closely related because the build move is actually imple-
mented as “initiate” followed immediately by the repair ac-
tion that actually completes the building. “fight” and “stand
guard” are also very similar because the companion is pro-
grammed to attack an enemy that is close to it if no other
orders are currently being carried out. Thus to “fight” is to
send the companion near the enemy. Build actions also have
a few built-in assumptions in this game. There is a preset
minimum distance between towers. When building walls,
the companion generally recognizes existing horizontal and

124

vertical arrangement patterns and attempts to continue them.
All actions are associated with a sector number in which to
carry out the action. Available build actions are filtered by
the ones that are currently affordable.

User Study and Results
In order to test the effectiveness of the MimicA framework
we ask subjects to play Lord of Towers and answer a sur-
vey about their experience1. A general call is made in the
university related social media for subjects.

We evenly test each of the three classification methods
in order to determine if one of the methods is perceived
to produce better companion behavior. Each participants is
randomly sent one version of the game. The participants
are told nothing about the companion other than it will help
them in the game.

After participants finish playing the game they are asked
to take a web survey about their experience. The survey in-
cludes questions about both the game and the AI companion,
and includes both free-form responses and multiple choice
questions. The entire process takes about 15-20 minutes on
average. Subjects can win one of several $20 steam cards
as a reward for participation and thus only provide an email,
confidentially kept for that purpose.

As a part of the analysis of the participant responses, we
code one of the free-form answers that we receive. The
question is “How do you think the companions were pro-
grammed?” Crucially, this question is asked at a point in the
survey where no information or hints about the real behav-
ior of the NPC companions are given to the user, in order to
minimize bias.

We ask three coders, individuals familiar with the project,
to independently code the responses with one of four possi-
ble categories, agreed upon ahead of time. These categories,
as well as a sample response that fell into each category can
be seen in table 1. As long as two of the three coders agree
on a label for a particular response, we count that as a true
response in that category. A majority exists in all 30 cases.
The results for 18 out of the 30 responses are unanimously
coded. The other 12 responses are coded based on majority
(2 out of 3).

The first few questions of the survey are intended to illicit
feedback about how players felt about the game itself. We
ask users to respond to two statements with how much they
agree statements “I enjoyed the game” and “I enjoyed the
game more than a traditional tower defense game”. The pos-
sible answers are those of the five-point Likert scale ranging
from “strongly disagree” to “strongly agree”. The results are
shown in Figure 3. As the graph shows, a 22 out of 30 (73%)
agree or strongly agree with “I enjoyed the game”. However,
on average, participants are neutral about enjoying the game
more than a traditional tower defense game. Determining
if the participants found the game enjoyable is important to
make sure that our system does not hinder player enjoyment
of the game.

Next, the survey focuses on companions in the game.
First, we ask participants, “How do you think the compan-

1Game and survey can be found here: http://goo.gl/Q0NyU2.

Code Code Category Sample Response
1 They built things re-

gardless of what else
was going on

They appear to move
and build at random

2 They do what is
needed based on
what else is going
on, but do not rely on
player behavior

Finite state machines

3 They mimic the
player or were ef-
fected by player
behavior in some
way

To replicate what the
user is/has been do-
ing

4 Other No idea

Table 1: Coded categories and a corresponding sample re-
sponse

Figure 3: Participant responses with regards to how much
they enjoyed the game

ions are programmed?” This is a free-form response ques-
tion, the answers of which are coded into categories found
in table 1. The results of this coding can be seen in Fig-
ure 4. Nine of the 30 responses are coded with “2” and “3”
indicating the behavior does not depend on the player, and
does depend on the player respectively. An equal number of
the responses could not be categorized, usually with answers
like “I don’t know”.

The next question is a multiple choice (select all that ap-
ply) question about the behavior of the companion, asking
participants to indicate if they noticed the companion doing
any of the descriptions given. The possible options, as well
as the responses, can be sees in Figure 5. 22 of the 30 par-
ticipants (73%) indicate that they notice the companion per-
forming “similar actions” to themselves. Additionally, 17 of
the participants feel the companions are performing actions
that are useful to them.

Next, participants are asked to rate their agreement with
a number of statements, this time focusing on the compan-
ion. The statements are “The companion/s was/were useful
to me”, “The companion/s would protect me”, “The com-
panion/s was/were performing actions that I would do”, and
“The companion/s was/were learning from the actions that

125

Figure 4: Coded responses for free-form question “How do
you think the companions are programmed?”

Figure 5: Participant responses when directly asked about
various companion behavior

I was performing”, answering on a Likert scale. While two
of these statements aim to gather much the same data as is
discussed above and presented in figure 5, the final state-
ment is the most important of the group. We are directly
asking participants if they notice any form of learning be-
havior based on the player. The results of this question can
be seen in Figure 6. When directly asked, 53% either agree
or strongly agree the companions are learning from actions
that the player is performing. Only six of the participants
(20%) disagree and the rest are neutral.

We separate the results by classification method. As can
be seen in Figure 7, the Decision Tree method and the Naive
Bayes method have the best response, each having six of
the ten participants per method who either agree or strongly
agree that the companions are learning from the actions the
player is performing. K-Nearest Neighbor only has four par-
ticipants who either agree or strongly agree, and was on av-
erage neutral.

We also ask the participants if they ever wish the compan-
ions would do something that they were not, and if they indi-
cate yes we asked what they wished the companions would
do. 23 out of 30 of the participants wish the companions
would do something that they were not. The majority of the
responses to the follow up question, however, seem to indi-
cate that the problem was likely in the game rather than the
MimicA framework. Most of the responses were along the

Figure 6: Participant responses, on a Likert scale, regarding
companion behavior

Figure 7: Participant responses, separated by classification
method, for agreement on the companion learning from ac-
tions they were performing

lines of “don’t disrupt the path that I created”, or “don’t fill
in the gaps that I leave to make a maze”, or “companions
needed to repair buildings that they just built”.

With respect to the last response, it is a known problem
in case based learning that, depending on the method used,
actions performed by the agent may not be in the same tem-
poral order as those performed by the expert (Floyd and
Ontañón 2013). However, this could also be solved in the
game. As it stands in Lord of Towers, build and repair are
two separate actions, leading to the observed problem that
companions do not always repair a tower to full health right
after they build it. While we do not want to remove the re-
pair action all together, it would make sense from a game
development standpoint to immediately follow the build ac-
tion by a repair action for the companion, just as it works for
the player. This would not prevent other companions or the
player from helping to “repair” a newly constructed building
to full health, but it would result in more fully constructed
buildings. Although this is a known issue for case based
learning agents, this could likely be solved on the game side,
as opposed to relying on a solution on the framework side.
Alternatively, if a solution could be found on the part of the
framework, it could possibly open up a wider range of dy-
namic behaviors where the companion decides it does not
need to finish building something because there is a more
urgent need elsewhere, and instead will come back to finish
the building after.

126

Near the end of the survey, we state on a new survey page
that the companions are indeed programmed to learn from
the player’s behavior, and ask the participants to take the
perspective of a game developer to answer the question “If
this AI was available as a library/plugin that you could use
to aid in development of your game, would you use it?”,
and why or why not? This question garners mixed results,
most likely due to the broad range of participants that are in
the study. 21 of the participants say they would use such a
plugin, eight say they would not, and one does not provide
an answer. It may be important to note, however, that two of
the participants who say they would not use it, followed up
by saying it is because they are not game developers.

Of the 21 that indicate they would use a plugin like this,
many of the follow up responses indicate they would use it
because it would take away some of the load for the game
developer or that it would help expand upon the possible
strategies available in the game, both features that MimicA
aims to provide. One of the main points of opposition to a
companion like this is that the system does nothing to sup-
port a complimentary companion, one that does not strictly
mimic the player, but tries to balance out the player’s abili-
ties by performing useful actions the player is not doing.

Conclusion and Future Work
In this paper, we present the MimicA framework, a system
for governing the behavior of companion AI based on di-
rectly learning from the player in the same session. We posit
that certain games can benefit greatly from an open frame-
work designed to fully automate the companion AI for those
games where it makes sense to have companions learn be-
havior through actions of the player. The challenge is for
the task assignment system to intelligently choose the right
companion and assign it the right task at the right time. This
study presents three different classification methods, in or-
der to see if one method is perceived to be better than the
others as judged by the final impression of the player.

Our evaluation using the game Lord of Towers indicates
that MimicA-produced NPC are recognizable as agents that
do similar actions as the player (63% agree versus 20% dis-
agree), and that they are learning agents (53% agree versus
20% disagree). The overall player enjoyment is 73% with
a slight majority even enjoying the game more than a tradi-
tional tower defense game (30% agree versus 23% disagree).

When separated by classification method, more partici-
pants who use the Decision Tree or Naive Bayes methods
agree or strongly agree that the companion learns from the
player (6) compared to those who used K-Nearest Neighbor
(4). Of the three classification methods, participants who use
the Decision Tree method generally have the best response.
Users generally understand what companions are doing and
find them helpful.

For future work, we would like to integrate MimicA with
an already functioning game, or multiple distinct games.
While Lord of Towers is good as a test bed for the frame-
work, too many of the problems that arose in development or
that were brought up in our study could have been the result
of the game, not the framework. As such, using the frame-
work with an existing game would be beneficial to clear up

some of the possible issues. At the same time we could eval-
uate the generalization of the system which is largely unad-
dressed in the present study.

In its current state, MimicA has no form of planning in-
corporated with the methods in which it determines what
action should be performed next. Adding a planning system
to the framework would allow MimicA to perform more ad-
vanced action determination, thereby enhancing the perfor-
mance of the framework. A planning system could partly
address some of the specific feedback from user study par-
ticipants who point out the companion NPC failed to see the
bigger picture and would often disrupt a larger pattern of
tower building by the player. Perhaps with some planning
capability, the NPC may be able to recognize more of an
overall intent and fit its own work within that effort.

Additionally, it would be beneficial to detach MimicA
from Unity. While developing Lord of Towers in Unity made
the most sense based on time constraints and prior knowl-
edge, it restricts the possible audience for the framework.
Being able to separate MimicA away from Unity into just
a C# library, or even be able to implement it in other lan-
guages, would be highly beneficial towards expanding pos-
sible use cases.

References
Atari Incorporated. 1972. Pong. [Arcade Game].
Bakkes, S.; Spronck, P.; and Postma, E. 2005. Best-response
learning of team behaviour in quake iii. In Workshop on Rea-
soning, Representation, and Learning in Computer Games,
13–18.
Blizzard Entertainment. 2004. World of warcraft. [PC Com-
puter, Online Game].
Floyd, M., and Esfandiari, B. 2011a. Building learning
by observation agents using jloaf. In Workshop on Case-
Based Reasoning for Computer Games: 19th international
conference on Case-Based Reasoning,(Figure 1), 37–41.
Floyd, M. W., and Esfandiari, B. 2011b. A case-based
reasoning framework for developing agents using learning
by observation. In Tools with Artificial Intelligence (IC-
TAI), 2011 23rd IEEE International Conference on, 531–
538. IEEE.
Floyd, M. W., and Ontañón, S. 2013. A comparison of
case acquisition strategies for learning from observations of
state-based experts.
Holmgård, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2014. Personas versus clones for player decision mod-
eling. In International Conference on Entertainment Com-
puting, 159–166. Springer.
Infinity Ward. 2007. Call of duty: Modern warfare. [PC
Computer, Playstation 3, Xbox 360].
Livingstone, D. 2006. Turing’s test and believable ai in
games. Computers in Entertainment (CIE) 4(1):6.
McGee, K., and Abraham, A. T. 2010. Real-time team-mate
ai in games: A definition, survey, & critique. In Proceedings
of the Fifth International Conference on the Foundations of
Digital Games, FDG ’10, 124–131. New York, NY, USA:
ACM.

127

Ontanón, S.; Bonnette, K.; Mahindrakar, P.; Gómez-Martı́n,
M. A.; Long, K.; Radhakrishnan, J.; Shah, R.; and Ram, A.
2009. Learning from human demonstrations for real-time
case-based planning.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009.
Modeling player experience in super mario bros. In
2009 IEEE Symposium on Computational Intelligence and
Games, 132–139. IEEE.
Sega. 1989. Tetris. [Arcade Game].
Togelius, J.; De Nardi, R.; and Lucas, S. M. 2007. Towards
automatic personalised content creation for racing games. In
2007 IEEE Symposium on Computational Intelligence and
Games, 252–259. IEEE.
Tremblay, J., and Verbrugge, C. 2013. Adaptive companions
in fps games. FDG 13:229–236.
Van Hoorn, N.; Togelius, J.; Wierstra, D.; and Schmidhuber,
J. 2009. Robust player imitation using multiobjective evolu-
tion. In 2009 IEEE Congress on Evolutionary Computation,
652–659. IEEE.

128

