Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

Characters Who Speak Their Minds:
Dialogue Generation in 7alk of the Town

James Ryan, Michael Mateas, and Noah Wardrip-Fruin
Expressive Intelligence Studio
University of California, Santa Cruz
{jor, michaelm, nwf} @soe.ucsc.edu

Abstract

The Expressive Intelligence Studio is developing a new ap-
proach to freeform conversational interaction in playable me-
dia that combines dialogue management, natural language
generation (NLG), and natural language understanding. In
this paper, we present our method for dialogue generation,
which has been fully implemented in a game we are devel-
oping called Talk of the Town. Eschewing a traditional NLG
pipeline, we take up a novel approach that combines human
language expertise with computer generativity. Specifically,
this method utilizes a tool that we have developed for author-
ing context-free grammars (CFGs) whose productions come
packaged with explicit metadata. Instead of terminally ex-
panding top-level symbols—the conventional way of gener-
ating from a CFG—we employ an unusual middle-out proce-
dure that targets mid-level symbols and traverses the gram-
mar by both forward chaining and backward chaining, ex-
panding symbols conditionally by testing against the current
game state. In this paper, we present our method, discuss a se-
ries of associated authoring patterns, and situate our approach
against the few earlier projects in this area.

Introduction

Current authoring practice for videogame dialogue produc-
tion, in which individuals or even teams of writers tirelessly
produce huge amounts of content by hand, is largely seen
as both untenable and constraining of the form (Mateas
2007). This issue hinders all games with dialogue, but it
is most pronounced in the emerging genre that features
freeform naturalistic conversation as core gameplay (Mateas
and Stern 2003; Strong and Mateas 2008; Spierling 2011;
Joseph 2012; Endrass et al. 2014; Brusk 2014; Evans and
Short 2014; Horswill 2014; Lewis and Dill 2015; Treanor,
McCoy, and Sullivan 2015; Mohov 2015; Lessard 2016), a
format that has been shown to maximize player presence
and engagement (Sali et al. 2010). Clearly, any alleviation
of this content problem will rely on some amount of genera-
tivity, and so natural language generation (NLG) appears as
a panacea. But NLG has yet to find its killer application in
games (Horswill 2014). Elsewhere, we have argued that tra-
ditional NLG—in which heavy interlocking systems are as-
sembled by practitioners with deep expertise—may actually

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

204

be a siren song in these waters (Ryan et al. 2015a). Skilled
writers who can produce stylistically rich and evocative text
should be the ones writing videogame dialogue, but people
who are both skilled writers and NLG experts are rare. As
such, we require approaches in which authors without pro-
cedural backgrounds can still be largely responsible for the
production of dialogue (as in today’s untenable configura-
tion), while somehow harnessing a nontrivial degree of com-
puter generativity (thereby realizing tomorrow’s ergonomic
configuration).

In this paper, we present a new method for videogame di-
alogue generation that eschews a traditional NLG pipeline
in favor of an approach that utilizes two complementary
strengths of humans and computers—humans’ deep knowl-
edge of natural language expressivity and all its attendant
nuances, and a computer’s capacity to efficiently operate
over probabilities and treelike control structures—while si-
multaneously minimizing both entities’ huge deficiencies in
the converse. Specifically, this method utilizes a tool that we
have developed for authoring context-free grammars (CFGs)
whose productions come packaged with explicit metadata.
Instead of terminally expanding top-level symbols—the
conventional way of generating from a CFG—we employ
an unusual production system that works middle-out. That
is, the system targets mid-level symbols and traverses the
grammar by both forward chaining and backward chaining,
expanding symbols conditionally by testing against the cur-
rent game state. Our method has been fully implemented in
a game that we are developing called Talk of the Town, and is
part of a larger conversation engine that combines NLG with
dialogue management and natural language understanding
(NLU). We believe that our contribution here is a step toward
generative dialogue becoming commonplace in games, and
we hope that others will consider taking up our method in
their own future projects.

Background

Before proceeding, we will provide background informa-
tion on our target application, Talk of the Town, as well
as Expressionist, the authoring tool that crucially under-
pins our approach to dialogue generation. Information on
our approaches to dialogue management and NLU can be
found elsewhere (Ryan, Mateas, and Wardrip-Fruin 2016b;
Summerville et al. 2016; Ryan et al. 2016b).



Talk of the Town

Talk of the Town is a game built on an Al framework that
generates and simulates a small American town populated
by non-player characters (NPCs) who form and propagate
subjective knowledge of the gameworld (Ryan et al. 2015b);
it is currently under development. Due to space consider-
ations, in this section we will outline only the aspects of
this game that are at work in the generation of character dia-
logue. Talk of the Town simulates by day and night timesteps,
and during each timestep each character will be at some lo-
cation in the town. When a character is at a location, she
will observe her surroundings (to build up her knowledge of
the world) and may engage in social interactions with other
characters at the same location (Ryan, Mateas, and Wardrip-
Fruin 2016c). In one level of simulation fidelity, employed
during world generation (Adams 2015), characters engag-
ing in such an interaction transact in a purely symbolic ex-
change of information. Partially by virtue of the system we
present in this paper, a higher fidelity of simulation is now
supported, in which such exchanges are rendered as natu-
ralistic character conversations with fully realized dialogue.
Critically, these conversations are driven by a dialogue man-
ager, which allocates speaking furns and enforces conver-
sational norms. While elsewhere we describe our dialogue
manager in detail (Ryan, Mateas, and Wardrip-Fruin 2016b),
here we will only emphasize three of its core notions: dia-
logue moves, conversational obligations, and topics of con-
versation. As a very general notion of a speech act, lines
of dialogue may be used to perform dialogue moves, e.g.,
‘greet’ or ‘ask about the weather’. Relatedly, lines of dia-
logue, when uttered, may obligate their recipients to per-
form some dialogue move in turn. For instance, the line of
dialogue “How are you?” might obligate its recipient to per-
form the move ‘answer how are you’—we call these con-
versational obligations. When a speaker has an unresolved
obligation, the dialogue manager will give her the next con-
versation turn, allowing her to request (from our NLG sys-
tem) a line of dialogue that will perform the prescribed dia-
logue move. Additionally, certain lines of dialogue may be
used to address existing topics of conversation (e.g., ‘work’
or ‘the weather’) as a way of filling in lulls in the conversa-
tion. Finally, beyond resolving obligations and filling in con-
versation lulls, characters may pursue conversational goals,
whose plan steps are realized by the performance of tar-
geted dialogue moves. As such, characters begin their turns
by seeking either lines of dialogue that perform certain di-
alogue moves (to resolve obligations or realize plan steps)
or address certain topics of conversation (to fill lulls). As we
explain below, these are the simple objectives that frame the
operation of our NLG system.

Expressionist

Expressionist is a tool for specifying a CFG that may be
used by a content generator to produce text that is explicitly
annotated for the concerns of a larger application, such as a
game (Ryan et al. 2016a). Expressionist’s design is meant to
instantiate the modular content approach that we have out-
lined elsewhere (Ryan, Mateas, and Wardrip-Fruin 2015),
which prescribes small units of content that are packaged

205

with metadata and that may be procedurally recombined
into larger units of annotated content. Using Expressionist,
an author specifies nonterminal symbols and the production
rules that may exhaustively expand them to produce fermi-
nal derivations composed fully of terminal symbols—i.e.,
strings. Crucially, nonterminal symbols may be annotated
using arbitrary fagsets and rags that are defined by the au-
thor; this is the core appeal of Expressionist and what sep-
arates it from Tracery, a related tool that also has CFG un-
derpinnings (Compton, Kybartas, and Mateas 2015). When
a terminal derivation is produced in a CFG, it will have ex-
panded a set of nonterminal symbols along the way—in Ex-
pressionist, such a derivation accumulates all of the markup
that an author has attributed to all of the symbols in this
set. This allows an author to modularly specify capsules that
contain both symbolic markup (e.g., a speech act) and the
rules for producing variations of the linguistic expression of
that markup. Appealingly, because it is inherited from ex-
panded symbols during the derivation process, markup does
not have to be constantly reduplicated at the level of termi-
nal symbols. In this way, the author ends up specifying a hi-
erarchy of markup that is less burdensome to attribute and
is easier to understand. In addition to symbol annotation,
Expressionist allows production rules to be assigned prob-
abilities, which more specifically makes the data structure
authored using the tool a probabilistic CFG. After a session
with the tool, an author exports her grammar as a JSON file
that a content generator may operate over.

Dialogue Generation in Talk of the Town

In this section, we outline our method for dialogue genera-
tion in Talk of the Town. As we explain momentarily, central
to this method is a module, called Productionist, that oper-
ates over a JSON file specifying an Expressionist grammar
to produce lines of dialogue that satisfy targeted requests
made by the game’s dialogue manager (on behalf of NPCs
that are engaged in conversation).

Design Goals

The development of our NLG system has been driven by the
following design goals:

o Allow Talk of the Town characters to engage in naturalis-
tic conversation that expresses character personality and
other aspects of underlying game state.

e Produce retargetable dialogue (Samuel et al. 2014), i.e.,
content that can be reused across characters and contexts.

e Maximize the degree to which the quality of generated
content depends on human authoring performance (rather
than generator performance). In other words: let the hu-
man be the creative element.

e Minimize the degree to which the amount of genera-
ble content is limited by human authoring time. In other
words: let the computer be the generative element.

System Architecture

Our NLG system architecture is illustrated in Figure 1. On a
given conversation turn, the dialogue manager makes a tar-



REQUEST FOR DIALOGUE

GAME STATE

CONVERSATION STATE

Voo l
DIALOGUE

MANAGER
o t

— PRODUCTIONIST

EXPRESSIONIST GRAMMAR

REALIZED DIALOGUE

Figure 1: Our NLG architecture. The Productionist module satisfies targeted requests made by our game’s dialogue manager by
operating over the game state, conversation state, and an Expressionist grammar to produce fully realized dialogue.

geted request for dialogue (on behalf of an NPC) to the Pro-
ductionist module, which operates over the game state, the
conversation state, and our Expressionist grammar to pro-
duce a bespoke, fully realized line of dialogue.

Authored Context-Free Grammar

Using Expressionist, we have authored a grammar that is
capable of generating roughly 3M unique lines of dialogue,
which cumulatively may be used to perform a total of 39
dialogue moves. This grammar took approximately twenty
hours for a single author to specify, and features 246 non-
terminal symbols and 665 production rules. In the grammar,
top-level symbols terminally expand to full lines of dialogue,
whereas terminal expansions of lower-level symbols are di-
alogue fragments. Our tagsets, whose tags are attributed to
its nonterminal symbols, correspond to the content meta-
data that is central to the operations of our dialogue man-
ager (Ryan, Mateas, and Wardrip-Fruin 2016b). Specifically,
each nonterminal symbol was attributed zero or more tags
from the following tagsets (and a few more that we omit due
to space considerations):

e Preconditions. Conditions specifying aspects of the game
state or conversation state that must hold in order for the
nonterminal symbol to be expanded during the production
of a line of dialogue. We specify these as raw Python ex-
pressions that Productionist can evaluate against the game
state at runtime.

e Dialogue moves. Dialogue moves that a line of dialogue
will perform if the nonterminal symbol is expanded dur-
ing the former’s production.

e Obligations pushed. Dialogue moves that a line will ob-
ligate its recipient to perform next if the nonterminal is
expanded during its production.

o Topics addressed. Topics of conversation that a line of
dialogue will address if the symbol is expanded.

e Propositions. Propositions about the gameworld (Ryan,
Mateas, and Wardrip-Fruin 2016b) that a line of dialogue
will assert; these cause dialogue recipients to consider up-
dating their beliefs about the world.

e Lie conditions. Conditions that, if satisfied, make a gen-
erated line of dialogue a lie (Ryan, Mateas, and Wardrip-
Fruin 2016Db).

e Conditional effects. Rules specifying the conditional
effects (updates to the game state; Ryan, Mateas, and
Wardrip-Fruin, 2016b) that a line of dialogue will yield.

206

Dialogue Requests

Productionist yields fully realized character dialogue to sat-
isfy targeted requests made by the game’s dialogue manager
on behalf of NPCs. As alluded to above, such a request so-
licits a line of dialogue that either will perform a targeted
dialogue move or address a targeted topic of conversation.

Dialogue Production

As illustrated in Figure 2, dialogue production in our method
proceeds from a nonterminal symbol in our grammar with
the desired markup and carries out conditional expansion by
both backward chaining and forward chaining.

Symbol Targeting. A generated line of dialogue will per-
form a given dialogue move or address a given topic of con-
versation if a nonterminal symbol with the corresponding
markup was expanded during the line’s production. Given
this, Productionist’s first task is to collect all the nonterminal
symbols in our authored Expressionist grammar that have
been attributed markup corresponding to the dialogue move
or topic solicited in the dialogue request. After compiling
all such symbols, the module randomly shuffles them before
attempting to target the first symbol in this ordering. If at
any point the targeting of that symbol fails (for reasons we
describe momentarily), the procedure begins from the next
available symbol, and so forth. If Productionist runs out of
symbols, then no line of dialogue can be furnished to satisfy
the dialogue request. We note, however, that such an occur-
rence would represent authoring error, rather than failure on
behalf of Productionist. Requests made by the dialogue man-
ager should only correspond to generable lines, and if a line
of dialogue satisfying the request is generable, Production-
ist will generate it. As such, any failure to satisfy a request
is a cue for the human author to fix an authoring mistake or
augment the Expressionist grammar.

Forward Chaining. By a process of forward chaining,
Productionist attempts to terminally expand the nonterminal
symbol that it is currently targeting. To do this, it must first
verify that the symbol’s preconditions are met—we call this
conditional expansion. As noted above, nonterminal sym-
bols in our grammar may be attributed preconditions, spec-
ified as raw snippets of Python code, that can be evaluated
against game and conversation state. If a symbol’s precondi-
tions are not met on some conversation turn, it may not be
expanded at that time, which means that forward chaining



from that symbol fails. If a symbol’s preconditions are met,
Productionist then attempts to execute one of its produc-
tion rules, by which the targeted symbol may be expanded
to a set of nonterminal and terminal symbols. For exam-
ple, a production rule in the Expressionist idiom looks like
this: greet — [[greeting word]], [[interlocutor name]).
By this rule, the nonterminal greet is expanded to a concate-
nation of three symbols: the nonterminal greeting word,
the terminal ‘, °, and the nonterminal interlocutor name.
In order for a production rule to be successfully executed,
each of the nonterminal symbols on its right-hand side (if
any) must be terminally expanded (i.e., must launch its own
successful forward chaining). This means that the example
rule could not be executed unless forward chaining from
both greeting word and interlocutor name was success-
ful. The process of forward chaining from a symbol is thus
one of recursively executing production rules until either all
available production rules have failed to execute, in which
case forward chaining has failed, or a terminal expansion of
the symbol has been produced. At every point of decision be-
tween a set of production rules, Productionist chooses prob-
abilistically according to the probabilities attributed by the
human author using Expressionist.

Backward Chaining. Unless it is a top-level symbol, the
terminal expansion of Productionist’s targeted nonterminal
symbol will be a dialogue fragment; in such cases, we must
also carry out backward chaining from that symbol to pro-
duce a complete line of dialogue. By this procedure, we at-
tempt to execute a production rule that has the targeted sym-
bol on its right-hand side. Here, a rule is successfully exe-
cuted if all the symbols on its right-hand side can be termi-
nally expanded (which may require forward chaining) and
the symbol on its left-hand side can launch terminal back-
ward chaining. Specifically, backward chaining terminates
upon arrival at a top-level symbol whose preconditions are
met. At this point, a complete line of dialogue performing
the targeted dialogue move or topic of conversation will have
been produced.

Why Backward Chain? Here, the reader may be won-
dering why the symbols associated with dialogue moves
and topics of conversation are not always top-level symbols,
since that would allow for the more straightforward unidi-
rectional terminal expansion that is conventional of CFGs.
The answer has to do with the nature of conversational obli-
gations in Talk of the Town. In our grammar, top-level non-
terminals tend to be annotated as performing coarse dialogue
moves, and deeper symbols more specific moves. For in-
stance, there is a top-level symbol associated with the coarse
move make small talk, which has a child node corresponding
to the finer move talk about the weather, whose own child
is associated with the even finer move respond about the
weather, and so forth for several levels. Typically, conver-
sational obligations, which frequently inform dialogue re-
quests made to Productionist, require a conversant to per-
form a finely grained move. For example, the line “How do
you like this weather?” does not merely obligate its recipi-
ent to perform the move make small talk, but rather the more
specific move respond about the weather. For this reason,

207

Figure 2: Dialogue production, illustrated. A nonterminal
symbol with the desired markup (red) is targeted, trigger-
ing production rules (gray)—whose bodies contain terminal
(square) and nonterminal symbols (circle)—by both forward
chaining (yellow) and backward chaining (aqua). The result-
ing production (a complete line of dialogue) is the concate-
nation of the six terminal symbols, and comes packaged with
all the markup attributed to the six nonterminal symbols.

Productionist must often target mid-level nodes, and this ne-
cessitates both forward and backward chaining.

Middle-Out Expansion. The grammar is organized in this
way to support an elegant hierarchy of markup—in this case,
annotations about small talk, the weather, and negative sen-
timent only have to be applied once each, even though hun-
dreds of thousands of generable lines can inherit them. If
all targetable nonterminal symbols were made top-level, as
would be standard in CFGs, markup (including precondi-
tions) would have to be duplicated in many places in the
graph, significantly increasing authorial burden and chances
for error. When combined with markup, middle-out expan-
sion greatly increases the authorial leverage (and tractabil-
ity) of authoring large, targetable dialogue spaces, and is a
core contribution of this work.

Metadata Collection

Upon generating a line of dialogue, Productionist iterates
over all the nonterminal symbols that were expanded dur-
ing the line’s production and collects all the markup that
was attributed to those symbols during authoring. At this
point, the line is packaged up with this metadata, which cap-
tures the semantic and pragmatic information corresponding
to the tagsets we enumerated above.

Template Realization

Rather than a fully grounded line of dialogue, the produc-
tion procedure we have outlined will have actually pro-
duced a templated line of dialogue, like those found in
systems such as Curveship (Montfort 2009), Prom Week
(McCoy and others 2014), and Versu (Evans and Short
2014). This is because certain pieces of a line of dia-
logue, such as a character’s name or gendered pronoun, are



not knowable at authoring time (due to retargeting), which
means they must be filled in at runtime. These template
gaps—called runtime variables in Expressionist parlance—
are specified by an author using raw Python code that Pro-
ductionist may evaluate (to a string) against the current game
and conversation state. For instance, in the templated line
“Hi, [conversation.interlocutor.name].”, the runtime variable
conversation.interlocutor.name (enclosed in brackets)
would be resolved by binding the variable conversation to
the Python object representing the current conversation and
then evaluating the Python expression accordingly.

Deployment

Upon realizing the template, Productionist will have pro-
duced a surface-level line of dialogue that satisfies the dia-
logue manager’s targeted request and comes packaged with
metadata specifying semantic and pragmatic information
about it. At this point, Productionist delivers the line to the
dialogue manager, which operates over its metadata to up-
date the conversation and game state; for lines with associ-
ated propositions, this will also invoke the recipient’s belief
revision procedures (Ryan et al. 2015b). Finally, the line is
handed off to the core game engine for displaying.

Examples

While we do not have space here to include generated dia-
logue, examples of this, including full conversations, can be
found elsewhere (Ryan, Mateas, and Wardrip-Fruin 2016b;
Summerville et al. 2016).

Authoring Patterns

In this section, we discuss authoring patterns that allow our
system to avoid typical NLG pitfalls and to express character
personality and other aspects of underlying state.

Avoiding Repetition

As a crucial authoring pattern, we use preconditions to
thwart awkward repetition of sentence structure or lexical
items. For example, we may take a nonterminal symbol that
expands to a specific sentence structure and attach a pre-
condition to it that bars the symbol from being expanded if
it was already used to produce an earlier line of dialogue.
Likewise, symbols that expand to a salient word or phrase
can be attributed preconditions that check for whether that
lexical content appeared in an earlier line.

Surfacing Character Personality

There is a body of work in expressive NLG that aims to
surface speaker personality in generated dialogue (Mairesse
and Walker 2007; Strong and others 2007); in our method,
we do this by again utilizing symbol preconditions. Specif-
ically, we frequently employ an authoring pattern whereby
certain symbols are gated according to the speaker’s person-
ality traits and expand to dialogue fragments that express
such traits. As a subtle example, we often use a nonterminal
called expressive punctuation at the end of lines; this sym-
bol may expand to an ellipsis if the speaker is introverted,
an exclamation mark if she is extroverted, or a period at any

208

time. More broadly, we can use this general tactic to surface
personality through sentence structure, lexical choice, or any
other aspect of dialogue. We can even support cases where a
character’s personality fundamentally alters the way she per-
forms a given dialogue move. For example, we could author
symbols that expand to lines like “Get away from me.” that
extremely rude characters could use to perform the move
greet back. One might worry that in such a case an NPC re-
cipient of that line would treat it as if it were an ordinary
greeting, but this is not the case: conversational obligations
are asserted by individual lines (according to their metadata
inherited during production), not the dialogue moves they
perform, which means this line could push on obligation on
its recipient to, e.g., perform the dialogue move respond to
rude greeting.

Surfacing Character Beliefs

Critically, we surface character beliefs (a core aspect of Talk
of the Town gameplay) by a pattern that utilizes runtime
variables. As noted above, runtime variables allow an au-
thor to include in terminal symbols arbitrary code that eval-
uates to a string at runtime. In authoring how a character
might ask an interlocutor about her work life, for example,
we could use runtime variables to cleverly surface multi-
ple speaker beliefs: “So, [speaker.belief(interlocutor, ‘first
name’)], how is the [speaker.belief(interlocutor, ‘job shift’)]
shift at [speaker.belief(interlocutor, ‘workplace’)] going?”
We anticipate this strategy being effective in communicating
aspects of the storyworld to the player, who may learn about
the town and its residents merely by eavesdropping. Else-
where, we briefly discuss using generative character conver-
sations for this kind of storytelling, and for background be-
lievability (Ryan, Mateas, and Wardrip-Fruin 2016a).

Content Sampling

Lastly, we would like to briefly note a pattern utilizing sam-
pling techniques. First, we frequently harness Expression-
ist’s live feedback feature, which allows authors to rapidly
expand nonterminal symbols (or execute specific production
rules) to verify the quality of generable output. Addition-
ally, we employ a variant of story sampling (Samuel et al.
2014) characterized by the following authoring loop: simu-
late character conversations, revise or augment our grammar
according to observed deficits, repeat.

Discussion and Prior Work

We plan to conduct a holistic evaluation of our larger ap-
proach to conversational interaction (which integrates dia-
logue management, NLG, and NLU into a gestalt) in the
context of a completed playable experience. This is not yet
possible, however—we are still developing our approach to
NLU (Summerville et al. 2016; Ryan et al. 2016b) and other
aspects of the larger gameplay experience of Talk of the
Town. In this paper, we will focus on comparing features of
our approach to existing methods for dialogue generation.
There have been a small number of projects that have
taken steps toward the integration of NLG into games, but
even fewer completed titles have shipped with generative



dialogue. In now classical foundational work, Loyall and
Bates (1997) couple embodied action and generative dia-
logue using an extension to the reactive-planning language
Hap, while Cavazza and Charles (2005) and Rowe, Ha, and
Lester (2008) select (and realize) syntactic templates by rea-
soning over, respectively, character affinities and archetypes.
More recently, the work of Marilyn Walker and collaborators
has explored the integration into games of traditional NLG
pipelines proceeding from character models (Khosmood and
Walker 2010; Walker et al. 2011; Lin and Walker 2011;
Walker et al. 2013) as well as symbolic content represen-
tations (Lukin, Ryan, and Walker 2014; Antoun et al. 2015);
these efforts are exemplified by the ambitious SpyFeet pro-
totype (Reed and others 2011). Bot Colony also employs
a traditional NLG pipeline—a first for a commercially re-
leased title—particularly one in the style of service-based
dialogue systems, made possible by the narrative conceit
of NPCs in the game being service robots (Joseph 2012).
Even more recently, lan Horswill’s ambitious MKULTRA
generates character dialogue from a definite clause gram-
mar specified in Prolog (Horswill 2014). Dunyazad like-
wise takes a grammar-based approach, in its case toward
generating narrational text and choice prompts (Mawhorter
2016). By employing generative grammars, these systems
harness the superset power of templated dialogue, a pattern
used in Prom Week (McCoy and others 2014), Versu (Evans
and Short 2014), the LabLabLab trilogy (Lessard 2016),
Event[0] (Mohov 2015), and various works of interactive
fiction (Short 2014).

Like Horswill and Mawhorter, we also eschew a tradi-
tional NLG pipeline and instead utilize generative gram-
mars. As we have argued more extensively elsewhere (Ryan
et al. 2015a), we believe that traditional NLG currently in-
curs authorial burden (due to systemic demands) that out-
weighs the benefits of its generativity, is not reliable enough
in terms of content quality to be used in a shipped game,'
and is unapproachable to naive authors. When utilizing
grammars, a single system has to be authored—one that can
execute production rules—and thereafter the pool of gener-
able content grows exponentially with authoring time, due
to the natural combinatorics of generative grammars. This
is in contrast to traditional NLG, where many interlocking
systems must be wrangled and the pool of generable con-
tent tends to grow more slowly with the addition of spe-
cific realization rules. In a traditional NLG pipeline, bad out-
puts may emerge from a complex series of rule interactions,
which makes the editing process more like debugging than
authoring; in contrast, in a CFG each snippet of surface text
will have been generated by a discrete production rule. Such
rules are easy to correct using Expressionist’s live-feedback
feature, which allows for rapid checking of the results of dis-
crete rule executions (and the expansions of individual sym-
bols). Another major appeal of our method is that it is ap-
proachable to naive authors—Tracery continues to demon-
strate the appeal of CFGs to those lacking procedural back-

'Bot Colony is an exception here, but one whose expectations
of quality are cleverly alleviated by the narrative conceit that its
NPCs are service robots.

209

grounds (Compton, Kybartas, and Mateas 2015)—whereas
traditional NLG pipelines demand NLG expertise.

More crucially, this is to our knowledge a novel explo-
ration of generation by middle-out, conditional CFG expan-
sion. While earlier approaches have operated over grammars
by searching in multiple directions (Kay 1980), including for
purposes of generation (Kay 1996), we do so conditionally,
with tests being attached to candidate production rules in the
style of production systems (Davis and King 1975).2 This
is critical to our approach, since it directs the bidirectional
search according to authorial aims, like surfacing character
personality, which may be encoded in the condition logic.
This precludes the need for something like overgenerate and
rank, which would push the specification of strategies for
evaluating generable content out of the authoring interface
and into the game code. That would be antithetical to our
project because naive authors may not be able to write code,
and more generally because we want evaluative strategies to
be specified at the time of content authoring (as a form of
tight authorial control for content authors).

In the future, we plan to train a team of naive authors to
help augment our grammar, in similar fashion to the Prom
Week team’s inclusion of several undergraduates who were
tasked with dialogue authoring (Kaltman et al. 2014). We
are confident about this plan in part because Expressionist,
and bespoke Productionist-like modules, have been used to
generate natural language in two recently released student
games—Project Perfect Citizen and Snapshot—as we have
detailed elsewhere (Ryan et al. 2016a).

References

Adams, T. 2015. Simulation principles from Dwarf Fortress.
In Rabin, S., ed., Game Al Pro 2: Collected Wisdom of Game
Al Professionals.

Antoun, C.; Antoun, M.; Ryan, J. O.; Samuel, B.; Swanson,
R.; and Walker, M. A. 2015. Generating natural language
retellings from Prom Week play traces. Proc. PCG.

Brusk, J. 2014. Steps Towards Creating Socially Compe-
tent Game Characters. Ph.D. Dissertation, University of
Gothenburg.

Cavazza, M., and Charles, F. 2005. Dialogue generation in
character-based interactive storytelling. In Proc. AIIDE.
Compton, K.; Kybartas, B.; and Mateas, M. 2015. Trac-
ery: An author-focused generative text tool. In Inferactive
Storytelling.

Davis, R., and King, J. 1975. An overview of production
systems. Technical report, DTIC Document.

Endrass, B.; Klimmt, C.; Mehlmann, G.; Andre, E.; and
Roth, C. 2014. Designing user-character dialog in interac-
tive narratives: An exploratory experiment. Computational
Intelligence and Al in Games.

Evans, R., and Short, E. 2014. Versu—a simulationist story-
telling system. Computational Intelligence and Al in Games.

“More precisely, in our method the conditions are attached to
the nonterminal symbols in the rule heads and bodies.



Horswill, I. D. 2014. Architectural issues for compositional
dialog in games. In Proc. GAMNLP.

Joseph, E. 2012. Bot colony—a video game featuring intel-
ligent language-based interaction with the characters. Proc.
GAMNLP.

Kaltman, E.; Wardrip-Fruin, N.; Lowood, H.; and Caldwell,
C. 2014. A unified approach to preserving cultural software
objects and their development histories.

Kay, M. 1980. Algorithm schemata and data structures in
syntactic processing. Technical Report CSL80-12.

Kay, M. 1996. Chart generation. In Proc. Association for
Computational Linguistics.

Khosmood, F., and Walker, M. 2010. Grapevine: a gossip
generation system. In Proc. FDG.

Lessard, J. 2016. Designing natural-language game conver-
sations. In Proc. DiGRA-FDG.

Lewis, M., and Dill, K. 2015. Game Al appreciation, revis-
ited. Game Al Pro 2: Collected Wisdom of Game Al Profes-
sionals.

Lin, G. L., and Walker, M. A. 2011. All the world’s a stage:
Learning character models from film. In Proc. AIIDE.
Loyall, A. B., and Bates, J. 1997. Personality-rich believable
agents that use language. In Proc. AGENTS.

Lukin, S. M.; Ryan, J. O.; and Walker, M. A. 2014. Au-
tomating direct speech variations in stories and games. In
Proc. GAMNLP.

Mairesse, F., and Walker, M. 2007. Personage: Personality
generation for dialogue. In Proc. ACL.

Mateas, M., and Stern, A. 2003. Fagade: An experiment in
building a fully-realized interactive drama. In Proc. GDC.
Mateas, M. 2007. The authoring bottleneck in creating Al-
based interactive stories [panel]. In Proc. INT.

Mawhorter, P. A. 2016. Artificial Intelligence as a Tool
for Understanding Narrative Choices. Ph.D. Dissertation,
University of California, Santa Cruz.

McCoy, J., et al. 2014. Social story worlds with Comme il
Faut. Computational Intelligence and Al in Games.

Mohov, S. 2015. Turning a chatbot into a narrative game:
Language interaction in Event[0]. In nucl.ai.

Montfort, N. 2009. Curveship: An interactive fiction system
for interactive narrating. In Proc. CALC.

Reed, A. A., et al. 2011. A step towards the future of role-
playing games: The SpyFeet mobile RPG project. In Proc.
AIIDE.

Rowe, J. P;; Ha, E. Y.; and Lester, J. C. 2008. Archetype-
driven character dialogue generation for interactive narra-
tive. In Proc. IVA.

Ryan, J. O.; Fisher, A. M.; Owen-Milner, T.; Mateas, M.;
and Wardrip-Fruin, N. 2015a. Toward natural language gen-
eration by humans. In Proc. INT-SBG.

Ryan, J. O.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2015b. Toward characters who observe, tell, mis-
remember, and lie. In Proc. Experimental Al in Games.

210

Ryan, J.; Seither, E.; Mateas, M.; and Wardrip-Fruin, N.
2016a. Expressionist: An authoring tool for in-game text
generation. In Interactive Storytelling.

Ryan, J.; Summerville, A. J.; Mateas, M.; and Wardrip-
Fruin, N. 2016b. Translating player dialogue into meaning
representations using LSTMs. In Proc. Intelligent Virtual
Agents.

Ryan, J. O.; Mateas, M.; and Wardrip-Fruin, N. 2015. Open
design challenges for interactive emergent narrative. In In-
teractive Storytelling.

Ryan, J.; Mateas, M.; and Wardrip-Fruin, N. 2016a. Gen-
erative character conversations for background believability
and storytelling. In Proc. Social Believability in Games.

Ryan, J.; Mateas, M.; and Wardrip-Fruin, N. 2016b. A
lightweight videogame dialogue manager. In Proc. DiGRA—
FDG.

Ryan, J.; Mateas, M.; and Wardrip-Fruin, N. 2016¢. A sim-
ple method for evolving large character social networks. In
Proc. Social Believability in Games.

Sali, S.; Wardrip-Fruin, N.; Dow, S.; Mateas, M.; Kurni-
awan, S.; Reed, A. A.; and Liu, R. 2010. Playing with words:
from intuition to evaluation of game dialogue interfaces. In
Proc. FDG.

Samuel, B.; McCoy, J.; Treanor, M.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. 2014. Introducing story sam-
pling: Preliminary results of a new interactive narrative eval-
uation technique. In Proc. FDG.

Short, E. 2014. Procedural text generation in
IF. https://femshort.wordpress.com/2014/11/18/procedural-
text-generation-in-if/.

Spierling, U. 2011. Introducing interactive story creators
to conversation modelling. In Proc. Advances in Computer
Entertainment Technology.

Strong, C. R., and Mateas, M. 2008. Talking with NPCs: To-
wards dynamic generation of discourse structures. In Proc.
AIIDE.

Strong, C. R., et al. 2007. Emotionally driven natural lan-
guage generation for personality rich characters in interac-
tive games. In Proc. AIIDE.

Summerville, A. J.; Ryan, J.; Mateas, M.; and Wardrip-
Fruin, N. 2016. CFGs-2-NLU: Sequence-to-sequence learn-
ing for mapping utterances to semantics and pragmatics.
Technical Report UCSC-SOE-16-11, UC Santa Cruz.

Treanor, M.; McCoy, J.; and Sullivan, A. 2015. Social play
in non-player character dialog. In Proc. INT-SBG.

Walker, M. A.; Grant, R.; Sawyer, J.; Lin, G. I.; Wardrip-
Fruin, N.; and Buell, M. 2011. Perceived or not perceived:
Film character models for expressive nlg. In Interactive Sto-
rytelling.

Walker, M. A.; Sawyer, J.; Jimenez, C.; Rishes, E.; Lin, G. L;
Hu, Z.; Pinckard, J.; and Wardrip-Fruin, N. 2013. Using ex-
pressive language generation to increase authorial leverage.
In Proc. INT.





