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Abstract

Platformer level generation has often used a beat
metaphor to relate to how players interact with level ge-
ometry. However, this conceptualization of beats is dif-
ferent from the musical concept of ‘beat’, limiting the
utility of theories and tools developed in music anal-
ysis for platformer levels. A gameplay gestalt, a pat-
tern of interaction that the player enacts or performs
in order to make progress in a game, may fit the beat
metaphor. By taking a very similar lens and viewing
players playing platformer levels as enacting a series
of gameplay gestalts through time, gestalt music anal-
ysis (GMA) does fit into the platformer domain. This
paper details work on transforming a GMA model to
work with the Platformer Experience Dataset (PED),
and some promising first results of the transformed
model.

Platformer level design and analysis has often flirted with
musical concepts of rhythm and beat. As described in (Csik-
szentmihalyi 1990), platformers allow players to sink into a
rhythm or ‘flow’ state where they are rapidly making dis-
tance calculations and keeping exact timing on inputs to
progress forward. Metaphorically considering single obsta-
cles or player actions as a ‘beat’ in time has been very pro-
ductive for platformer level generation. Both (Compton and
Mateas 2006) and (Smith, Cha, and Whitehead 2008) derive
a concept of rhythm from beats, where beats correspond to
player actions to progress past level features.

It does not seem beyond the pale to want to take the plat-
former idea of beat and see how well it fits in with a musical
idea of beat. This would allow us to use techniques for music
analysis and apply them to platformers. Part of much music
analysis is finding beat patterns and determining what sorts
of effects these patterns have on a listener. Using music anal-
ysis to find beat patterns in platformers may give insight into
how beats should be structured to provide particular effects.
For example, syncopation in music is a beat mismatch—
the listener expects the next beat to be unstressed, but the
composition accents it. This leads to increasing tension in
the musical composition. An analogous idea for platform-
ers might be difficulty–mixing up the next beat can throw
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players out of flow and make a level harder. To do this inten-
tionally requires a more refined understanding of how beats
function in platformers, which is something that music anal-
ysis may provide.

However, there is an immediate problem: Platformers
may have beat (an element in a rhythm group as defined in
(Smith, Cha, and Whitehead 2008)), but they don’t have me-
ter. Much of beat-based music theory assumes that a song is
structured around a regular pattern of ‘weak’ and ‘strong’
beats, and this pattern is tethered to time. We refer to this
regular pattern as meter. Most games don’t have this tem-
poral pacing constraint. Players can pause in the action (by
using the pause button or relaxing on movement inputs, for
example) and take some number of moments to size up the
next set of actions to take.

This workshop paper presents some preliminary work on
applying gestalt music analysis (GMA) to platformer levels.
By looking at how player state changes over time, we can
group similar state sequences together in a hierarchy. Player
state changes based on how level obstacles are placed, ty-
ing state shift to a ‘beat’. State shifts correspond to player
actions, which form a ‘beat’ as players progress through
a level. Level features, such as foes or gaps, force players
to take action (and, correspondingly, change state). Even
in cases where a player doesn’t need to shift states (such
as sprinting under a closing door when they were already
sprinting), identifying that sort of mismatch can still be use-
ful for a designer. Low level gestalt patterns show similar
repetition to some common melodic lines.

Gestalt patterns, in music, work like axioms to build out
more complex high-level patterns. Musical gestalt analysis
highlights how the average listener perceives a piece. By
clumping together the fast notes of a run into a single ax-
iom, GMA showcases that the individual notes don’t matter
as much as the gesture of the run. Due to how music is writ-
ten, these important abstractions can be lost. A gestalt anal-
ysis of platforms can let us describe important patterns in
platformer levels and the elements that comprise these pat-
terns.

This lets us leverage some ideas from GMA to games,
allowing us to identify high points of interest or surprise in a
level. Furthermore, GMA is formal enough to be automated,
so we can encode the process to be performed by a level
generator or game understanding AI.
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Related Work
Using beats to generate new platformer levels has been well
explored. (Compton and Mateas 2006) uses a context free
grammar to create new platformer levels, (Smith, White-
head, and Mateas 2011; Smith et al. 2009) uses a constraint
solver to find a set of rhythm groups that fit a set of con-
straints, then finds a set of geometry that fits those rhythm
group’s constraints.

Music analysis has a different definition of beat than what
is used in level generation. However, the platformer gener-
ation definition of beat ties in nicely with the concept of a
gameplay gestalt. (Lindley 2002) defines a gameplay gestalt
as a pattern of interaction that the player enacts or performs
in order to make progress in a game. For platformers, this is
similar to movement: players enact a particular set of jumps
to get through a section with a lot of pits, or sprint for long
distances to get through a section with a lot of falling haz-
ards. This delimits a continuous temporal gameplay space
into discrete chunks, where a player is enacting a particular
gestalt. The longer a player stays in a particular gestalt, the
more repetitive a segment of gameplay is (because the player
is enacting the same pattern). This is a very similar definition
to Tenney and Polansky (1980) view of music, where musi-
cal gestalts are segments of cohesion that are distinct from
the segments before and after them. The longer a piece stays
in a particular gestalt, the more repetitive it is as a single idea
is being repeated and stretched over more time.

This work adapts Tenney and Polansky’s model to work
with platformer play traces, and hopefully in the future, will
use a similar model to eventually be able to generate new
levels.

Gestalt Music Analysis
Gestalt analysis got its start in perceptual psychology
(Wolters and Koffka 1936) before being quickly adapted
to musical analysis, (Ehrenfels 1937). Tenney and Polan-
sky encoded a gestalt music analysis in a program, and
got useful results looking at monophonic flute music. How-
ever, most modern GMA methods are not conducive to be-
ing automated– for example, generative tonal harmony com-
bines Schenkerian analysis, gestalts and generative gram-
mars (Lerdahl and Jackendoff 1987), but is not formal
enough to be encoded as a program (it leaves several impor-
tant decisions up to the theoretician to justify). A first step
for using these methods for games is to add enough formal
rigor to allow for automation.

The defining idea of GMA is to break music up into tem-
poral units called gestalts. Gestalts are complete over the en-
tire piece of music (all notes of a piece of music belong to at
least one gestalt) and hierarchical (higher level gestalts are
composed of lower level ones). Each gestalt is a single, in-
ternally consistent sound pattern, which is segregated from
the gestalts that precede and follow it.

In order to break apart a piece of music, Tenney and
Polansky (Tenney and Polansky 1980) looked at several
qualities of each note. In figure 1, the qualities are duration
(how many eighth notes a single note takes up in time) and
pitch class (musical abstraction of frequency of the sound

Figure 1: A Gestalt Analysis from (Tenney and Polansky
1980). The melodic line from Beethoven’s 5th symphony
can be broken into discrete segments based on the pitch and
duration of the previous and next notes. These segments cor-
respond to what a listener hears, and each boundary identi-
fies a point of interest in the piece of music.

wave for that note). A new gestalt boundary is drawn be-
tween two notes i and i + 1 if the distance between them
is greater than the distance between notes i − 1 and i and
notes i+1 and i+2. Distance, for this model, is a weighted
linear combination of the euclidean pitch and time distance
between two notes (the reference figure uses a weight of 1
on the parameters, but more complex models are discussed).

(Lerdahl and Jackendoff 1987) and other applied versions
of GMA discuss that the perceptual level of gestalts isn’t
this low level note grouping, but the level above this one
(the first group of groups). For the average listener, music
is not perceived as groups of notes, but as groups of groups
of notes. However, this first level of grouping gives us the
building blocks for the next ones.

Application To Games
Each low level gestalt, for music, represents a single mu-
sical idea (the repeated notes and final jump in figure 1).
Gestalts in games are a little different. Lindley (2002), in
talking about ludo-narrative dissonance, defines a ‘game-
play gestalt’ as a pattern of interaction that brings success or
progress in the game. Players learn the rules, and from their
understanding of those rules, perform a gameplay gestalt
that optimizes for their own goals within the game. This
means that these gestalts change over time, as player goals
change, the game changes how to achieve those goals or
players develop a deeper understanding of the rules.

In theory, then, if we can chart out gameplay gestalts, we
can find points when players chose to perform a new gestalt.
This may indicate that the underlying level changed and re-
quired a new pattern of interaction in order for a player to
progress, or that a player’s goals changed within the game
and they adopted a new input paradigm.

Gameplay and monophonic melodic lines are very differ-
ent, but both can be considered as a set of state changes
over time. These states both have the same temporal rela-
tions (if action/note A happens before action/note B in the
trace/music, then they also have this same sort of temporal
relation when played/performed). Gestalt analysis already
takes this ‘states through time’ view of music, so it seems
applicable to games.

We looked at the Platformer Experience Dataset (PED) to
try and map gestalt analysis onto games. PED (Karpouzis et
al. 2015) is a dataset of gameplay traces from Infinite Mario
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Figure 2: Mario states from a PED trace. Each track corre-
sponds to a different set of non-overlapping potential states.
Filled in blocks are when that state is true. The bottom part
of the figure shows the full trace, the upper part is a zoomed
in subsection. Overlap is where Mario is in two states at
once. Overlapping states are concatenated in the remaining
figures.

Figure 3: Mario states from a PED trace. Each color cor-
responds to a particular state. States on higher numbered
lanes have more simultaneous sub-states than states on lower
numbered lanes. Lower part is the full trace, the upper part
is a zoomed in subsection.

Bros along with visual recordings of players playing. We
only look at the gameplay trace side of the dataset, although
future work could be done on correlating visual cues of sur-
prise with gestalt boundaries.

PED also does not contain level information in it’s game-
play traces. The lack of context in state actions makes it hard
to find context for Mario’s actions. Gestalt analysis is less
useful without this contextual information, but can still re-
veal interaction patterns.

For PED, we can chart Mario’s state as he goes across
the level. We’re primarily interested in input state, but we
also chart Mario’s powerup state as well. By using a linear
model similar to the one used for music, we can see if game-
play traces have similar boundaries and patterns. PED tracks
Mario’s state individually, as a set of onset and ending times
for various states Mario can be in. Several of these states
can overlap (such as powerup state, run state and movement
direction), so we concatenated these combined states into
a single super-state. The non-concatenated version is show
in in 2, the concatenated(without gestalt boundaries being
drawn) is shown in figure 3.

Gestalt Boundary Model
For gameplay traces, we look at state distance by taking a
weighted linear combination of the individual parameter dis-
tances. 4 out of 5 parameters directly correspond to player
input. Powerup state is significant because it changes how
much risk a player can take (big Mario can take a hit before
a game over). The five state parameters are:

1. Movement Direction (left, right or none). This parameter
captures which direction Mario is moving in, if he’s mov-
ing at all. Going from left or right to no movement has a
distance of 1, switching direction has a distance of 2.

2. Powerup State (small Mario, big Mario, fire Mario). This
parameter captures if Mario has any power ups. Going
from small to big, big to small, big to fire, or fire to big
has a distance of 1. Any other transitions have a distance
of 2.

3. Ground State (crouching, running, none). This parameter
captures if Mario is running, crouching, or just standing.
Going from crouching or running to none, or starting a
crouch or a run, has a distance of 1. Any other state tran-
sition has a distance of 2.

4. Airborne State (jumping, none). This parameter tracks if
Mario is airborne or not. Switching between these states
has a distance of 1.

5. Time. This parameter tracks the onset time between two
states. The distance is just taking the difference of state
onset times.

The distance metric used is the euclidean distance, so the
full state distance calculation is below, where s is a state and
n is the number of parameters that make up a state (in our
case, 5):

dist(s1, s2) =

√√√√ n∑
i

(paramWeighti ∗ paramDisti(s1i , s
2
i ))

2

To start, we did not weight any state parameters. This
put a large weight on time, as it is the only parameter that
can range beyond 2. This occasionally lead to some strange
boundaries being drawn, as the model is overly sensitive to
state duration, as shown in figure . Early in the trace (the
blue section), a boundary is drawn between a small flurry of
jumps and run actions. This is likely actually all part of a sin-
gle gestalt; the player is very briefly dealing with a dense en-
emy pattern or set of complicated set of geometry. However,
even with this large sensitivity, low level structure does start
to reveal itself—boundaries are correctly drawn towards the
end of the trace, where Mario is repeating a jump action.
This is similar to the gestalts shown in figure 1, repetition of
this jump action works similarly to the repetition of the three
eight notes and single half note in the melody of Beethoven’s
5th.

Experimenting with tunings for the distance weights
leads to (unsurprisingly) different boundaries. Tweaking the
weights, where time is given very little weight (0.01), direc-
tion, ground state and airborne state are all given moderate
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Figure 4: Low level gestalt boundaries. Purple lines and colors show each found gestalt. Compare and contrast with figure ,
which shows a different set of gestalt boundaries for this trace

weights (0.75, 0.25 and 0.5 respectively) and most of the
weight is on Mario getting or losing a powerup (1); we start
to get traces that seem to graph important shifts. The flurry
of actions shown in figure no longer have a boundry be-
tween them, grouping them as one unit—much like how a
flurry of notes would be grouped as one unit. Furthermore,
we still have the useful repetition at the end of the trace.
However, the boundaries still don’t quite line up, as they
seem too conservative at the beginning of the trace. The blue
flurry of state changes should be in its own gestalt, and not
tethered to the relatively long pause where the player is sta-
tionary as small Mario.

Future Work
We can trace low-level gestalts in gameplay traces that seem
analogous to gestalts in music. However, we don’t know if
the gestalt boundaries are consistent with themselves: if this
is graphing an important concept, than for multiple traces of
the same level, the gestalt boundaries should be similar (as
player actions are constrained from level geometry). We can
use this internal consistency metric to tune the model.

The presented model only finds the first level of gestalts.
The real goal would be to find the next level of gestalts (the
first grouping of groupings). It’s this level that’s commonly
used in musical analysis, and these abstract levels that corre-
spond to human perception (Lerdahl and Jackendoff 1987).
We can label each of these low level gestalts with the domi-
nant state, or blend states for a single gestalt label with an
weighted averaging metric similar to (Tenney and Polan-
sky 1980). Looking at the next level boundaries from these
states may grant insight into when and why players adopt
new strategies, and may lead to a deeper understanding of
when games are surprising or at least interesting. It may also
give an algorithmic way to find high level state boundaries

in games—when a MOBA shifts from the early game to the
mid-game is fuzzy, and high level gestalts may shed light on
these sorts of gameplay shifts.

The presented model has only be used with PED. PED is
a dataset of playtraces on generated Infinite Mario Bros lev-
els. Before doing serious analysis on generated levels, we’d
like to have a library of patterns that show up from a gestalt
analysis of known well-authored levels.

Another weakness in using PED data is that it only cap-
tures player state. The model can not reason about what
caused a player to jump, only that a player has jumped.
Adapting the model to work with playtraces that also contain
level geometry data can lead to gestalt boundaries that can
reflect both a level change as well as a player goal change.

Along those lines, we tried to keep the model as domain
agnostic as possible. However, some specific knowledge is
required in order to come up with what parameters compose
a particular state, and distance functions on those parame-
ters. Going through with this same sort analysis for other
games can give us a sense of how general this model is.
We’d expect adaptation to be highly difficult for walking
simulators, as most of the gestalt changes a player might go
through are not reflected in their inputs. A player may find a
delightful hut in the woods that changes how they view the
game (which would be, according to the theory, an impor-
tant gestalt shift) but that change may never get reflected in
how they move about the space.

Finally, we’d like to, eventually, hook up this model
to a generator. A well formed understanding of gameplay
gestalts and how they could relate to level geometry could let
a level generator try to generate a level that has a particular
gestalt pattern. We can never be truly sure that a player will
enact gestalts exactly how we’d like them too, but we can
try to design around players needing to adopt new gestalts at
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Figure 5: Gestalt graph with weights. We start to see what looks like important repetition and a solid development of patterns
in the trace.

particular times.
In conclusion, we believe that gestalt analysis is starting

to show a interesting way to look at games. Potentially, tech-
niques from music theory could be adapted to be a general
way to segment out play traces, describe particular proper-
ties of levels, and work as a proxy for designer intent in a
gestalt-aware level generator.
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