Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

Matching Games and Algorithms for General Video Game Playing

Philip Bontrager, Ahmed Khalifa, Andre Mendes, Julian Togelius
New York University
New York, New York 11021
philipjb@nyu.edu, ahmed.khalifa@nyu.edu, andre.mendes @nyu.edu, julian @togelius.com

Abstract

This paper examines the performance of a number of
Al agents on the games included in the General Video
Game Playing Competition. Through analyzing these
results, the paper seeks to provide insight into the
strengths and weaknesses of the current generation of
video game playing algorithms. The paper also pro-
vides an analysis of the given games in terms of inher-
ent features which define the different games. Finally,
the game features are matched with Al agents, based on
performance, in order to demonstrate a plausible case
for algorithm portfolios as a general video game play-
ing technique.

Introduction

The General Video Game Al Framework (GVGAI) is an
attempt to create general framework for game-based test-
ing of artificial intelligence methods (Levine et al. 2013;
Perez et al. 2015b; Perez-Liebana et al. 2016). Unlike the
general game playing competition (GGP), the GVGP is fo-
cused on video games, in particular two-dimensional games
similar to classic arcade games. The general video game
AI (GVGALI) competition aims to benchmark Al algorithms
through testing them on a number of unseen games, i.e.
games that the developer of the algorithm was not aware of
at submission time. Figure 1 shows different games that can
be represented in the GVGAI framework. A key underlying
motivation is that for an agent to be generally intelligent,
it needs to be capable of solving a large number of differ-
ent problems (playing a large number of different games),
not just one. General game players are also very useful for
Al-assisted design tools and procedural content generation
in general. Artificial game-playing agents need to be able to
produce good feedback on game designs based on playing
through the game.

It has previously been found that performance is non-
transitive: different algorithms perform best on different
games (Nielsen et al. 2015). Therefore, it should be possible
to construct agents based on higher level game features that
chooses the right algorithm for playing each game. How-
ever, selecting the right algorithm to play a particular game

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

122

Figure 1: Different games in the GVGAI framework.

is a complicated task. One needs to know the best features
that can help predict the performance of an algorithm on a
game. In the face of limited data sets, one also needs to avoid
overfitting by focusing on the most relevant regularities.

In this work, we approach the problem of matching al-
gorithms with games (Mendes, Nealen, and Togelius 2016)
through investigating the performance of a large number of
algorithms on games from the GVGAI framework (Perez
et al. 2015b). We look for regularities in the performances
of algorithms in games, and cluster both games and algo-
rithms based on playing performance. We also look for good
features of games that can be easily extracted and are pre-
dictive of algorithm performance. Finally, we discuss the
correlation between the groups of clusters from the differ-
ent sources of information. We believe that such a study is
important because it provides insight into how far we have
come on GVGP. This data can reveal what games computers
are good at and what problems we still need to solve. These
groups can be used for algorithm portfolio techniques and
provide direction on how to combine multiple algorithms to
create a better-performing agents.

The paper is structured as follows. The next section de-
scribes general video game playing and the GVGALI frame-
work as well as some principles of game genres and algo-
rithm selection. The Methods section describes our method-
ology: which controllers and games we used, how we se-

lected features to use, how we collected data on controller
performance, which methods we used to cluster the data and
how we intend to use the information obtained to create an
agent that uses algorithm selection. The Results section de-
scribes the results obtained using the clustering methods as
well as how the clusters compare across the different source
of information used. Finally, we present the results from dif-
ferent algorithm selection agents and compare their perfor-
mance with the controllers in the their portfolios.

Background
Video Game Genres

The definition of game genres is the subject of many debates.
Studies argue that genres are an agreement between produc-
ers and players with relation to established entertainment
industry mediums such as movies and books (Wolf 2002).
Others disagree with this point and claim that genres need to
be rethought with a critical perspective rather than depend-
ing on similarities with other mediums (Juul 2005).

The general idea is that video game genres are a way to or-
ganize games according to certain aspects. One of the main
aspects to be considered is game play (Apperley 2006). King
and Kryzwinska categorize games based on 4 levels: Genre,
Platform, Mode, and Milieu (King and Krzywinska 2002).
Platform is the current system that the game is running on.
Mode is the way the game is experienced by the players,
such as single player or multi player. Milieu describes the
aesthetics of the game in a similar way that movies do, us-
ing definitions like fantasy and science fiction.

In this work we categorize the games based on properties
in the games and how various algorithms play them. This
is more inline with the definition from Schatz, in which,
game genres are defined based on the interactivity in games
(platformer, shooter and puzzle) rather than using the story
content (Schatz 1981). The reason for this is that the games
in GVGALI are abstract and they focus more on interactivity
rather than content. Also this definition provides information
on which computer genres we have good algorithms for.

To the best of our knowledge, there is no previous work
clustering video games by this criteria. Most of the work
in the literature focuses on clustering games based on sur-
veys (Heintz and Law 2015; Fang, Chan, and Nair 2009),
clustering player behaviors (Bauckhage, Drachen, and Sifa
2015), or clustering based on similarities to theoretical
games (e.g. Prisoner Dilemma) (Feldman, Lewin-Eytan, and
Naor 2012).

General video game playing

In the past decade, video games have become increasingly
popular as an Al benchmark. They require a rich repertoire
of cognitive capabilities for humans to play well and they
can be simulated quickly and cheaply on a computer. A num-
ber of recent Al competitions have been based on specific
video games or types of video games. The GVGAI compe-
tition was created to counteract the problem that these com-
petitions allow participants to tailor their submissions to a
particular game. Instead, game-playing controllers submit-
ted to the GVGAI competition are pitted against a number

123

of unseen games (Perez et al. 2015a). This separates it from
e.g. the Arcade Learning Environment, where controllers are
trained to play a number of well-known games (Bellemare
et al. 2012). Another difference is that GVGAI controllers
get access to a structured representation of the game state as
well as a simulator that allows the use of tree search algo-
rithms to play the games.

So far, the results have shown that methods based on
MCTS and MCTS-like algorithms have done very well
on this benchmark, but based on the algorithm superiority
(Brodley 1993) and in our observation, we see that perfor-
mance is non-transitive: different controllers play different
games best. This can be seen even when adding seemingly
minor modifications to the core MCTS algorithm; modifica-
tions that improve performance of MCTS on one game may
degrade performance on another (Frydenberg et al. 2015).

Algorithm Selection

One influential taxonomy of algorithm selection methods
(Kotthoff 2012) suggests that an algorithm can be identified
in steps. First it analyzes the type of portfolios, i.e the set
of algorithms that will be selected. A portfolio can be static
(Pulina and Tacchella 2009), (Xu et al. 2008) if the algo-
rithms are defined a priori and never change, or dynamic if
the portfolio changes while solving the problem (Fukunaga
2008).

From the portfolio, methods can select the single best al-
gorithm or allocate times slots to combine results from dif-
ferent algorithms. Concerning when to select the algorithm,
the methods can make a decision before the solving of the
actual problem starts or while the problem is being solved
(OMabhony et al. 2008). Another important step is how this
selection is made. The decision involves, for example, ana-
lyzing accuracy, computational cost and time. Finally, there
is also an essential step that concerns finding information to
help the selection, such as feature selection and extraction
(Gerevini, Saetti, and Vallati 2009),(Pulina and Tacchella
2009) and the use of the performance of the selected algo-
rithms in the past.

Based on the problem and data that we have and follow-
ing the proposed organization, our method can be defined as
using a static portfolio, that selects the best single algorithm
before and while the problem is being solved. Our selection
method uses a decision tree model that is trained based on
the clusters achieved using our selected features.

Algorithm selection has been applied to domains such
as linear algebra (Demmel et al. 2005), linear sys-
tems (Bhowmick et al. 2006) and specially to combina-
torial search problems (OMahony et al. 2008), (Xu et al.
2008), and recently applied to General Video Game Playing
(Mendes, Nealen, and Togelius 2016).

Methods
Games

The games in the GVGAI platform are created using a
Video Game Description Language (VGDL) that is designed
around objects that interact in two dimensional space (Ebner
et al. 2013). Using level description and game description,

Feature Name Feature Definition

Vertical ~ move- The avatar can move vertically.

ment

Can use The avatar can use space bar to do something.

Player can die The avatar can die from colliding with harmful sprites.

Is survival game The end condition of the game is timeout.

‘Win conditions The % of termination conditions with win=True.

Lose conditions The % of termination conditions with win=False.

Solid sprites The % of solid sprites with respect to all sprites.

Avatar sprites The % of avatar sprites with respect to all sprites.

Harmful sprites The % of harmful sprites with respect to all sprites.

Collectible The % of collectible sprites with respect to all sprites.
sprites

Goal sprites The % of goal sprites with respect to all sprites.
Other sprites The % of other sprites with respect to all sprites.

Spawned sprites The % of spawned sprites with respect to all sprites.

Max number of | The max number of interaction any of the game sprites ap-

Interaction rules pears in them.

Table 1: Extracted game features from VGDL files.

VGDL can describe a wide variety of video games, includ-
ing approximate versions of Space Invaders, Sokoban, Boul-
der Dash, Pac-Man, and Zelda. In this work, we use 49
games available in the GVGAI framework. Each game has
five different levels that differ from each other through varia-
tions on the locations of sprites, resources available and vari-
ations on non-player character (NPC) behavior.

Games Clustering

We use K-Means (Likas, Vlassis, and Verbeek 2003) and
Agglomerate (Davidson and Ravi 2005) algorithms to clus-
ter the games either over game features or game-playing
controllers performance. We also tried the Gaussian Mix-
ture Models (GMM) (Reynolds 2015) in clustering but the
results were similar to K-Means.

Game Features Features are an important part of the
games described in the GVGAL In this platform, every game
contains a description in a VGDL file that provides rich in-
formation about various elements: such as the ability to at-
tack, move vertically, the type of resources, dimensions of
the map, action set, and other characteristics of the game.
We analyzed the classes available in the VGDL file of all
games and defined 14 features shown in Table 1, that repre-
sent different types of games.

Game-playing controllers Another important way to an-
alyze the games is to look at how various algorithms perform
when playing them. Since the algorithms are unfamiliar with
each game, it can be considered an unbiased indicator of
which strategy is effective against a particular game. In this
work we used 23 controllers chosen from the sample set as
well as controllers submitted to the GVGAI competition in
the summer of 2015.

The controllers from the competition were selected be-
cause their competition results were better than a random
agent. All of the controllers use standard Al algorithms at
their core. The creators of the controllers described the al-
gorithm their controller is based on when they uploaded it to
the competition. The reported algorithms can be seen next to
the controller names in figure 4.

124

A couple of the controllers vary from their core algorithm
in notable ways. The controller called “AlJim” uses a variant
of MCTS called Knowledge-based Fast Evolutionary MCTS
(Perez, Samothrakis, and Lucas 2014). The controller “adri-
enctx” uses Open Loop MCTS (Perez Liebana et al. 2015).
There were also two controllers that tried to combine algo-
rithms. The controller “mrtndwrd” uses A* to find out in-
formation for each different sprite type and then MCTS to
determine which path to take. “Rooot” uses some learning
techniques to analyze a multistep look-ahead. For simplic-
ity, it was decided that all of the above algorithms, with the
exception of “Rooot”, would be grouped under MCTS.

Data Collection

To collect the data, we ran each controller in its own instance
and had it play each of the 49 games 25 times. Each game
consists of 5 levels, so the controller played each level 5
times. For each run of the controller, we recorded whether it
was a win or loss, the score achieved by the controller, and
how long the play lasted.

The resulting data was compiled into a winnings matrix
and a scores matrix. Each matrix is a 49 games by 23 con-
trollers. Each value in the win matrix is a number between
0 and 25, representing the number of times controller i beat
game j. The score values were normalized between 0 and 1.

We looked at the results for both scores and the wins over
all the games. Results obtained from the score data and the
win data were not significantly different. We decided to only
use the win data since it is a better indicator of which algo-
rithm is better. This is due to discrepancies in how different
games are scored. Some games only give a score for a win or
loss and others have many ways to get points. The score data
between games are therefore not easily comparable, even af-
ter normalization.

Algorithm Selection

We use the feature clustering we obtained to build machine
learning models to select the best controller for each game.
Our assumption is that these clusters provide helpful infor-
mation about the style and characteristics of the games and
we can map these information to controllers performance
through a decision tree classifier. We then use this decision
tree classifier as a decision model to select sub-controllers
to play games in each cluster. Since the agent that uses this
model combines the strengths of different controllers, we ex-
pect that its performance is better than its constituents.

Results
Game Features

Each game is represented by 14 features. To cluster the high
dimensional data, we applied Principal Component Analy-
sis (PCA) (Jolliffe 2002) to reduce the data to 2 dimensions.
Figure 2 shows 4 different clusters that are widely dispersed
and are fairly compact. We also applied K-Means without
PCA as well as an Agglomerate hierarchical clustering and
the results for all three techniques were very similar (assum-
ing we have 4 clusters). In order to understand these clus-
ters, we generated decision trees to analyze which features

15

10

05 F °

oo f]

-1.0
-0.8

-06 -04 -02 00 0z 04 0.6 08 10

Figure 2: Game clusters using K-Means on PCA game fea-
tures.

canDie =0.5
gini = 0.7239
values =[13, 17, 6, 13]

use<0.5 use <0.5
gini = 0.4321

values = [0, 0, 6, 13]

gini = 0.4911
values = [13, 17, 0, 0]

True False True False

e ~y s ~y
gini=0 gini=0 gini=0 gini=0
values = [0, 0, 0, 13] values = [0, 0, 6, 0] values = [0, 17, 0, 0] values =[13, 0, 0, 0]
class=3 class=2 class=1 class=0

Figure 3: Trained decision tree using the K-Means clusters
on game features.

affected the groupings. Figure 3 shows a tree that only uses
two game features (“can use” and “can die”) to cluster the
games. These two features make sense as you can differenti-
ate between action games and other games if the player have
a “use” button. You can differentiate between puzzle games
and other games if the player can die.

Algorithm Performance

To analyze the games based on the algorithms, we clustered
the games based on the performance of the 23 controllers.
We looked at clustering the data using both k-means and
agglomerate search.

We tried k-means with regular Euclidean distance. Each
game is represented as point in 23 dimensional space, where
each dimension is the number of wins for each algorithm. To
understand the results we used PCA to reduce the data to two
dimensions. Viewing the data in two dimensions, there was
no clear distinctions of where clusters should be. Though,
when we ran k-means for four clusters on the 23 dimen-
sional data and then viewed it in two dimensions, the clusters
remained mostly separated. This clustering did not provide
much insight.

To get a better understanding of how many groups to clus-
ter the games into, we used an hierarchical clustering. For
this we used the agglomerate algorithm, using Euclidean
Distance to be consistent with k-means, and Ward as the
linkage criterion. The outcome can be seen in figure 5. This

125

cluster matches the k-means cluster for 73.5% of the games.

In the dendrogram, highlighted in green, there are four
groups that were played very different. A clustering of four
groups is also convenient for comparing to the feature clus-
tering. To interpret the meaning of this clustering, the data
is organized in a heat map. Figure 4 represents the matrix of
wins each controller had against each game. The rows and
columns are sorted such the most similar games and con-
trollers are next to each other, according to the agglomer-
ate clustering. To further visualize the information, red bars
have been added to show the boundaries between the differ-
ent clusters.

Looking at the game clusters in figure 4 from left to right;
the first group are games easily beaten by most algorithms,
the second group can be mostly beaten by the bottom group
of controllers, the third group is particularly susceptible to
MCTS controllers, and the last group, the largest, are diffi-
cult for all the controllers. In the fourth group, there are four
games that none of the controllers could ever beat: Digdug,
RealSokoban, Superman, and RealPortals. The size of the
fourth group indicates that there are still many games that
the current generation of general game playing algorithms
cannot play.

Clustering Similarities

The intent of looking at multiple clusterings was to find their
similarities. Similarities between the performance and fea-
ture clusterings would give insights into how the algorithms
perform when certain features are present in a game. Our
data revealed only a 40.8% similarity between the two clus-
terings. One interpretation of this is that the features we have
are not strong indicators of performance.

We tried to create a decision tree using our features to
classify games by their performance clustering. The re-
sulting tree was very large with many seemingly arbitrary
leaves. It is very likely that the tree was just memorizing the
data, we therefore abandoned this effort. This further sup-
ports the claim that our features are not good indicators of
performance.

Algorithm Selection

Best controllers for each game In algorithm selection,
there are many ways to define the strategy to select the best
algorithm to the problem at hand. In this work, we try to
create a selection model that uses the information from our
clusterings. Our goal is to investigate if the same decision
tree obtained from the previous sections could also be used
to pick the best controllers for the games in each cluster.

In order to do that, we first used the data obtained in the
Data Collection subsection to identify the best controller for
each cluster. We say that a controller dominates a cluster
of games if the controller wins more games in a particular
cluster than any other controller. To better understand this
section, we divide our experiments in two cases.

The first case considers all 23 controllers that we describe
in the Game Playing Controllers section. In Table 2, we can
see that the controller NovTea dominates three clusters in
group 1 (game feature clustering) and two in group 2 (al-
gorithm performance clustering). Being the dominant con-

X X &
Q' 2 O 2 Q@ 2
) & & @ 2 O @
¥ & o o S O @ EE C, & N
2 Oy & o & DO A D Lo XS L D £ o &
A% SKEEEE Sty Salo S Ko PASREY KL SIS0 FEOE e | &
SREEeS ¢°\E\°@°\®Q’ 208 SO AR AGRE oS SR NS P XL (\QQ\O'”@QQ@ ,‘}%Q,Z}Q%@ RN
» 2 O O7 S 4
FP LI ST RECLLFP P12 6" PE S FEL LS IELOE O 0P T LA F e

sampleRandom (R)
simulatedAnnealing (SA)
hillClimber (HC)
depthFirstSearch (DFS)
sampleonesteplookahead (LA)
iterativeDeepening (ID)
breadthFirstSearch (BFS)
mrtndwrd (MCTS)
sampleGA (GA)
evolutionStrategies (GA)
aStar (Ax) -

roskvist (MCTS)
SJA86 (MCTS)
sampleMCTS (MCTS)
MnMCTS (MCTS)
AlJim (MCTS)
TeamTopbug (GA)
jaydee (GA)
Rooot (LA)
SJA862 (Minimax)
MH2015 (GA)
NovTea (lterative Width)
adrienctx (MCTS)

.

Figure 4: Heat map of game plays. Each square represents the number of times a particular controller beat a particular game
(25 wins is white, 0 wins is black). The red bars represent the boundaries between each cluster. Vertical bars cluster the games,

and horizontal bars cluster the controllers.

WJM%%%#%;

Figure 5: Dendrogram of games from figure 4.The depth
of the connecting bracket represents the similarity between
two different games. The colored regions represent different
clusters.

troller does not mean it dominates the majority of the game
in a cluster. On average NovTea only dominates 34% of each
cluster.

In the second case, we consider only 11 controllers that
are simple implementations of traditional algorithms such as
depth first search, A*, and genetic algorithms. In this case,
we can see that the best controllers are sampleMCTS and
evolutionStrategies. Even though their dominance is still not
strong, it is stronger than in case 1 since the average dom-
inance is 46% for sampleMCTS (SMCTS) and 43.4% for
evolutionStrategies (ES). In both cases, this suggests that
there is not a single controller that performs really well in
the great majority of the games in any cluster.

Decision tree as selection model With the information
about the best controllers for each cluster and the decision
tree obtained in previous sections, we create an algorithm

126

Case 1 (All Controllers)
Group 1 Group 2
Cluster Controller Dominance Controller Dominance
1 NovTea 2/5 - 40% adrienctx 3/7 42%
2 adrientcx 5/14 - 35% NovTea 3/13 23%
3 NovTea 4/8 - 50% roskvist 3/7 42%
4 NovTea 6/22 - 27% NovTea 8/22 36%
Case 2 (Simple Controllers)
Group 1 Group 2
Cluster Controller [Dominance Controller [Dominance
1 SMCTS 3/5 60% SMCTS 3/7 42%
2 SMCTS 5/8 - 62% SMCTS 4/13 30%
3 SMCTS 8/14 - 57% SMCTS 4/7 57%
4 ES 8/22 - 36% ES 9/22 40%

Table 2: Top controllers for each cluster. Group 1 represents
clusters based on features. Group 2 represents clusters from
controller performance.

selection agent. As a decision model, we use the decision
tree from Figure 3. This decision tree is simple and easy to
understand and it is the only one that uses only features that
are available to the agent in the game.

For the controllers in case 1, our selection is: If the agent
has the action “use” and it can die in the game, we want to
pick adrienctx to play that game. In all the other cases we
pick NovTea. In case 2, we pick evolutionStrategies if the
agent does not have the action use and it can die. Otherwise,
we pick sampleMCTS to play.

To compare the performance of all controllers we use the
criteria from the GVGAI competition (Perez et al. 2015b).
There are three measures for each controller, win, score and
time. The number of wins is the most important metric, fol-
lowed by the score and as a second tie breaker, the time. In

time
0.00
0.08
0.19
0.33
0.34
0.26
0.30
0.42
0.55
0.69
0.74
0.74
0.27

win
695
637
496
426
426
411
410
409
398
343
338
312
282

Controller
ASALl
NovTea
adrienctx
MH2015
TeamTopbug
SJA862
jaydee
Rooot
roskvist
AlJim
SJA86
MnMCTS
mrtndwrd

score
1.00
0.99
0.72
0.67
0.55
0.61
0.53
0.65
0.54
0.46
0.39
0.43
0.35

Table 3: Results for the simple controllers and the algorithm
selection agent for case 1 (ASA1).

Controller [win [score | time
ASA2 326 0.41 0.57
SMCTS 300 0.39 0.76
ES 242 0.35 0.39
SGA 210 0.22 0.72
A* 200 0.17 0.70
HC 168 0.26 0.25
DFS 140 0.00 1.00
BFS 137 0.07 0.81
SOSLA 127 0.08 0.77
SR 122 0.14 0.09
SA 117 0.12 0.07
1D 115 0.06 0.69

Table 4: Results for the best controllers and the algorithm
selection agent for case 2 (ASA2).

GVGAL, the scale of the results in each game significantly
differ when considering score and time. For this reason we
normalized the values in range from O to 1. Therefore, if a
controller achieves the highest score it receives 1. For the
time, the controller receives 1 if it is the fastest.

Table 3 shows the performance for the controllers used in
case | and the algorithm selection agent created for it. For
case 2, the results can be seen in Table 4. In both cases, the
algorithm selection agent was able to outperform its con-
stituents and all the other controllers in the group. These re-
sults show that the decision tree generated from the selected
features is helpful to create a decision model to select con-
trollers to play the games. Besides, the results also help to
confirm that algorithm selection can be used in GVGAI to
create high-performance agents.

Discussion & Conclusions

This paper explores two different clustering techniques to
try and define GVGALI in terms of four different computa-
tional genres. Being able to divide video games into genres
based on how they are played allows Al researchers to better
understand the capabilities of each algorithm.

In general the four groupings we found seemed to each
represent a different class of difficulty. Looking at figure 4,
the leftmost group represents games that are easily beaten
by most of the algorithms. This group is comprised of games
that require only a few steps of look ahead in order to sur-
vive and they tend to offer positive rewards for each correct
action.

On the right side of the figure are the hard games. This
group is comprised of several different types of games.
Games like Plants, which requires processing a very large

127

map. Others, like Realportals, are challenging puzzles that
require the player to look very far into the future for any
positive feedback. These games share the common theme of
having too large of search space for the controller to analyze.
The one exception would be Defem. It features high stochas-
ticity which causes the forward model to be unreliable.

The two middle groups feature games that require intel-
ligent look ahead, but are still feasible for algorithms like
MCTS and Iterative Width to search. From figure 5 it is clear
that these two groups are similar, the main difference is how
MCTS performs on them. It would be interesting to investi-
gate further why basic MCTS does better at the third group
while some of the more tailored algorithms do worse.

What this analysis shows is that our current algorithms’
successes are very dependent on the size of the game. Faster
processors will improve results, but at the same time, games
can always be made larger. A game like CamelRace, where
you simply have to hold right for a long period of time to
win, is easy for a human to solve but difficult for a tree search
algorithm to solve. There is still a need for new algorithms.

We were able to show that studying the features of games
allow us to pick the best algorithm for different types of
games. We found two features that allowed us to divide the
games into four groups. Segregating the games into these
clusters and using the optimal algorithm for each cluster did
provide a performance improvement. Researchers can also
design algorithms that take advantage of these features, such
as taking more time to explore in games where you can’t die.

This work suggests that algorithm portfolios can be a
promising technique in GVGALI There is still a need for bet-
ter algorithms/creative hybrids that can play a lot of these
games and we need to improve the features we are cluster-
ing on, but these initial clusterings already provide improved
results performance over the state of the art. The data laid
out in this paper provides a map for building a very robust
algorithm portfolio for general video games.

References

Apperley, T. H. 2006. Genre and game studies: Toward a
critical approach to video game genres. Simulation & Gam-
ing 37(1):6-23.

Bauckhage, C.; Drachen, A.; and Sifa, R. 2015. Clustering
game behavior data. Computational Intelligence and Al in
Games, IEEE Transactions on 7(3):266-278.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2012. The arcade learning environment: An evaluation plat-
form for general agents. arXiv preprint arXiv:1207.4708.

Bhowmick, S.; Eijkhout, V.; Freund, Y.; Fuentes, E.; and
Keyes, D. 2006. Application of machine learning to the
selection of sparse linear solvers. Int. J. High Perf. Comput.
Appl.

Brodley, C. E. 1993. Addressing the selective superior-
ity problem: Automatic algorithm/model class selection. In
Proceedings of the Tenth International Conference on Ma-
chine Learning, 17-24.

Davidson, 1., and Ravi, S. 2005. Agglomerative hierarchi-
cal clustering with constraints: Theoretical and empirical re-

sults. In Knowledge Discovery in Databases: PKDD 2005.
Springer. 59-70.

Demmel, J.; Dongarra, J.; Eijkhout, V.; Fuentes, E.; Petitet,
A.; Vuduc, R.; Whaley, R. C.; and Yelick, K. 2005. Self-

adapting linear algebra algorithms and software. Proceed-
ings of the IEEE 93(2):293-312.

Ebner, M.; Levine, J.; Lucas, S. M.; Schaul, T.; Thompson,
T.; and Togelius, J. 2013. Towards a video game description
language.

Fang, X.; Chan, S. S.; and Nair, C. 2009. A lexical approach
to classifying computer games.

Feldman, M.; Lewin-Eytan, L.; and Naor, J. S. 2012. He-
donic clustering games. In Proceedings of the twenty-fourth

annual ACM symposium on Parallelism in algorithms and
architectures, 267-276. ACM.

Frydenberg, F.; Andersen, K. R.; Risi, S.; and Togelius, J.
2015. Investigating mcts modifications in general video
game playing. In Computational Intelligence and Games
(CIG), 2015 IEEE Conference on, 107-113. IEEE.

Fukunaga, A. S. 2008. Automated discovery of local search
heuristics for satisfiability testing. Evolutionary Computa-
tion 16(1):31-61.

Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-

matically configurable portfolio-based planner with macro-
actions: Pbp. In ICAPS. Citeseer.

Heintz, S., and Law, E. L.-C. 2015. The game genre map: A
revised game classification. In Proceedings of the 2015 An-

nual Symposium on Computer-Human Interaction in Play,
175-184. ACM.

Jolliffe, 1. 2002. Principal component analysis. Wiley On-
line Library.

Juul, J. 2005. Games telling stories? a brief note on games
and narratives. 2001.

King, G., and Krzywinska, T. 2002. Screenplay: cin-
ema/videogames/interfaces. Wallflower Press.

Kotthoff, L. 2012. Algorithm selection for combinatorial
search problems: A survey. arXiv preprint arXiv:1210.7959.

Levine, J.; Congdon, C. B.; Ebner, M.; Kendall, G.; Lucas,
S. M.; Miikkulainen, R.; Schaul, T.; and Thompson, T. 2013.
General video game playing. Dagstuhl Follow-Ups 6.

Likas, A.; Vlassis, N.; and Verbeek, J. J. 2003. The global k-
means clustering algorithm. Pattern recognition 36(2):451—
461.

Mendes, A.; Nealen, A.; and Togelius, J. 2016. Hyper-
heuristic general video game playing. In Proceedings of
Computational Intelligence and Games (CIG). 1EEE.

Nielsen, T. S.; Barros, G. A.; Togelius, J.; and Nelson, M. J.
2015. Towards generating arcade game rules with vgdl. In
Computational Intelligence and Games (CIG), 2015 IEEE
Conference on, 185-192. IEEE.

OMahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
OSullivan, B. 2008. Using case-based reasoning in an al-
gorithm portfolio for constraint solving. In Irish Conference
on Artificial Intelligence and Cognitive Science, 210-216.

128

Perez, D.; Samothrakis, S.; Togelius, J.; Schaul, T.; Lucas,
S.; Couetoux, A.; Lee, J.; Lim, C.; and Thompson, T. 2015a.
The 2014 general video game playing competition. Compu-
tational Intelligence and Al in Games, IEEE Transactions
on PP(99):1-1.

Perez, D.; Samothrakis, S.; Togelius, J.; Schaul, T.; Lucas,
S.; Couétoux, A.; Lee, J.; Lim, C.-U.; and Thompson, T.
2015b. The 2014 general video game playing competition.
Perez Liebana, D.; Dieskau, J.; Hunermund, M.;
Mostaghim, S.; and Lucas, S. 2015. Open loop search for
general video game playing. In Proceedings of the 2015
on Genetic and Evolutionary Computation Conference,
337-344. ACM.

Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Schaul, T.;
and Lucas, S. M. 2016. General video game ai: Competition,
challenges and opportunities. In Proceedings of AAAI

Perez, D.; Samothrakis, S.; and Lucas, S. 2014. Knowledge-
based fast evolutionary mcts for general video game play-
ing. In 2014 IEEE Conference on Computational Intelli-
gence and Games, 1-8.

Pulina, L., and Tacchella, A. 2009. A self-adaptive multi-
engine solver for quantified boolean formulas. Constraints
14(1):80-116.

Reynolds, D. 2015. Gaussian mixture models. Encyclopedia
of Biometrics 827-832.

Schatz, T. 1981. Hollywood genres: Formulas, filmmaking,
and the studio system. McGraw-Hill Humanities/Social Sci-
ences/Languages.

Wolf, M. J. 2002. Genre and the video game. The medium
of the video game 113-134.

Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.

Satzilla: portfolio-based algorithm selection for sat. Journal
of Artificial Intelligence Research 565-606.

