
Learning Player Tailored Content From Observation:
Platformer Level Generation from Video Traces Using LSTMs

Adam Summerville,1 Matthew Guzdial,2 Michael Mateas,1 and Mark O. Riedl2
1Center for Games and Playable Media, University of California, Santa Cruz

2School of Interactive Computing, Georgia Institute of Technology
asummerv@ucsc.edu, mguzdial3@gatech.edu, michaelm@soe.ucsc.edu, riedl@cc.gatech.edu

Abstract

A touted use of Procedural Content Generation is gener-
ating content tailored to specific players. Previous work
has relied on human identification of player profile fea-
tures which are then mapped to level generator features.
We present a machine-learned technique to train gen-
erators on Super Mario Bros. videos, generating lev-
els based on latent play styles learned from the video.
We evaluate the generators in comparison to the origi-
nal levels and a machine-learned generator trained using
simulated players.

Introduction
Procedural Content Generation (PCG) for video game levels
represents a means of creating content tailored to players,
generating content to better match a player’s style of play.
Previous work has focused on a two-step process of:

1. Perform player modeling - Either by collecting the
player’s subjective experience (via a post play survey),
recording physiological response during/after play, or by
recording play-trace data (Yannakakis et al. 2013)

2. Generate content based on (1) - Either using the player
model to set generator parameters (e.g. for the physiolog-
ical and trace based methods) or as an objective function
(typically a regression based on the subjective evaluation)

The process of collecting player data represents a time
bottleneck. With the advent of Youtube and players upload-
ing longplays, videos of a player’s entire playthrough of a
game, a large number of play-traces are available for anal-
ysis. These do not come with subjective analysis but might
come with physiological response (voice recordings might
be included as might a facial video recording), lending them-
selves to certain analysis. In addition, a player’s interaction
with a space is an implicit encoding of the content they wish
to encounter. A Super Mario player that collects every coin
and power-up will have a different play-trace from a player
that speedruns through a level. Figure 1 shows an example of
how play style could affect the learning (and therefore gen-
eration) process. Given a flat segment both players simply
run to the right, but in the presence of blocks (Segment 2)

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example of how play-style can influence
player/level co-learning and therefore co-generation.

Player A makes sure to jump and hit both while Player B
continues to run along the ground.

In this work we use Long Short-Term Memory Recurrent
Neural Networks (LSTM RNNs) to learn from play-traces
gathered from Youtube longplay videos of Super Mario
Bros.. The LSTM RNN then co-generates levels and pre-
dicted paths through said levels according to its learned la-
tent player model. By incorporating a player’s path through
the level, generated levels are more likely to be completeable
as the system learns to predict and generate paths, and more
likely to generate tailored content. A player’s interactions
with a level will bias the generator to create the type of in-
teractions it was trained on. For instance, a generator trained
on the traces of a player that jumps and hits every single ?-
block will be more likely to include ?-blocks as they are a
more integral part of that player’s traces. A player that runs
under all ?-blocks will be less likely to generate ?-blocks
due to the fact that it doesn’t matter what a player is under if
they are just running along the ground. This comes from the
ability of LSTMs to generalize well over sequences, where
the sequence in this case is a sequence of player movement
and co-occurring level geometry. The co-generation of lev-
els and paths means that the generator is holistic and will
generate levels and paths in communication with each other.

Here we present a novel machine-learning-based level

Experimental AI in Games: Papers from the AIIDE Workshop 
AAAI Technical Report WS-16-22

107



generator architecture that learns to generate levels that in-
corporate a player’s play-style from human play-traces de-
rived from video. Our contributions include (1) a low-effort
process for extracting player paths from video, (2) which are
used in an experiment demonstrating that LSTM RNN can
generate content influenced by latent player style. In the fol-
lowing sections we will discuss related work, followed by a
discussion of the data source, our machine learning method-
ology, our results and some exemplar levels, and finally con-
clude and discuss future work.

Related Work
Procedural content generation refers to the construction and
use of systems capable of generating content, typically for
a video game (Hendrikx et al. 2013). The field of player
modeling focuses on the construction of predictive models
of video game player behavior or preference (Yannakakis
and Togelius 2011). This work rests between the two fields,
interested in biasing a procedural content generator with a
particular learned player model. Prior research within this
combined space has been referred to as experience-driven
procedural content generation (Yannakakis et al. 2013).

There has been a great deal of work in procedural content
generation of Super Mario Bros. levels (Shaker et al. 2011;
Horn et al. 2014). However, the majority of this work re-
lies on human-authored knowledge in the form of rule sets,
grammars, and heuristics. Recent data-driven approaches in-
stead extract models of design knowledge from secondary
human sources including level maps and gameplay video
(Summerville and Mateas 2016; Snodgrass and Ontañón
2014; Dahlskog and Togelius 2014; Guzdial and Riedl
2016). Our work is the first to utilize the benefits of both
of these data sources to inform a generator.

Experience-driven procedural content generation has
been used in a variety of games, including shooters, rac-
ing games, and even Super Mario Bros. (Togelius, De Nardi,
and Lucas 2007; Hastings, Guha, and Stanley 2009; Shaker,
Shaker, and Abou-Zleikha 2015; Yannakakis and Togelius
2011). In such systems, the human authors define a model
of player behavior and how this model impacts the genera-
tion of content. For example in Galactic Arms Race (Hast-
ings, Guha, and Stanley 2009), how frequently the player
shoots a gun informs the heuristic for the generation of new
guns. Our approach eschews an authored, explicit connec-
tion between model and generator. Instead, our generator
learns level design and player behavior at the same time, and
then generates a level with an “intended” player path.

To the best of our knowledge there has been no prior work
in the use of gameplay video in experience-driven procedu-
ral content generation. However, there exists some work in
the use of gameplay videos for player modeling. Barbosa et
al. (2014) make use of a grammar of events to extract a “log”
of player behavior from gameplay video of Super Mario
World, but do not develop a formal player model. Hsieh and
Sun (2008) build player “strategy models” from analyzing
gameplay video by hand, but do not use these models to
generate content. Guzdial and Riedl (2016) used video to
inform a data-driven procedural content generator, but had
no model of individual players.

Figure 2: Visualization of the video parsing process.

While there has been significant work in using neural
network architectures to play games (Stanley, Bryant, and
Miikkulainen 2005; Togelius, De Nardi, and Lucas 2007;
Mnih et al. 2015), there has been relatively little work
in using them for content generation (Hoover et al. 2015;
Hoover, Togelius, and Yannakis 2015). Hoover et al. utilized
a neural network architecture to predict parameters for Su-
per Mario Bros. level features. Jain et al. (2016) made use of
autoencoders to generate low-fidelity Super Mario Bros. lev-
els. Summerville and Mateas (2016) generated Super Mario
Bros. levels with an approach similar to our own, which we
will discuss further on. To the best of our knowledge this is
the first time neural networks have been used for generating
levels to fit a learned play style.

Play Trace Extraction
In order to train our generator, We want to extract a play
trace, a record of the player’s movement through the game
world, from each video. Play traces can take a variety of
forms, including game events such as player input or enemy
deaths. For the purposes of this work we chose to record
only spatial information, the player’s path recorded as a set
of sequential states. We made this choice to minimize the
impact of any assumptions in terms of the relative impor-
tance of various game events. We represent play traces on
maps of the original game levels to better compare between
videos and to correct for noise in gameplay video.

Figure 2 visualizes the extraction of player paths. Each
frame of video is processed with OpenCV (Pulli et al. 2012),
an open machine vision toolkit, to determine its level con-
tents in a process similar to (Guzdial and Riedl 2016). Sim-
ilarly, OpenCV processes the map images for each game
level (such as the segment of game level on the right of Fig-
ure 2). The map is then broken into a set of potential frames,
representing potential placements of the in-game camera,
shown as black, white, and gray outlines in the figure. Each
potential frame has the same width of sixteen in-game tiles,
which is the same width as the in-game camera’s view width.

After the pre-processing, the system considers each frame
with a “player avatar” within it, mapping it to the closest-
matching local potential frame and calculating the global po-
sition of the player based on this mapping. As seen in Figure
2, this process is imperfect, but sufficient for our purposes.
By “closest-matching”, we indicate the use of a distance
function that transforms both frames and potential frames
to a 16x14 matrix of tile ids and then undergoes matrix sub-

108



Figure 3: Visualization of an LSTM cell. Reprinted from
(Summerville and Mateas 2016)

traction. The set of these tile ids is taken from (Summerville
and Mateas 2016). We search locally according to the prior
best potential frame in order to avoid noise in the video caus-
ing the player to “teleport”. The local search is fixed to the
eight potential frames before and after the prior best match,
allowing for up to a camera-width in movement. The end re-
sult of this process is a sequence of player positions on the
map such as Figure 1.

The current system has two additional requirements. First,
it requires annotated start and end times of level segments in
the video. This is required as the current generator does not
include “underwater” or “castle” levels. Second, the system
requires the start and end time for the entrance and exit of
bonus rooms, along with their location on the map, as it does
not currently handle the generation of bonus rooms. We look
to address both of these assumptions in future work, in order
to make the play trace extraction more general.

Method
This work builds on the prior work of Summerville and
Mateas, using LSTM RNNs to generate levels. We present
a brief overview of their approach in this section, but see
(Summerville and Mateas 2016) for greater detail. LSTMs
represent the current state of the art of sequence learning.
LSTMs were first put forth by Hochreiter and Schmidhuber
(Hochreiter and Schmidhuber 1997), but we use the mod-
ern formulation with forget gates from Gers et al. (Gers,
Schmidhuber, and Cummins 2000), visualized in figure 3.
Our neural network architecture makes use of many of these
cells, trained on transitions of tiles as we will explain further
below. The individual LSTM cells are densely connected to
all possible input nodes (the bottom light blue-layer). As in-
put comes in to a given cell it passes through the green

∏
which acts as the input gate, determining whether the in-
put makes it into the recurrent connection. If input makes
it into the recurrent connection, it is held additively in the
white

∑
node. The orange

∏
node in the second layer rep-

resents the forget gate, which allows the recurrent node to
‘forget’ its retained input. Finally, there is the output gate at
the red

∏
node at the top. This gate determines whether the

cell outputs information to further layers. Taken together,
LSTM cells can identify important input, even if it occurs
very rarely due to its selective “memory” and “forgetting”.

The LSTM RNN of Summerville and Mateas produced
generated levels that were able to be completed by an AI
(and thus were “well-formed” levels) at a rate greater than
the best human-authored rule-based system (97% vs 94%
(Summerville and Mateas 2016)), and as such forms the
baseline that we wish to compare against. To try to ensure
that this comparison is as complete as possible, we use their
data formulation and network topology as our basis. The
chosen topology is an architecture of 3 densely connected
layers that each contain 512 LSTM cells. The output of these
layers is fed to a Softmax layer that computes a categori-
cal probability distribution over tile types (e.g. “solid”, “en-
emy”, etc). Given a sequence of 200 of these tiles types (˜12
columns of history) it will predict the next tile type.

Super Mario Bros. levels can be represented as a two-
dimensional grid of tiles, but the LSTM requires transi-
tions in a linear sequence. There are many potential ways
to go from a two to one dimensional representations, but
Summerville and Mateas report that the highest performing
data formulation is what they labeled Snaking-Path-Depth,
which we use for this work.

Snaking refers to the path that the sequence takes through
the level. The sequence of tiles is derived by going column
by column, alternating up and down on each column.

Depth refers to meta-information that is included as part
of the input. To try to implicitly encode the fact that lev-
els tend to have different structures at different points, they
included 1 special character for every 10 columns into the
level (i.e. columns 0-9 had no character, 10-19 had 1, etc.0).

Path refers to the path information encoded in the level
input. A key innovation of Summerville and Mateas, this al-
lows the generator to learn to generate not just levels but also
plausible player paths within the level. To generate these
paths, they used simulated tile-level A∗ agents. We differ
from them here in the use of real player path data, rather
than path data from simulated agents.

By incorporating actual human paths extracted from the
previously mentioned YouTube longplays, our LSTM RNN
is able to learn not just the physics and dynamics that the A∗

agents afford, but also individual player style. Players will
stop, stutter, take side-diversions to collect coins or power-
ups, or go out of their way to defeat enemies. All of these
are missteps or mistakes for an agent attempting to play op-
timally, but represent the way the majority of humans ap-
proach platformer levels.

We chose to use the Summerville and Mateas tile types
to better compare to their generated levels. The tile types
are Solid, Enemy, Destructible Block, Question Mark Block
With Coin, Question Mark Block With Power-up, Coin, Bul-
let Bill Shooter Top, Bullet Bill Shooter Column, Left Pipe,
Right Pipe, Top Left Pipe, Top Right Pipe, and Empty. It
should be noted that certain interactive sprites are catego-
rized in ways that might result in a misunderstanding of the
dynamics of the level, as Summerville and Mateas chose
to ignore springs and moving platforms. Future work is re-
quired to better encode levels to fully capture all of the dy-

109



Avg. Time Distance Ratio Bonus %
Video A 101.7 2.87 93.3%
Video B 61.8 2.88 83.3%
Video C 48.1 2.57 0%
Video D 48.1 3.14 35%%

Table 1: Descriptive metrics for each video.

namics.

Evaluation
For this work we generated 5 variant LSTM RNNs. We ex-
tracted player paths from four distinct full playthroughs of
Super Mario Bros. and trained four individual LSTM RNNs
and one combined model. We wished to test if the LSTM
RNNs could learn the specific style of the player and in-
corporate that into generating levels. We incorporated all of
the video traces into one final model. Our hypothesis was
that a “combined” model could best create levels like the
original Super Mario Bros. We hypothesize that the design-
ers created levels to support many different styles, and so a
combined representation of multiple styles should better re-
flect the original game. We provide a brief overview of the
four different videos in Table 1. Note that this information
is never made available to the generator. Rather, this infor-
mation is demonstrative of high-level differences between
generators.

“Avg. Time” indicates the average amount of time that
player spent on a level in that video. “Distance Ratio” rep-
resents the average distance traveled by the player relative
to the optimal path distance as determined via an automated
A∗ player. “Bonus %” indicates the percentage of “bonus
rooms” that player visited. It should be clear from these met-
rics that each video represents a distinct style of play.

We chose to compare the output of our generators
to determine if they encoded player style. To perform
this evaluation we followed Summerville and Mateas and
used each generator to generated 4000 levels, 2000 with
their “above-ground” seed and 2000 with their “below-
ground” seed. For comparison we used the previously gen-
erated levels from (Summerville and Mateas 2016) found
at http://tinyurl.com/SMBRNN (SPD in the table) and the
original Super Mario Bros. levels (SMB in the table). With
the SPD levels we can compare the results of generating lev-
els with a generator trained on simulated player paths to one
trained on human player paths, and with the SMB levels we
can compare our levels to those designed by a human expert.

We ran two distinct evaluations across these seven sets
of levels. For the first we made use of 7 of the designer-
focused metrics (Horn et al. 2014; Canossa and Smith 2015)
from Summerville and Mateas: l (the leniency, an approxi-
mation of difficulty), R2 (the linearity, how closely the level
matches a straight line), i (percentage of objects Mario can
interact with), e (percentage of empty space), n (percentage
of negative space), p (percentage of level taken up by opti-
mal path), j (# of jumps), and ji (# of induced jumps). These
metrics allow us to determine in what ways, if any, the gen-
erated levels differ from one another structurally. We used

l R2 i e n p j ji
K-W α β α α β α β β
M-W C D D SMB C, D A SMB

Table 2: For each metric whether the Kruskal-Wallis (K-W)
test found a significant difference between the generators
(α ⇒ p < 1e−10, β ⇒ p < 1e−5), and for each met-
ric which generators were found to be significantly different
from the Mann-Whitney test (M-W).

Figure 4: Example output generator A.

the Kruskal-Wallis test to determine if any of the genera-
tors differed from the rest in a statistically significant way
for each of these metrics. We also used the Mann-Whitney
test to determine which of the generators were significantly
different from the rest, using a Bonferroni correction given
the post-hoc nature of the analysis. Both the Kruskal-Wallis
and Mann-Whitney are non-parametric tests that determine
if two samples come from different distributions but make
no underlying assumptions about the distributions (unlike
Student’s t-test which assumes a Normal distribution).

The second of these two evaluations made use of Guzdial
and Riedl’s learned Super Mario Bros. models (Guzdial and
Riedl 2016). These models have been shown to score levels
in a way that correlates strongly with human players’ per-
ception of level style. Therefore this evaluation allows us to
determine if the levels differ from the original Super Mario
Bros. level style. For further information on these models
please see (Guzdial and Riedl 2016).

Design Metrics Results
We calculated the seven metrics for each of the 4000 output
levels from each generator, with the results of this evalua-
tion summarized in Table 2. With the Kruskal-Wallis test we
were able to reject the null hypothesis that all of the gener-
ators came from the same population (p<1e-5). We further
confirmed that for each metric except leniency, one genera-
tor differed significantly from all the others via the Mann-
Whitney U test. We represent in bold the median values of
the distributions that differed significantly lower or higher
than all the others (p<0.01). Even though for leniency (l)
there was no one generator ranked higher or lower than the
rest, the Kruskal-Wallis test rejected the null hypothesis. We
visualize the distributions of values for each metric in Figure
5.

To better illustrate the generator’s success in learning
player style we address each of the individual video gen-
erators, referring back to the metrics in Table 1:

A) Player A visited nearly every single bonus room. Given
that the generators do not generate bonus areas, this ap-
pears as “teleporting” to them (the player path disappear-
ing and reappearing later in a generated level). While
none of the metrics capture this, we see that the output

110



Figure 5: Boxplots for all of the metric evaluations.

of generator A incorporates more teleportation than any
other generator as evidenced by Figures 4 and 6.

B) Player B was very much “in the middle” for all the met-
rics we captured in Table 1, similarly none of its distribu-
tions dominated any others. We cannot point to a set of
characteristics that make this generator unique, but given
how “average” player B was, we argue this is actually a
positive sign.

C) Player C sped through each level, and went into no
bonus areas. Generator C, as can be seen in Table 2
and Figure 5 has significantly lower p, and significantly
higher R2 than any other generator, indicating it pro-
duces flatter levels, where the optimal path requires little
exploration.

D) Player D traveled the furthest average distance of the
four players. From the video we note this is due to the
player going out of the way to collect items and destroy
enemies. In Table 2, generator D had significantly higher
i (interaction percentage), significantly lower e (empty
space percentage), and significantly higher p (percent-
age of levels taken up by optimal path). This indicates
that generator D creates levels that allow for more inter-
action and require more movement.

The differences in each generator provide strong evidence
that the generators learned to reflect individual play style.

SPD A B C D ALL
p-value 0.66 6e-3 2.8e-3 0.03 1e-5 0.3

Table 3: p-values for Mann-Whitney U test between each
generator and SMB in terms of style metric.

Style Model Results

We summarize the results of the style metric evaluation in
Table 3. For this evaluation, we use a scoring metric that
captures the average probability of level components, and
has been shown to correlate strongly with human subject’s
level “style” rankings (Guzdial and Riedl 2016). We score
each level from each generator, giving us a distribution of
style scores. We then compare each generator’s distribu-
tion to the original Super Mario Bros. Note that these Super
Mario Bros. levels were the same used for the play trace ex-
traction, thus they did not include bonus rooms. We report
the outcome of this test in Table 3 with significant values in
bold (p<0.01). In other words, bold p values suggest that,
that generator differs stylistically from Super Mario Bros..

From the table we see that all Video generators, except
for Video C, differ significantly in terms of this style metric.
However, the combined generator of all videos did not dif-
fer significantly. This offers support to our hypothesis that
a combination of different play styles would better match
the original Super Mario Bros. levels, specifically in terms

111



Figure 6: Above Ground Level 1223 from Video A

Figure 7: Under Ground Level 689 from Video B

Figure 8: Under Ground Level 143 from Video C

Figure 9: Above Ground Level 530 from Video D

Figure 10: Under Ground Level 488 from All Videos

of level design style. Generators C and SPD, the artificial
player, did not differ significantly from the original Super
Mario Bros. levels. For SPD we contend this is due to the
artificial agent taking near-optimal paths through each level,
therefore not biasing the generator to increase non-essential
elements from what is found in the original levels. As can be
seen in Table 1, Video C is the most like the artificial agent
of any human players, taking the least amount of time, with
the minimal exploration, and without going to any “bonus
areas”.

Example Output

In this section we present a set of randomly sampled lev-
els from each of the video generators, seen in Figure 10.
To see each of the 4,000 levels generated for each genera-
tor, go to http://tinyurl.com/SMB-from-Video.
While some of these generators demonstrate a less than per-
fect understanding of Mario’s mechanics, overall they output
playable, interesting levels.

Conclusions and Future Work
We are altogether pleased with the performance of our gen-
erators, however there are a number of features of the orig-
inal Super Mario Bros. they do not encode. We previously
mentioned that they do not handle any level elements that af-
fect Mario’s movement (e.g. springs and moving platforms),
but they also currently do not represent any “decorative” el-
ements. We look to extend the generators in future work.
Also, though our process is successfully statistically biasing
levels based on implicit play style, a further study would be
needed to determine the effect of this biasing on a player’s
subjective experience.

Experience driven procedural content generation research
has to this point been hampered by the need to collect player
data via in-person experiments or from some corpus. With
this paper we demonstrate a vast alternative source for this
work and demonstrate its viability. In this paper we discuss
an approach to encode play style in level generators, via ex-
tracting player paths from video. We demonstrated the pro-
cess for extracting the path from video and how this infor-

112



mation feeds into an LSTM RNN. Through two evaluations
on the output of these generators we demonstrated both that
the generated levels differed significantly from each other,
and that the generated levels appeared to match the style of
the player whose video each was trained on. Taken together
this represents a system capable of biasing generated output
to match any potential player, only requiring video of that
player playing the game.

References
Barbosa Jacob, L.; Kohwalter, T. C.; Clua, E. W.;
De Oliveira, D.; and Machado, A. F. 2014. A Non-intrusive
Approach for 2D Platform Game Design Analysis Based on
Provenance Data Extracted from Game Streaming. In Com-
puter Games and Digital Entertainment (SBGAMES), 2014
Brazilian Symposium on, 41–50. IEEE.
Canossa, A., and Smith, G. 2015. Towards a Procedural
Evaluation Technique: Metrics for Level Design. Proceed-
ings of the Tenth International Conference on Foundations
of Digital Games 7:8.
Dahlskog, S., and Togelius, J. 2014. A Multi-level Level
Generator. In 2014 IEEE Conference on Computational In-
telligence and Games (CIG), 1–8. IEEE.
Gers, F. A.; Schmidhuber, J.; and Cummins, F. 2000. Learn-
ing to forget: Continual prediction with LSTM. Neural com-
putation 12(10):2451–2471.
Guzdial, M., and Riedl, M. 2016. Learning to Blend Com-
puter Game Levels. In Proceedings of the Seventh Interna-
tional Conference on Computational Creativity.
Hastings, E. J.; Guha, R. K.; and Stanley, K. O. 2009. Evolv-
ing Content in the Galactic Arms Race Video Game. In
2009 IEEE Symposium on Computational Intelligence and
Games, 241–248. IEEE.
Hendrikx, M.; Meijer, S.; Velden, J. V. D.; and Iosup, A.
2013. Procedural Content Generation for Games: A Survey.
ACM Trans. Graph. 9(1):1:1–1:22.
Hochreiter, S., and Schmidhuber, J. 1997. LSTM can Solve
Hard Long Time Lag Problems. Advances in Neural Infor-
mation Processing Systems 473–479.
Hoover, A. K.; Cachia, W.; Liapis, A.; and Yannakakis,
G. N. 2015. Audioinspace: Exploring the creative fusion
of generative audio, visuals and gameplay. In Evolution-
ary and Biologically Inspired Music, Sound, Art and Design.
Springer. 101–112.
Hoover, A. K.; Togelius, J.; and Yannakis, G. N. 2015. Com-
posing Video Game Levels with Music Metaphors through
Functional Scaffolding. In Proceedings of the First ICCC
Workshop on Computational Creativity and Games.
Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius,
J. 2014. A Comparative Evaluation of Procedural Level
Generators in the Mario AI Framework. Proceedings of the
Ninth International Conference on Foundations of Digital
Games.
Hsieh, J.-L., and Sun, C.-T. 2008. Building a player strategy
model by analyzing replays of real-time strategy games. In

2008 IEEE International Joint Conference on Neural Net-
works, 3106–3111. IEEE.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for Level Generation, Repair, and Recogni-
tion.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level Control through
Deep Reinforcement Learning. Nature 518(7540):529–533.
Pulli, K.; Baksheev, A.; Kornyakov, K.; and Eruhimov, V.
2012. Real-time Computer Vision with OpenCV. Commun.
ACM 55(6):61–69.
Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;
Mawhorter, P.; Takahashi, G.; et al. 2011. The 2010
Mario AI championship: Level generation track. Compu-
tational Intelligence and AI in Games, IEEE Transactions
on 3(4):332–347.
Shaker, N.; Shaker, M.; and Abou-Zleikha, M. 2015. To-
wards Generic Models of Player Experience. In Proceedings
of the Eleventh AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment. AAAI Press.
Snodgrass, S., and Ontañón, S. 2014. Experiments in Map
Generation using Markov Chains. In Proceedings of the
Ninth International Conference on Foundations of Digital
Games.
Stanley, K. O.; Bryant, B. D.; and Miikkulainen, R. 2005.
Real-time neuroevolution in the NERO video game. IEEE
Transactions on Evolutionary Computation 9(6):653–668.
Summerville, A., and Mateas, M. 2016. Super Mario as a
String: Platformer Level Generation Via LSTMs. In Pro-
ceedings of the First International Conference of DiGRA
and FDG.
Togelius, J.; De Nardi, R.; and Lucas, S. M. 2007. To-
wards Automatic Personalised Content Creation for Racing
Games. In 2007 IEEE Symposium on Computational Intel-
ligence and Games, 252–259. IEEE.
Yannakakis, G. N., and Togelius, J. 2011. Experience-driven
Procedural Content Generation. Affective Computing, IEEE
Transactions on 2(3):147–161.
Yannakakis, G. N.; Spronck, P.; Loiacono, D.; and André,
E. 2013. Player Modeling. In Lucas, S. M.; Mateas,
M.; Preuss, M.; Spronck, P.; and Togelius, J., eds., Ar-
tificial and Computational Intelligence in Games, vol-
ume 6 of Dagstuhl Follow-Ups. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. 45–59.

113




