
Proceduralist Readings, Procedurally

Chris Martens, Adam Summerville, Michael Mateas
Joseph Osborn, Sarah Harmon, Noah Wardrip-Fruin, Arnav Jhala

UC Santa Cruz
{crmarten,asummerv,michaelm,jcosborn,smharmon,nwf,jhala}@ucsc.edu

Abstract

While generative approaches to game design offer great
promise, systems can only reliably generate what they
can “understand,” often limited to what can be hand-
encoded by system authors. Proceduralist readings, a
way of deriving meaning for games based on their
underlying processes and interactions in conjunction
with aesthetic and cultural cues, offer a novel, sys-
tematic approach to game understanding. We formal-
ize proceduralist argumentation as a logic program that
performs static reasoning over game specifications to
derive higher-level meanings (e.g., deriving dynamics
from mechanics), opening the door to broader and more
culturally-situated game generation.

Introduction
Games make use of a broad range of communication mech-
anisms. Through sensory affordances, processes, and inter-
action rules, as well as standard semiotic systems from other
media, including visual imagery, verbal language, and their
interaction with human psychology, a game may communi-
cate rich arguments and emotional experiences. For exam-
ple, Molleindustria’s The Free Culture Game1 and Vi Hart
and Nicky Case’s Parable of the Polygons2 each make polit-
ical arguments by operationalizing human-driven processes
like commodification and segregation as emergent dynamics
arising from player interaction.

To understand the meaning of a game requires account-
ing for each of these mechanisms and where they interact.
Treanor et al. proposed proceduralist readings, a process of
deduction that allows one to discuss dynamics, aesthetics,
and higher-level meanings on the basis of a game’s mechan-
ics and cultural knowledge about the significance of sensory
cues like colors and icons (Treanor et al. 2011). They refer
to the result of this process as a meaning derivation, a tree-
structured logical argument for any given interpretation of
what a game communicates.

The Mechanics, Dynamics, and Aesthetics (MDA) frame-
work of Hunicke et al. (Hunicke, Leblanc, and Zubek 2004)
posits that at the base level games are composed of small

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.molleindustria.org/en/freeculturegame/
2http://ncase.me/polygons/

mechanics that interact with each other to form the dynam-
ics of the game. The dynamics of the game in turn affect a
response in the player, i.e. the aesthetics of the game. In this
work we present an operationalization of proceduralist read-
ings that enables automated game understanding: a com-
putational encoding of how to derive higher-level knowl-
edge (dynamics) from lower-level knowledge (mechanics).
Moreover, by incorporating cultural and phenomenological
knowledge we can derive aesthetics from the inferred dy-
namics. This process is performed using Answer Set Pro-
gramming (ASP) to statically derive all of these properties
without need for simulation.

The game description language underlying this work
builds on the Operational Logics (OL) framework (Wardrip-
Fruin 2005; Mateas and Wardrip-Fruin 2009). An OL is a
bundle of game state together with operations for observing
it, changing it, and communicating that state to players; for
example, a graphical collision logic is one whose state is
groups of pixels, whose observations include whether those
groups are overlapping, that affords changes to spatial posi-
tion, and whose communicative strategies include the graph-
ical rendering of object movement. OLs can also describe
game elements involving textual communication, puzzle sit-
uations, resource transactions, and object properties, on their
own terms. Situating our work within the framework of OLs
allows us much more flexibility in terms of game style and
mechanics. For instance, a high watermark for game analysis
would be automated understanding of the political themes in
Papers, Please, whose mechanics are not well-captured by
arcade-style collision logics found in representation systems
like the Video Game Description Language (VGDL) (Schaul
2013), which only affords directional input and a single but-
ton.

While this work focuses on the automated reasoning
about games, our ultimate goal is to generate games from
meaning specifications. By using a declarative modeling
technique, ASP, we can create a body of reasoning princi-
ples whose operational behavior is bidirectional: the rules
relate high-level meanings to game instantiations (detailed
mechanics) without imposing a pipeline ordering from one
to the other. We can hold the game instantiation fixed and
use the rules to infer high-level meanings (a la static analy-
sis over game mechanics)—the main result described in this
paper—or, going forward, we can hold the high-level mean-

Experimental AI in Games: Papers from the AIIDE Workshop 
AAAI Technical Report WS-16-22

53



ings fixed (design intents) to generate a game. We further
discuss this ongoing work in the last section.

We contribute a formalized theory of deriving game dy-
namics from mechanics, as well as aesthetics from dynamics
given cultural knowledge models. Among the dynamics de-
rived are approximated player models based on static analy-
sis of game rules.

Related Work
The most closely-related work is Game-o-Matic (Treanor
et al. 2012a), which similarly combines cultural knowledge
with mechanics to generate playable games from meaning
descriptions. It makes use of “micro-rhetorics” to represent
primitive mechanics paired with player interpretations of
game entity verbs (e.g., support, eat, destroy, etc.). The work
presented here generalizes from Game-o-Matic in a number
of ways. First, Game-o-matic only represents and reasons
about game rules related to movement and collision detec-
tion (graphical logics in operational logic parlance), while
the work presented in this paper captures a broader range
of operational logics. Second, its notion of game meaning
is restricted primarily to single-layered mappings between
mechanics and represented game verbs, with no explicit rea-
soning related to game dynamics. In contrast, the work rep-
resented in this paper operationalizes meaning derivations to
capture both broader and more abstract notions of dynamics
and game meaning. Finally, Game-o-Matic is a pipelined ar-
chitecture that can move from a game specification in the
form of game entities with desired verb relationships to a
game, while the work presented in this paper uses a con-
straint satisfaction framework to be able to move from de-
sired dynamics and meanings to games, or games to inferred
dynamics and meanings, in a single framework. This paper
has focused on the latter, which can be considered a gener-
alized form of “reverse Game-o-Matic.”

Prior work in game generation also deals with inferring
relationships between formalized games and meanings or
constraints (the inputs to the generator). One game genera-
tion system (Nelson and Mateas 2007) incorporates meaning
through WordNet and ConceptNet and characterizes games
in terms of patterns found in their generation target, Wari-
oWare games, such as avoid and acquire. Our system can
express a broader, finer-grained space of mechanics, and ex-
press meaning in more systematic terms. The Variations For-
ever (Smith and Mateas 2010) system similarly uses ASP to
search a fine-grained space of possible mechanics but does
not make any attempt to relate generation to high-level con-
ceptual meaning, nor is the generative space broad enough
to express general resource or non-graphical-logic games.
Finally, the Angelina system has generated games based on
theme in the context of the Ludum Dare game jam (Cook
and Colton 2014a). Angelina uses a data-driven approach
based on word association databases and does not systemat-
ically relate mechanics to meaning.

Previous work has used Answer Set Programming to gen-
erate mechanics in a form similar to the one used in this
work (Zook and Riedl 2014) . That work defined a me-
chanic as a set of preconditions and effects, but was lim-
ited to “avatar-cetnric” mechanics and no effort was cho-

sen to find the underlying meaning/semantics of the me-
chanics, simply playability constraints. Work by Cook and
Colton (Cook and Colton 2014b) used a process known as
Google milking to find semantically meaningful pairings to
map onto existing mechanical constructs (e.g. to find an item
to heal, they searched for “Why do kids eat” and took the
top result “boogers” to find an item to heal the player “kid”
character), but this work focused on mapping semantics to
pre-existing mechanics.

Reasoning over the structures of a game has also been
a topic of research for General Game Playing (GGP) sys-
tems. The earliest work (Kuhlmann, Dresner, and Stone
2006) examines the syntactic structures of the first-order
logic program that defines a GGP game to learn underly-
ing game structures. This system could answer very basic
questions, e.g., “Is this a successor function?” or “Is there
a board?” Later work by Schiffel and Thielscher (Schiffel
and Thielscher 2007) extended this work to be able to de-
termine if something represents a quantity (such as number
of points). Due to the fact that the players are given no type
information and very limited semantic information for the
logic programs that make up a GGP game, even these ba-
sic tasks are arduous—determining if there are numbers or
a board has to be teased out from the syntax. Our formalism
lends itself to discovering higher level structures due to the
fully-specified semantics.

Approach
The originators of the term “proceduralist reading” demon-
strate, through example, the process of constructing meaning
derivations, or bodies of knowledge about a game that are
built up in a proof-tree-like structure from axiomatic facts
such as mechanics and thematic elements (Treanor et al.
2011). The lowest-level inferences of a meaning derivation,
e.g., A collides with B, synthesize time-varying audiovisual
content (moving images which change behavior when over-
lapping) with subjective expectations of simulated systems
(2D physical space, agents). Further inference of A eats B
may be possible by combining cultural knowledge and sim-
ulated behavior, for example if A appears as a predatory
animal and B as prey and B shrinks or disappears when
touched. The former type of inference connecting observ-
able phenomena to the evolution of the system’s implied
simulation is directly supported by one or more operational
logics , in this case a collision logic. The latter type lever-
ages an interpretive affordance (eating) satisfied by both the
theming and simulation behavior.

Given the language of operational logics, one may define
mechanics (e.g., “the cursor exerts a force on particles”),
atomic pieces of cultural knowledge (e.g., “the color green
represents life”), and communication strategies (e.g., “a me-
ter display communicates the state of a resource”). From
these specified knowledge components, the task of game un-
derstanding is to derive higher-order knowledge like “the
ball moves perpetually back and forth unless the player in-
tervenes,” an example of deriving a dynamic from mechan-
ics in the language of the MDA framework. We must note
that the cultural knowledge assumes a specific cultural view-
point (e.g. green represents life and nature in America, in-

54



dependence in Mexico, and infidelity in China). Due to the
modular nature of our approach, one can specify many dif-
ferent cultural contexts and swap them to see how differ-
ent cultures might perceive the same game. For the purposes
of this work, we codified an American, westernized cultural
viewpoint representing the assumptions we perceived in our
chosen examples.

Proceduralist readings provide a solid foundation for the
human activity of game understanding, in which a reader
thinks critically about which pieces of the game offer which
interpretive affordances. We build on this work by formal-
izing this reasoning as a computer program such that we
can autonomously derive high-level knowledge, including
culturally-informed critical readings, from an input game
description.

Explanatory example
One example carefully studied by Treanor et al. is The Free
Culture Game, in which “new ideas” are represented as
floating particles that must be herded towards producers in
the creative commons to keep them inspired (creating new
ideas) and away from the vectorialist, who takes ideas out
of the creative commons to commodify them for consumers.
The player exerts an indirect force via the mouse cursor on
new ideas. Several proceduralist readings are extrapolated
from these mechanics together with the game’s interpretive
affordances, such as the colors selected for producers versus
consumers (green versus grey) and the robotic and malicious
audio-visual character of the vectorialist. For example, they
read the following meanings from the game:

1. The player must navigate the cursor between the vectori-
alist and new ideas to prevent commodification.

2. The vectorialist is an evil adversary who does not care
about the happiness of people.

They derive these meanings from a number of implicit
rules, which they call dynamics. We read these as equivalent
to (Salen and Zimmerman 2004)’s constitutive mechanics,
though we will use the term dynamics here to avoid confu-
sion. For example, the first inference shown on the path to
deriving Meaning 1 is:

Because producers need new ideas to collide with them
in order not to turn into consumers, the player’s goal is to
maintain as many producers as possible, and the player can
exert a force on the new ideas, the player will push new ideas
towards producers. (Dynamic 1)

This derivation can be made more explicit by identifying
the base assumptions that can be directly observed about the
game, then building the argument in a tree structure:

Base assumptions:

1. The goal is to maintain producers.

2. When the ideas absorbed by a producer go below a thresh-
old, the producers convert into consumers.

3. When a producer collides with a new idea, the ideas ab-
sorbed increases.

4. The cursor pushes new ideas.

Meaning derivation:
By
1, 2 5. The goal is to maintain ideas absorbed.
3, 5 6. The player wants the producer and new

ideas to collide.
6, 4 7. The player will use the cursor to push new

ideas toward the producers.
While this kind of reasoning structure constitutes an ini-

tial step towards formalism, they need further development
to constitute a general, computable theory. Even this sim-
ple derivation of a dynamic from mechanics requires quite
a few more intervening steps to close all of the gaps with
formal inference. Specifically, formal inference systems re-
quire that each step of reasoning (i.e., each line in the proof)
be justified by some general principle that we are applying
to the specific terms of our argument. Such principles might
be characterized through rules like:

• If the player’s goal is G and action A accomplishes G, the
player will do action A.

• Pushing an entity E with an entity P causes E to move
away from P .

• An entity moving away from something might move to-
ward another entity.

• When E moves toward X , E and X might collide.

Each of the variables in the rules described above is
implicitly universally quantified, such that the formal-
ization of each rule is simply a first-order logical for-
mula, e.g., ∀G,A. goal(G) ∧ accomplishes(A,G) ⇒
playerWillDo(A)

Our formalization of proceduralist arguments thus con-
sists of two pieces: a specification of the game’s mechanics
and communication choices (hereafter “the specification”)
and a collection of general rules like the above for rea-
soning over specifications (hereafter “the reasoning princi-
ples”). We encode both of these pieces in an Answer Set
Programming (ASP) system, i.e., as a logic program inter-
pretable by an answer set solver.

Operational Logics
The logical statements above refer to several independent
domains: a player model that assumes the player wants to
achieve the game’s goals; a physics simulation described in
terms of forces exerted; entity movement and collision tied
to the graphical rendering of sprites on the screen; and the
increase and decrease of quantities like a producer’s current
“inspiration” level. We can describe these domains in terms
of operational logics (OLs); since proceduralist readings are
grounded in OLs, assigning them a logical semantics here
is a natural move. Operational logics provide a common
vocabulary to address diverse types of interactive media,
games included. As formulated in (Mateas and Wardrip-
Fruin 2009), each OL provides both a set of abstract opera-
tions and a communicative strategy for showing interactors
the game state over which the operations work and the ac-
tivity of those operations proper.

In the Free Culture game, we see, among others: a re-
source logic with abstract operations like increasing or de-

55



Figure 1: Mechanics interactions in The Free Culture Game.
We represent outcome names as filled nodes and causal in-
fluence as directed edges.

creasing the happiness of each producer, communicated by
color tones; a collision logic governing the collisions of
entities, communicated by drawing them on a 2D canvas;
a character-state logic whose operations include switching
the movement behavior of the vectorialist or creating and de-
stroying producers; a simple movement physics logic defin-
ing and enacting equations of motion for each entity; and a
control logic which connects the mouse input to the move-
ment of the cursor. Taken together, this combination is tradi-
tionally called a “graphical logic,” though strictly speaking
that term is a shorthand for any operational logic which com-
municates primarily through graphical channels (as opposed
to e.g., textual ones). We further subdivide the abstract oper-
ations of an OL into observations (like determining whether
two objects overlap, or whether a resource quantity exceeds
a threshold) and changes (like dynamically altering which
objects an entity collides with, or causing a resource to in-
crease in quantity). Our ASP encoding reifies these abstract
operations and their connections to visible game state, yield-
ing the atoms of which game mechanics are composed. With
OLs as our primitive constructs, we can describe game me-
chanics as a collection of named outcomes that have precon-
ditions and results, similar to linear logic-based game spec-
ification in Ceptre (Martens 2015) or the sensors and actors
of Kodu (Stolee and Fristoe 2011). Preconditions and results
map onto the observations and changes, respectively, of OL
transactions. In the next section, we explain this formaliza-
tion language by example.

Examples

Our formalization efforts currently consist of the reason-
ing principles, a body of rules that enable deriving higher-
level meanings from game specifications, together with sev-
eral examples. 3 The reasoning principles stay fixed, while
the primary input, the specification of a game’s mechanics,
varies according to what queries we wish to have answered.
Here we give one example in depth to illustrate the approach.

3The code is available at https://github.com/LudoNarrative/
ClimateChange/tree/master/GameGenerator/Justifications

The Free Culture Game
First, we describe our encoding of the Free Culture Game’s
mechanics into ASP predicates. One such mechanic is The
vectorialist pulls in new ideas, which we describe as:
%% Mechanic (4): The vectorialist pulls in new ideas.
precondition(near(vectorialist, new_idea), pull_idea).
result(pull_idea, move_toward(new_idea, vectorialist)).

This pair of rules establishes that pull_idea is an
action that may occur in the game, that its sole precondition
is that the vectorialist is near a new idea, and that its
result is for the new idea to move toward the vectori-
alist. The predicate near(vectoralist, new_idea)
is an example of a condition and the predicate
move_toward(new_idea, vectorialist) is an ex-
ample of a result.

The following three mechanics establish the relationships
between producers, new ideas, and the player:
%% Mechanic (1): Producers make new ideas
precondition(slow_timeout, gen_idea).
result(gen_idea, add(new_idea)).

%% Mechanic (2): The cursor exerts force on ideas.
precondition(near(cursor, new_idea), push_idea).
result(push_idea, move_away(new_idea, cursor)).

%% Mechanic (6): Collision between new idea & producer
%% increases ideasAbsorbed.
precondition(collide(new_idea, producer), inspire).
result(inspire, increase(ideasAbsorbed, mid)).

We also specify the game’s goal of prevent pro-
ducers from turning into consumers with a fact
goal(prevent(convert_producer)). Figure 1. provides
a visualization of the entities and how they relate to one
another through mechanics.

Reasoning Principles Next, we need to introduce rules
for deriving consequences of mechanics knowledge. We
generate logical knowledge of game dynamics on the basis
of mechanics plus generic knowledge about how mechan-
ics relate to one another through the progression of time.
Again, we interpret game dynamics precisely as constitutive
mechanics, those “logically implied by the game’s mechan-
ics” (Nelson and Mateas 2009). Of course, “what follows
logically” from a game’s dynamics depends on the logical
theory in place. While the principles of first-order logic al-
low us to instantiate generalizations with specifics and apply
implications to known premises, exactly the content of those
generalizations and implications remains a contingent body
of knowledge to be authored. It requires logical modeling
of game phenomena and their relationship in terms of the
causal phenomena we wish to model. For example, to derive
a dynamic that “the player will do” something, we need to
know that the action (a) will create a favorable condition and
(b) is controlled by the player. We write such a rule in logic
program notation as:
playerWillDo(Cond, Outcome) :- playerCreatesCondition(Cond),

conditionEnables(Cond, Outcome),
outcomeFavorable(Outcome).

We also give meaning to the operators of operational log-
ics in terms of how they link together, i.e., how the results of
operators in each OL enable certain conditions (in the same
or other OLs). For example, two entities moving toward each

56



other may cause the “collide” condition between them, and
increasing a resource may eventually cause it to satisfy the
condition of being over a certain threshold. We formalize
this relationship between results enabling conditions as a se-
ries of rules, including:
• Entities moving toward one another enables their colli-

sion.
• Entities moving away from one another enables their col-

lision with other entities.
• Increasing (decreasing) a resource enables a high (low)

threshold to be met.
In this regard, the game’s specific rules and the general

reasoning principles form two halves of a game’s mean-
ing: the game specification connects conditions to results
(through explicit mechanics) and the reasoning principles
connect results to conditions (through a semantic, approx-
imated interpretation of each result).

To connect high-level ideas like an outcome is favorable
with low-level models of game world domain knowledge,
we introduce a number of rules resembling static analy-
ses over a game’s specification code. Positive and negative
valence—whether, e.g., an outcome or resource is consid-
ered favorable—is derived from this information along with
cultural knowledge. These valences extend recursively to re-
late to entities and player goals, which then inform the player
model and connotation of other game agents as harmful or
helpful. As an example, the meaning derivation in Section
found a derived goal, maintaining ideas absorbed, from the
stated goal (prevent producers from converting) and one of
the mechanics. We use a reasoning principle that states, if
the goal is to prevent an outcome O that has a a low thresh-
old on resource R as a precondition, then maintaining R is
a goal. With O instantiated as the producers converting rule,
R maps to the “ideas absorbed” resource and we deduce that
maintaining that resource is a goal.

Thematic and Cultural Information In order to derive
aesthetics and culturally-informed meanings, we represent
some assumptions about mappings between audiovisual
stimuli and conceptual notions (like mood and political con-
notation) that we wish to reason over. For example, some
relevant assumptions for The Free Culture Game are that the
color green represents a more healthy, positive color for a
producer; that producers and consumers are shaped like peo-
ple, which has a positive connotation; that black can con-
note evil, and that the vectorialist image is represented by a
machine-like, black image. We include assumptions of this
form in a separate module of predicates, allowing us to run
the analysis and observe the resulting interpretation with and
without these assumptions.

Output The answer sets generated by ASP when given
the game specification, our rules, and our cultural reasoning
module produce the following inference:

The goal is to maintain ideasAbsorbed. The outcome
forget affects ideasAbsorbed negatively, and the out-
come learn affects it positively, meaning that learn is
a favorable outcome. The player has agency over the
cursor and uses the cursor to influence the outcome

goal(maintain(ideasAbsorbed))
outcomeAffects(ideasAbsorbed,forget,negative)
outcomeAffects(ideasAbsorbed,learn,positive)
outcomeFavorable(learn)

playerAgency(cursor)
entityInfluences(cursor,push_idea(cursor))
enables(push_idea(cursor),learn)

playerWillDo(near(cursor,new_idea),push_idea(cursor))

destroys(vectorialist,new_idea)
requiredBy(new_idea,push_idea(cursor))
antagonist(vectorialist)

outcomeBetterThan(producer,initial,forget)
outcomeBetterThan(producer,learn,forget)

Figure 2: A subset of facts derived for the Free Culture
Game.

push_idea(cursor) which in turn enables the outcome
learn by pushing ideas towards the producers. As such
learn is a favorable outcome that the player has indi-
rect control over via pushing ideas with the cursor, so
the player will place the cursor near new_ideas to try
to enact the learn outcome. Furthermore, collision with
the vectorialist deletes new_ideas (which we label
destroys) which are required for a player to influence the
outcome push_idea(cursor). An entity not not under the
control of the player that destroys an entity required for
the player’s progress is an antagonist (although not the
only possible form of antagonism representable), thus the
vectorialist is an antagonist. The predicate representa-
tion of these derived facts is in Figure 2.

Cultural knowledge about colors (that green represents
life and grey a lack of life) leads to the interpretation that
the outcome labeled as forget leads to a worse outcome
for the producer than either its initial state or its state as a
result of the outcome learn.

Other formalizations
In addition to the example we have described in detail, we
have also formalized and derived reasoning about a handful
of other games, including Julien Thiennot’s Cookie Clicker4,
the classic arcade games Pong and Kaboom!, and four games
of our own design.

Cookie Clicker is a resource-driven game that does not
rely on spatial movement logics, where the goal is to boot-
strap automated cookie-production systems that escalate to
a constantly-growing tower of upgrades and achievements.
The key dynamics in the game are feedback loops and
investment—e.g., spending a relatively small amount of
cookies to purchase an upgrade leads to the permanent faster
production of cookies. We formalize mechanics such as
clicking on a cookie increases cookies, time passing causes
cookies to increase by “cookies per second”, and buying a
producer increases cookies per second by that producer’s
production rate, subtracts cost from number of cookies, and
increases the subsequent cose of the producer. As there is no
extrinsically-stated goal in Cookie Clicker, we have to sup-

4http://orteil.dashnet.org/cookieclicker/

57



ply cultural knowledge to the encoding in order to provide a
basis for understanding the game. Namely, we add the fact
that cookies are good to represent the likely player interpre-
tation of cookies as desirable. The system determines that
it costs cookies to increase the cookies-per-second, which
then leads to the creation of more cookies, creating a pos-
itive feedback loop. Due to the fact that clicking on the
cookie is unrestricted, that clicking generates cookies, and
that cookies are a restriction on buying grandmas and farms,
it deduces that a player must bootstrap by first clicking on
cookies to be able to buy a producer. Given the positive
feedback loop associated with cookies-per-second and that
cookies are good, the system reasons that buying a producer
represents an investment. Finally, given that both grandmas
and farms require and consume cookies and the initialized
values for their costs, it reasons that the player must make
a choice of where to allocate their cookies, with grandmas
having the lower initial cost of the two (although an indeter-
minate ordering on an arbitrary time scale).

For Pong, we derive that the game is a symmetric com-
petition, that the two players are antagonists of each other,
and that each player will try to hit the ball with their respec-
tive paddle. For Kaboom!, we derive facts such as that the
bomber is an antagonist, bombs harm the player, the basket
harms bombs, the player will attempt to cause the bombs
to collide with the basket, and the player will attempt to
avoid causing the bombs to collide with the bottom of the
screen. And for our own games, we encode reasoning anal-
ogous to design specifications such as “a player must per-
form a risky hand-eye coordination task to keep their cool”
and “the player must make time-sensitive decisions about
resource allocation whose consequences have a tradeoff be-
tween personal benefit and global cost.”

Discussion
We have demonstrated a novel approach to the problem of
game specification based on relating a game specification
to higher-level meanings. We introduced two novel and dis-
tinct knowledge formalisms: the specification language, in
which we express mechanics, and the meaning-level design
intent language. The design of our specification language
was tricky, because it needs to play the dual role of sup-
porting meaning-level interpretation while also unambigu-
ously mapping onto an executable game (making it feasible
to write a compiler back-end). The meaning-level design in-
tent language is informed by micro-rhetorics (Treanor et al.
2012b) and proceduralist readings, and allows for genera-
tive variation through a many-to-many relationship: speci-
fications may give rise to multiple meanings, and a single
meaning may have many instantiations as a specification.

Currently, we assess our work as forming a good account
of meaning for games with resource logics, movement and
collision logics, and graphical communication affordances
(including, notably, some high-level representation of con-
tinuous physics, which we did not illustrate in our previ-
ous examples). Thus, we can already express simple arcade
games, platformers, and incremental games in a uniform
way, which we assessed would have been very difficult in
existing game formalisms such as the VGDL. Furthermore,

by formalizing operational logics, we foresee an ability to
scale easily to a large range of other common game idioms
and perform a similar style of reasoning over them at little
extra authoring cost. We plan to expand upon and standard-
ize the OL Catalog of Osborn and Treanor (Osborn and Tre-
anor 2016) to represent things like inventory systems, card
decks, and spatial pattern matching (as in Tetris ).

Future Work
The long-term goal for this work is to turn the proceduralist
reading process on its head and generate games that fulfill a
specified reading (playing the role of a design intent) such
as The player must come between the vectorialist and new
ideas to prevent commodification. Even in its current state,
the system can generate games given a desired procedural-
ist reading. The generator effectively runs the interpretation
rules “in reverse” to pull together OL pieces, such as col-
lision, controls, or resource transactions, and assign them
to preconditions or outcomes subject to the constraint that
they will produce the desired reading. However, the gener-
ated games currently have too many possible readings; they
exhibit a surfeit of meaning, making it difficult for the player
to discern the desired reading. Therefore, we are working
on adding constraints to rule out games that violate common
sense and control the number and complexity of rules and
possible interpretations.

Our planned evaluation work primarily concerns gener-
ated game output, but we have determined some possible
lines of evaluation for our system as a game analysis engine
as well. One design would be to do an expert evaluation, re-
questing critical readings of games from leading scholars,
formalizing their arguments, and comparing the shapes of
the derivation trees to the ones our system generates. We
could also compare the shapes of generated meaning deriva-
tions internally, i.e., carry out an expressive range analy-
sis (Smith and Whitehead 2010) over variables such as proof
tree width, depth, and number of rules in the reasoning prin-
ciple base used, repeated, or omitted. Further, we could use
these properties of meaning derivations as characteristics of
games themselves to reason over or optimize for: perhaps
we want games with the fewest possible meanings but whose
deepest meaning derivation is as deep as possible, or some
other combination of constraints.

In summary, we have presented a novel approach to com-
putational game interpretation based on a formalization of
procedural reasoning, resulting in a static analysis relat-
ing operational logic-based game definitions to high-level
meanings. This work represents the first effort to com-
bine mechanics-level game specification, cultural knowl-
edge, and operational logics in one formalism, resulting in
a highly expressive reasoning space.

Acknowledgements
The authors would like to thank Mike Treanor for helpful
discussion of the ideas behind this paper, as well as the
anonymous reviewers, especially Reviewer #2, for their very
thorough and constructive feedback. This material is based
upon work supported by the National Science Foundation
under Grant No. IIS-1409992.

58



References
Cook, M., and Colton, S. 2014a. Ludus ex machina: Build-
ing a 3d game designer that competes alongside humans. In
Proceedings of the 5th International Conference on Compu-
tational Creativity, volume 380.
Cook, M., and Colton, S. 2014b. A rogue dream: Automat-
ically generating meaningful content for games.
Hunicke, R.; Leblanc, M.; and Zubek, R. 2004. Mda: A for-
mal approach to game design and game research. In In Pro-
ceedings of the Challenges in Games AI Workshop, Nine-
teenth National Conference of Artificial Intelligence, 1–5.
Press.
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Automatic
heuristic construction in a complete general game player. In
Proceedings of the Twenty-First National Conference on Ar-
tificial Intelligence, 1457–62.
Martens, C. 2015. Ceptre: A language for modeling gener-
ative interactive systems. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.
Mateas, M., and Wardrip-Fruin, N. 2009. Defining opera-
tional logics.
Nelson, M. J., and Mateas, M. 2007. Towards automated
game design. In AI* IA 2007: Artificial Intelligence and
Human-Oriented Computing. Springer. 626–637.
Nelson, M. J., and Mateas, M. 2009. A requirements anal-
ysis for videogame design support tools. In Proceedings of
the 4th International Conference on Foundations of Digital
Games, 137–144. ACM.
Osborn, J., and Treanor, M. 2016. Operational logic catalog.
Salen, K., and Zimmerman, E. 2004. Rules of play: Game
design fundamentals. MIT press.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In Computational In-
telligence in Games (CIG), 2013 IEEE Conference on, 1–8.
IEEE.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. Proceedings of the National
Conference on Artificial Intelligence 22(2):1191.
Smith, A. M., and Mateas, M. 2010. Variations forever:
Flexibly generating rulesets from a sculptable design space
of mini-games. In Computational Intelligence and Games
(CIG), 2010 IEEE Symposium on, 273–280. IEEE.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 4.
ACM.
Stolee, K. T., and Fristoe, T. 2011. Expressing computer
science concepts through kodu game lab. In Proceedings of
the 42nd ACM technical symposium on Computer science
education, 99–104. ACM.
Treanor, M.; Schweizer, B.; Bogost, I.; and Mateas, M.
2011. Proceduralist readings: How to find meaning in games
with graphical logics. In Proceedings of the 6th Interna-
tional Conference on Foundations of Digital Games, 115–
122. ACM.

Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I.
2012a. Game-o-matic: Generating videogames that repre-
sent ideas. In Procedural Content Generation Workshop at
the Foundations of Digital Games Conference.
Treanor, M.; Schweizer, B.; Bogost, I.; and Mateas, M.
2012b. The micro-rhetorics of game-o-matic. In Proceed-
ings of the International Conference on the Foundations of
Digital Games, 18–25. ACM.
Wardrip-Fruin, N. 2005. Playable media and textual instru-
ments. Dichtung Digital 34:211–253.
Zook, A., and Riedl, M. O. 2014. Automatic game design
via mechanic generation. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence.

59




