Experimental AI in Games: Papers from the AIIDE Workshop
AAAI Technical Report WS-16-22

Mixed Reality Meets Procedural
Content Generation in Video Games

Sasha Azad, Carl Saldanha, Cheng Hann Gan, and Mark O. Riedl
School of Interactive Computing; Georgia Institute of Technology
sasha.azad, csaldanha3, gan, riedl@gatech.edu

Abstract

The use of artificial intelligence and procedural content
generation algorithms in mixed reality games is an un-
explored space. We posit that these algorithms can en-
hance the gameplay experience in mixed reality games.
We present two prototype games that use procedural
content generation to design levels that make use of the
affordances in the players physical environment. The
levels produced can be tailored to a user, customizing
gameplay difficulty and affecting how the player moves
around the real-world environment.

Introduction

As the scale of games increases and video games are played
by diverse players in more diverse environments, there has
been a corresponding increase in the need for computational
systems to replace the manual effort involved in generating
gameplay assets and adaptation. Procedural Content Gener-
ation (PCQG) is the use of algorithms to automate the pro-
duction of various aspects of computer games, such as lev-
els, missions, or rewards. Instead of game designers man-
ually placing individual structures, enemies, or other ele-
ments in game environments; these elements and their re-
lationships are encoded and used to generate a game au-
tomatically. PCG algorithms use these encodings to create
multiple customized game elements. This approach has been
used successfully in the past, with games such as Discoverie,
Spelunky, Bioshock Infinite, and No Mans Sky using PCG
to generate rooms, caves, cities, and planets (respectively)
for the player to explore.

Recent hardware developments in Virtual Reality (VR)
headsets, such as Facebooks Oculus Rift, Augmented Re-
ality (AR) headsets, such as Google Glass or the Daqri
Smart Helmet, and Mixed Reality (MR) headsets, such as
Microsofts HoloLens and the Magic Leap, make it increas-
ingly likely that commercial augmented and mixed reality
games will become available in the near future. VR environ-
ments take the users visual experiences entirely into the dig-
ital world. These environments allow the designers complete
control over the environment. In contrast, AR takes the users
view of the real world and layers digital information on top

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

22

of it. MR combines both, allowing digital and physical ob-
jects to coexist and interact with each other in real time. AR
experiences are expected to adapt and change significantly
based on the configuration of the players physical environ-
ment, and MR experiences additionally also have to adapt to
the interaction between physical and virtual objects. An ex-
ample of an MR game is Microsofts Young Conker game for
HoloLens, which has the player controlling a virtual avatar
walking across table and floor surfaces (Microsoft, Asobo
Studios, 2016). By changing rooms or furniture arrange-
ments, the user can participate in varying gameplay experi-
ences. This evolution from virtual to mixed reality, or trans-
mogrified reality, has been described as one of the biggest
changes in the gaming industry in the last 30 years (Falstein,
2015).

Historically, procedural level generation has been re-
searched in the context of fully virtual game environments
(Shaker, et al. 2015). Thus, artificial intelligence approaches
to PCG treat the creation of game content as an optimization
problem. In mixed reality our algorithms are constrained by
the presence of objects in the real world. Added virtual ob-
jects need to be presented with realistic integration into the
physical world. Acceptable occlusion, object identification,
and other relationships between the real and virtual objects
must be made. We intend to apply existing procedural con-
tent generation techniques while keeping in mind these con-
straints of the domain.

In this paper, we explore two game concepts with the de-
sign constraints of an MR environment. Currently, as we do
not have an MR device yet, we simulate two games in a vir-
tual 3D environment on both a PC and an Oculus Rift. The
games are being developed as prototypes which explore the
ways in which procedural content generation can enhance
MR games. The games are loosely inspired by the popular
platformer games, Super Mario Bros. and Lemmings.

With Mixed Reality Mario, the player controls a virtual
avatar that runs and jumps across real furniture, virtual plat-
forms and on top of enemies on a procedurally generated
track. The route of the track is affected by the heuristics
of our PCG algorithm. With Mixed Reality Lemmings, we
move away from the single linear track. Instead, we al-
low players to interact with their environments using virtual
boxes. This forces our player to interact with the virtual and
real surfaces in order to move the lemmings across the fur-

niture. Our algorithm detects playable surfaces and uses the
negative space to create a compelling game. To do this, we
limit and direct player movement of the lemmings across
surfaces with virtual walls. Both games were designed to
be played in any real-world room-style environment. We in-
tend to demonstrate how different arrangements and pieces
of furniture in a room can impact the level being generated.
We do this by having the underlying PCG algorithm take
into consideration the quantity and position of surfaces and
obstacles (i.e., non-playable surfaces) in the environment.
Next, we look at the technical implementation of the proto-
types as well as other potential evaluation functions that can
be used for our MR playground.

Related Work

We present two games designed for a mixed reality envi-
ronment. Our games utilize a real time generation of levels
using a generate-and-test PCG technique for path selection.
Togelius et al. (2011) enumerate many of the uses of pro-
cedural content generation in games and coined the term
search-based PCG to distinguish a special class of proce-
dural content generation problems that can be solved using
generate-and-test methods such as genetic algorithms and
simulated annealing.

Cook (2015) used a PCG algorithm and computer vision
to evolve a level with constraints based on visibility of game
elements in a virtual game environment. Tutenel et al. (2009)
generated virtual levels based on a set of rules and the high-
level semantics associated with objects in a game world. For
example, one rule could be keep adding cupboards until the
sum of all Storage Volume properties exceeds 1.3 cubic me-
ters. The placement of objects in the scene was based on the
virtual world presented to the algorithm. One of our games
is based on the popular Super Mario Bros. game, and uses
a similar set of rules for the placement of virtual enemies.
There have been a number of research projects on generation
of levels for Super Mario Bros. and similar platformers, in-
cluding, but not limited to: Shaker et al. (2012) and Guzdial
and Riedl (2015). To date, work on level generation in plat-
former games has assumed a virtual environment whereas
mixed reality games would need to consider the additional
constraints imposed by a physical environment.

Further work has been done on the positioning of ele-
ments in a 3D scene. Specifying angle constraints, Gosele
and Stuerzlinger (1999) determined potential positions of
virtual objects in the scene by specifying their relationships
to each other. For example, a chair must be placed on the
floor relative to a table already in the scene. Both works are
useful for placing virtual assets that correctly interact with
the real world in a mixed reality experience. However, un-
like a virtual environment, this creates an opportunity for
future algorithms to make use of data from the real elements
while generating candidate solutions.

Level Generation Preliminaries

Level generation for both games occurs in two steps. First,
we sense the environment the player is in. Next, we use a

23

generate and test methodology to select the optimal route
for the avatar to follow using a fitness heuristic.

Environment Mapping

During the initial set up of the game environment, we require
the player to create a map of the environment by walking
around the room using a Kinect 2.0 with Kinect Fusion. We
use this to create a 3D model of the room. We then identify
usable horizontal surfaces as a set of polygons. The poly-
gons are clustered together using the Union-Find algorithm
to create distinct concave hulls that act as playable surfaces.
Each playable surface is represented as a node in a graph.
Edges connect nodes whenever it is possible to travel be-
tween the surfaces. Movement between surfaces can be im-
peded by physical obstacles in the path; for instance, jump-
ing from one sofa to another may be stopped by the back of
the sofa in between. If the distance between two surfaces is
greater than or equal to a threshold distance for the virtual
character, this also indicates that it is impossible to travel
between the surfaces without the help of a virtual platform
or bridge. The distance between two surfaces is measured
as the distance between the two closest points in the point
cloud of each surface.

We currently register each of the surfaces being scanned
during the room-mapping phase with an ID to help us in
tracking the surfaces that have previously been visited by
the player controlled avatar. Unlike mixed reality games that
allow the player to control the avatars motion in 3D and
choose the order to visit surfaces (such as in Microsofts
Young Conker), our mixed reality level generator constrains
the player to operating on a specified sequence of surfaces.
By limiting and directing the possible paths the player can
take, the algorithm can control the length of gameplay. In the
future, this can be used to create rhythms (an important part
of the platformer genre) (Smith et al. 2009) or challenge pro-
gressions (Shaker, Yannakakis, and Togelius 2010; Harrison
and Roberts 2013, Zook and Riedl 2015). Since at times, the
player may have access to only a limited number of playable
surfaces (as identified by our algorithm) based on the en-
vironments furniture arrangements, we can allow for novel
puzzles or challenges using the same surfaces.

Level Generation and Evaluation

There may be many routes across the surfaces of a room be-
tween any two points, some of which are easier than others.
We rely on a search-based PCG approach using a generate-
and-test method to test each route generated against our eval-
uation function to choose the best route. The procedural con-
tent generation algorithm has the responsibility for deliver-
ing the all the game elements to the player.

We use a combination of heuristic functions h;_,, that
evaluate each of the possible paths produced, normalizing
their result to a value between 0 and 1. We pass a weight
control w; (0...1) to each one of the heuristics h;, which
tells the heuristic to favor paths which return values closer to
the weight control. This is done using v; = 1—abs(h; —w;).
The value of each path is given by > ", v;.

We randomize the weight controls w;. ., to produce dif-
ferent paths. describe the heuristic functions we used to tie

Figure 1: Two possible virtual character tracks (blue, A-B) and how they affect player movement profiles (green, C-D).

the selection of virtual content to the affordances of the real-
world environment:

e Length of Gameplay (hjengtn): The length of the path is
selected as a weight for the function. We choose a path
closest to the weight passed to the function. We control
the length of gameplay by generating longer or shorter
paths according to the weight passed to the length heuris-
tics. Longer paths produce a higher weight.

e Proportion of surfaces used (hsyrfaces): The percentage
of surfaces to be visited is selected as the weight. A per-
centage is used since the number of surfaces cannot be
known a priori. Paths that go to more surfaces have a
higher weight according to this heuristics.

e Player physical movement (hrr7): We know the players’
position in the virtual space from the position of the cam-
era. The amount of movement required from the player
is computed by finding the shortest route through neg-
ative space for the player to remain within reach of the
lead agent (Figure 1). This is done by using the rapidly-
exploring random tree algorithm to predict possible paths
to the virtual agent. Longer paths are given a higher score
and the weight control allows us to place the level based
on the distance the player travels based on the RRT. Fig-
ure 1 shows two possible tracks using different furniture
surfaces and some likely routes the player can take to min-
imize his or her distance from the virtual character while
keeping it in view. The required physical movement of the
player can be very important if the user has limited mo-
bility or if physical fitness is a motivation.

o Target difficulty (hqif ficuity): The difficulty heuristic is
defined independently for each game we created. In MR
Mario, the difficulty can be varied by changing the num-
ber or length of the jumps required on the path, or the
number of enemies Mario can encounter. In MR Lem-
mings, difficulty can measured as the frequency of player
interventions (number of virtual boxes or jump pads used)
required. Target difficulty can be specified as a target
number or as a function (e.g., monotonically increasing).

24

Path VRRT,w=0.2 | Ulength,w=0.8 | 2 Vi
[7,6,5,0,2, 1] 0.8571 0.9888 1.8459
[0, 2,6,5] 0.7561 0.8404 1.5965
[2,6,7] 0.4064 0.8921 1.2985
Path VRRT,w=0.5 | Ulength,w=0.5 | 2 Vi
[0, 2, 6, 5] 0.9439 0.9999 1.9438
[2,6,7] 0.7064 0.9886 1.695
[7,6,5,0,2, 1] 0.5571 0.8749 1.432

Table 1: Change in the values of the normalized heuristic
with the weights chosen and the impact on the selected path

In Figure 1 we show two possible tracks created by chang-
ing the weights of the heuristics. The normalized heuristics
generating the paths have been detailed in Table 1 above.
The path value in the table contains a list of the detected
surface indices traversed by the virtual character. In the left
image a w = 0.8 for the path heuristic allows for a longer
generated virtual character path (i.e. [7,6, 5,0, 2, 1]). while
minimizing the human movement since it has a lower heuris-
tic weight (i.e. w = 0.2). We see that the RRT predicted the
movement of the human player from their starting location
of point A to point B (in the left image) since all surfaces tra-
versed by the virtual character can be easily accessible from
point B.

Game Specific Level Generation
Mixed Reality Mario

Mixed Reality Mario is a mixed reality platformer loosely
inspired by the popular Super Mario Bros. game. Prior PCG
work on this game has assumed that the generator has full
control over all aspects of the level. In mixed reality, the
algorithm is constrained by the configuration of furniture,
walls, and interactions with the physical environment. By
generating a single linear track that crosses physical furni-
ture surfaces (the floor is lava), the algorithm can control the
players exploration of the environment for customization of
the gameplay experience while responding to the selected
evaluation function.

Figure 2: Two possible MR Mario tracks given the same furniture configuration. Note for clarity the image is shown as rendered

in a VR headset.

We use the aforementioned level generation algorithm
with a given start and finish point. Varying the difficulty pa-
rameter in the heuristic affects the number of enemies placed
on the path and the length of each level. Surfaces are con-
nected with virtual platforms that the player can walk on to
traverse. Virtual platforms are generated between surfaces
that have been calculated to be more than the maximum
jumpable distance for the Mario character by our surface
mapping algorithm.

In the typical Mario style, enemies are generated on long
straight paths for the player to jump over or kill. Our PCG al-
gorithm is able to place enemies on the path precisely using
a set of rules that define the movement of these enemies on
the surfaces. For instance, a static paper tack can be placed
on shorter paths and sharp turns; in contrast, a pencil follows
the virtual character along longer straight paths in order to
stab the character but takes a longer time to turn corners.

In MR Mario, the player must control and move the vir-
tual character from one side of the room to the other fol-
lowing a track across the furniture. We posit that (curios-
ity notwithstanding), left to themselves, players are likely
to continually choose paths that are either too difficult or
too easy to move through the room. Choosing paths that
are challenging beyond the players current ability can lead
to frustration, whilst the easier paths can lead to boredom.
To increase the duration of enjoyment and to motivate the
player to more deeply explore the mixed reality playground,
we constrain the player with a single track. The single track
allows us to tightly control the the track, even along the
edges and backs of furniture, allowing for adaptation to the
players level of difficulty. The player is removed from the
responsibility of planning the avatar’s path ahead while nav-
igating the real world obstacles in the players path. Instead,
he can dedicate all his skill to successfully interacting with
the system to deal with the virtual obstacles and enemies the
system generates. With future play testing, we plan to com-
pare the discrete elements of the players movement (for in-
stance, running or jumping) to refine our heuristic algorithm
to maximize the players enjoyment in the game.

25

Figure 3: A Possible MR Lemmings path generated with vir-
tual wall constraining jumps. The path the agents will take
(normally hidden from the player) is shown in yellow.

Mixed Reality Lemmings

Our second game is a mixed reality puzzle game inspired
by the popular Lemmings game. The game spawns a line of
virtual avatars known as lemmings. These lemmings must be
directed by the player safely to the final goal. The lemmings
walk in a straight line until they fall off a surface to their
deaths, unless the player intervenes. Virtual walls are gen-
erated around the world to restrict the Lemmings movement
between surfaces by causing the lemmings immediate death
on collision. The player can interact with the lemmings in
two different ways. First, the player can place a virtual box
which directs them left, right or backwards. He does this by
clicking on a point in the virtual space which places the box.
Again by clicking a point in the virtual space jump pads are
generated that launch lemmings over gaps. Different jump
pads can launch lemmings different distances and heights.
The heuristics are used to generate an open-world puz-
zle for the level. Every pair of surfaces is considered as
a start and goal. For every pair, we enumerate all possible
routes through the graph. The solutions for all pairs of start
and goal nodes are then ranked according to the evaluation
function described above. The procedural content genera-
tion algorithm also creates virtual walls (Fig. 3) to constrain
and direct the player to certain routes. The player can move

through these walls, but the lemmings cannot. Using the
walls, we can control the type of experience that the player
has in the game by restricting the possible solution paths for
the lemmings.

The walls are generated by traversing the nodes of the
winning route and placing a wall between any two surfaces
on a sub-optimal path (as defined by the game heuristics).
For instance, if the level designer is searching for a route
to maximize human movement, walls could be generated to
force the human to weave through furniture instead of allow-
ing direct Pythagorean movements or shortcuts.

In contrast to MR Mario, MR Lemmings constrains the
player to specific surface sequences but allows the lem-
mings to have continuous movement within the surfaces
themselves. By not limiting the motion of the virtual char-
acters to a single linear track, we allow the user to exper-
iment with the placement of virtual boxes and jump pads
to explore the room more freely. However, constraining the
surfaces ensures that each level can vary and not be repeti-
tious while allowing the levels to become more challenging
over time. This difference in the granularity of the route con-
straints in both games allows for maximum reusability of the
playable surfaces within the real-world environment of the
player while keeping the game challenging and maintaining
player interest.

Conclusions and Future Work

In the future, we plan to continue working on player inter-
action with the mixed reality objects and evaluate the game-
play experience. The player data we will acquire on level
completion and the avatar death rates can then be used to
model the level difficulty and challenges faced by the player.
Additionally, we plan to integrate a neural net to identify the
type of room the player is in. This will allow us to gener-
ate room-specific interactions and objects. For instance, in
the MR Mario game, enemies in a kitchen could be virtual
knives, while a power-up in a living room could be a virtual
book on a table.

Currently we are able to simulate the environment virtu-
ally on a computer running a Unity Environment. In the fu-
ture we plan to integrate a mixed reality device into the scene
in order for the player to be able to interact more naturally
with the environment, place boxes or direct the virtual char-
acters to move.

References

Cook, M., 2015, September. Would You Look at That!
Vision-Driven Procedural Level Design. Proceedings of the
2015 AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment.

Falstein, N., 2015. Transmogrified Reality. Session delivered
at the Smartphone & Tablet Games Summit, Game Devel-
oper Conference, San Francisco, CA.

Gosele, M. and Stuerzlinger, W., 1999. Semantic constraints
for scene manipulation. In Proceedings of the 1999 Spring
Conference in Computer Graphics.

Guzdial, M. and Riedl, M.O., 2015. Game Level Genera-
tion from Gameplay Videos. Proceedings of the 2016 AAAI

26

Conference on Artificial Intelligence for Interactive Digital
Entertainment.

Harrison, B. and Roberts, D.L., 2013. Analytics-driven dy-
namic game adaption for player retention in Scrabble. Pro-
ceedings of the 2013 Conference on Computational Intelli-
gence in Games.

Microsoft, Asobo Studio, "Microsoft HoloLens - Young
Conker.” 29 Feb. 2016. Web. 31 May 2016.

Shaker, N., Liapis, A., Togelius, J., Lopes, R. and Bidara,
R., 2015. Constructive generation methods for dungeons and
levels. Procedural Content Generation in Games: A Text-
book and an Overview of Current Research

Shaker, N., Togelius, J., Yannakakis, G.N., Weber, B.,
Shimizu, T., Hashiyama, T., Sorenson, N., Pasquier, P,
Mawhorter, P., Takahashi, G. and Smith, G., 2011. The
2010 Mario Al championship: Level generation track.
IEEE Transactions on Computational Intelligence and Al in

Games, 3(4), pp.332-347.

Shaker, N., Yannakakis, G., Togelius, J., Nicolau, M., and
O’Neill, M., 2012. Evolving Personalized Content for Su-
per Mario Bros Using Grammatical Evolution. Proceedings
of the 2012 AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment.

Smith, G. and Mateas, M., 2010. Tanagra: A Mixed-
Initiative Level Design Tool. In Proceedings of the 2010
International Conference on the Foundations of Digital
Games.

Togelius, J., Yannakakis, G.N., Stanley, K.O. and Browne,
C., 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computa-
tional Intelligence and Artificial Intelligence in Games, 3(3),
pp-172-186.

Tutenel, T., Smelik, R.M., Bidarra, R. and de Kraker, K.J.,
2009, Using Semantics to Improve the Design of Game
Worlds. In Proceedings of the 2009 AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment.
Zook, A. and Riedl, M.O., 2012. A Temporal Data-Driven
Player Model for Dynamic Difficulty Adjustment. Proceed-
ings of the 2012 AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment.

