Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

Analyzing Stealth Games with Distractions

Alexander Borodovski and Clark Verbrugge
School of Computer Science
McGill University
Montréal, Québec, Canada
alex @borodox.com, clump@cs.mcgill.ca

Abstract

The ability to distract opponents is a key mechanic in many
stealth games. Existing search-based approaches to stealth
analysis, however, focus entirely on solving the non-detection
problem, for which they rely on static, ahead-of-time models
of guard movements that do not depend on player interaction.
In this work we extend and optimize an approach based on
heuristic search of stealth games to model variation in guard
paths as dynamically triggered by player actions. Our design
is expressive, accommodating different distraction designs,
including remote activation and time delays. Using a Unity3D
implementation, we show our enhanced search can solve dis-
traction puzzles found in real games, as well as more com-
plex, multiple-distraction level designs. Our work shows how
heuristic search can be applied to dynamically determined
contexts, and significantly extends the ability to model and
solve stealth games.

Introduction

Distraction puzzles are a common extension of basic stealth
game problems. A player is presented with the usual task
of finding a path from start to goal, undetected by enemies,
with success apparently impossible due to enemy guard mo-
tions and fields of view that effectively block the goal. In
order to progress a player must throw an object or use sound
to inspire guards to investigate, changing their motion and
opening a solution path. From an analysis perspective, al-
gorithmically solving distraction puzzles introduces addi-
tional complexity in defining the state space—guard po-
sitions depend on arbitrary, dynamic player choices, and
thus regions of non-detection cannot be computed statically,
ahead of time, a property on which existing, search-based
stealth analysis relies (Tremblay et al. 2013).

Our work addresses this dynamic property of state evo-
lution, allowing guard positions to be efficiently computed
and algorithmic search applied despite the potential growth
in state space. We first develop a model of distraction puz-
zles, identifying the basic components of a distraction that
allow for a variety of puzzle designs. We combine this with
a guard movement model that allows for different choices
in patrol path depending on which distraction was activated,

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

129

and when and where the guard was at that point. This re-
duces the combinatorial explosion in state space to a man-
ageable branching of game states, even if the branch points
must still be detected dynamically. To make search in this
space efficient we then extend the main Rapidly Exploring
Random Tree (RRT) search algorithm, applying multiple op-
timizations that improve performance without overly stress-
ing the resource requirements beyond that of a basic non-
detection search. Implementation of this design in Unity3D
shows feasibility, and we demonstrate that we can solve
both relatively simple distraction puzzles typical of modern
games, and much more complex designs involving compo-
sition of multiple distractions. Specific contributions of our
work include the following.

e We formalize and identify components of a distraction
puzzle that can be used to construct a variety of be-
haviours. This design integrates with a flexible model of
guard movement that allows for natural and reactive guard
responses.

e To make heuristic search efficient, we extend the basic
stealth space search with multiple optimizations. Although
these are motivated by the need to search in the richer state
space implied by distractions, they are also applicable to
more general use of RRT in game analysis.

e We experimentally evaluate the approach in Unity3D; this
acts as a proof of concept as well as evidence of how our
optimizations enable search of quite complex distraction
puzzles.

Distraction Model

Distractions come in many forms. Operationally, a distrac-
tion has a point in space that the player needs to reach in
order to use it. Once the player reaches the distraction point,
a signal is sent out to all guards that that specific distraction
point was activated at that specific time. A subset of guards,
depending on their current location and pre-set patrol routes,
will then react to the distraction by changing where they are
going, and entering a new looped patrol. This new patrol
may involve them going to check a point and then resuming
their prior pattern, or changing to a new pattern.

In this process we can separate the location that causes
the distraction to be activated (Activation Location) and the
location a guard heads to upon being distracted (Event Lo-



[Variation [1[2[3[4[5[6[7[8]
Activation Loc
Event Loc =|F|=|F = F| = F
Delay O[O0 |60 [O0O|O0O] 6] o
Old Path ]
New Path === = F|F|F|F

Table 1: Possible Distraction Combinations

cation). Distractions are often time-delayed, with the signal
occurring at a future time instead of the time the player actu-
ally visited the distraction point. In table 1, we can describe
eight basic variations that can thus be implemented: with
the same or different activation and event locations, time-
delayed by a § > 0 or not, and whether the guard returns to
a previous patrol route or is permanently altered. There can
be any number of different, independent distraction points
each affecting different (although perhaps overlapping) sets
of guards, or affecting the same sets of guards in different
ways. Further variation, such as in duration of distraction, or
arbitrarily locating activation events are also possible.

Variations 1 and 5 are commonly seen and occur in games
such as the Splinter Cell series: stepping on broken glass
on the ground makes a noise, which a guard investigates,
and either eventually returns to their patrol or enters a new
alarmed mode. Variation 2 is seen, for example, in the game
Far Cry 4: throwing a rock causes a noise where it hits and
nearby guards go to investigate, returning to their previous
position; variation 4 occurs if there is significant delay in the
throwing.

To implement all these variations we assume guard paths
are based on a waypoint system. Each waypoint has a loca-
tion, an action for the guard (wait, move, rotate), and a set
of pointers to subsequent waypoints, one for normal move-
ment, and one for each distraction. A guard reaching a way-
point performs the indicated action and then follows the
normal pointer to the next one. If a distraction is activated
during that action, a guard stops wherever they are, rotates
toward the corresponding distraction waypoint, and moves
toward it. Upon arrival they again return to normal move-
ment, following waypoints within this (possibly) different
list. Waypoints on all routes include these pointers, allow-
ing a guard to react to a second distraction even while still
resolving the first.

This design is aimed at modeling guard behaviours as
seen in many stealth games, but ensuring we can always
predict a guard position at a given time. The key property
is that while a guard’s location depends on dynamic game
state, it is nevertheless a deterministic function of a small
set of player actions (distraction activations). More complex
guard Al could be used of course, as long as any branching
in behaviour still permits us to map (time x history) to a
precise guard position.

Searching

To find possible player solutions in this context we use a
Rapidly Exploring Random Tree (RRT) search to heuristi-
cally generate a detection-free path from the initial location

130

to the goal. Details on applying RRT to stealth can be found
in (Tremblay et al. 2013), but RRT is conceptually simple:
from the initial node (state) we incrementally grow a search
tree by (repeatedly) randomly sampling the state space and
attempting to connect the sampled node its nearest neigh-
bour in the tree, terminating once the goal state is reachable.
The sampled state in each node includes both space (z,y)
and time (t) dimensions, and in our case nodes also carry
the time each distraction (if any) was activated.

Sampling is performed in (x,y,t) only, with nodes im-
plicitly activating a specific distraction if they have the exact
same z, y as that distraction. Serendipitously sampling pre-
cise locations is unlikely, so we bias the sampling process.
We force 20% of samplings to pick the location of a random
distraction point at a random time and try to connect to the
tree; other bias rates are possible of course. Nodes that sub-
sequently connect to such a distraction node inherit the fact
that that distraction was activated.

When adding sampled nodes to the tree we need to com-
pute whether or not a given state in the tree can reach the
sampled state by straight line movement. Feasible connec-
tions require maximum player speed is respected, no inter-
section with obstacles, and no intersection with the fields of
view (FOV) of any guards. The obstacle collision is done
using the built-in Linecast in Unity. For the FOV check we
need to locate each guard given the time and set of acti-
vated distractions, and intersect the connecting line-segment
with their FOV. Our waypoint design allows us to determine
guard position, but as constructing the full FOV polyhedra
is complex we perform the intersection heuristically, check-
ing player—guard visibility discretely every 3rd frame, again
using Unity’s Linecast to determine non-occluded sight and
filtering it by guard orientation and distance.

Optimizing RRT

RRT will eventually always find a solution if there is one,
but as it is stochastic this can take arbitrarily long. In par-
ticular, tree density increases faster than tree coverage in
RRT searches, and for the same number of samples it can
be advantageous to do more, smaller searches rather than
one larger search, especially for goal-directed contexts such
as finding game solution paths. We also make use of several
additional optimizations to improve scalability and allow us
to solve more complex game levels.

Distraction Stacks Biasing the sampling of distraction ac-
tivation points is important to ensuring they are frequently
considered in the search. Doing so naively, however, has a
negative impact on the RRT search. RRT samples are con-
nected to the tree through nearest neighbour searches, and
having added a sample of a distraction event location to the
tree, subsequent samplings of the same distraction event at
different times will tend to find prior activations as nearest
neighbours. The result is that the tree builds a dense line of
samples, extending in time, but not in space, over-focusing
the search on the player lingering at the distraction location
for different amounts of time.

We improve spatial coverage by extending the set of nodes
considered in adding a sample to the tree. Rather than the



single nearest neighbour, we instead find the three closest
nodes, and look for one that is in a different location, reject-
ing the sample if none are found. Lingering nearby is still
possible by sampling points arbitrarily close, but as our bi-
ased sampling is only on the exact distraction location this
prevents the search from building trees that over-concentrate
nodes on a player remaining at the exact distraction point af-
ter they have already used the distraction.

Triangulation and Distance Although wide-open, out-
door locations are sometimes used, stealth games tend to
favour complex, obstacle-dense maps that offer multiple op-
portunities for occlusion. The larger the proportion of space
consumed by obstacles the larger the number of RRT sam-
ples rejected, wasting significant search effort. We solve this
by ensuring all sample points are viable, using a triangula-
tion of the reachable space within the game level. Sampling
is then done by first selecting a random triangle in a list
weighted by triangle area, and then a random point within
1t.

Even outside of obstacles, convoluted room/corridor de-
signs common in games mean that sample points far away
from the search tree are unlikely to be able to connect to
the tree, at least not through simple straight-line movements.
This can be improved by constraining the sample range,
restricting sample points to ones within a fixed distance
from the current tree’s bounding box. To fit this in with our
triangle-based selection, and as Euclidean distance can be
quite inaccurate in game levels, we base our constraint on a
triangulation distance measure, computing the distance be-
tween points in two triangles as the sum of center-to-center
distances along the triangle adjacency path.

Multi-midpoint Compositional Search More complex
levels may include multiple distractions that must be solved
to reach a goal position. From a given puzzle, however, the
RRT search will tend to spread slowly, filling in variations in
the solution to one puzzle before proceeding to the next. Ex-
cessive resources may thus be required to solve even simple
levels if they are large or composed of multiple puzzles.

Our approach to this is to try and break up an overall level
search into multiple, smaller searches. We do not of course
know where precisely to connect such searches, but we can
approximate a division geographically, taking advantage of
the fact that any solution to distraction puzzles must also in-
clude a basic path solution from start to goal. We can thus
find a “midpoint” expressed only in two dimensions, and
once we have reached the midpoint in a first RRT search,
we then do a second search to try to reach the end, assuming
the midpoint as a starting point, and including the state given
by the result of the first search.

The success of this approach depends on finding a good
midpoint, more or less half-way through the search, and
along an actual solution path. We first find all simple paths
from the start to the end based solely on the geometry of
the level, ignoring guards since their behaviour can change.
Each path generates a midpoint, and since different paths
may share midpoints we eliminate any duplicates. At this
point we perform the two part search for each midpoint in
turn until we either fail with all of them or find a solution.

131

Figure 1: State of Decay Level

This approach naturally extends to splitting it into more than
two parts, or for use with different ways to calculate the way-
points that are not in the middle.

Experimental Results

Here we describe experiments applying RRT to 5 different
game levels. We use a combination of levels based on ac-
tual games and synthetic tests; the former to be representa-
tive of actual games, and the latter to investigate more com-
plex level designs that are not well represented in available,
fan-based depictions. For all of the experiments, the search
was implemented in Unity3D, and the levels were created
in it as well. These experiments were all run on a Windows
10 machine, using a Intel i7-6700HQ processor operating at
2.60GHz, with 16 GB of RAM using Unity3D 5.3.1.

Simple Tests

For feasibility tests we used two levels taken from actual
games. Figure 1 is modeled on a portion of a game level
from State of Decay as seen in a Youtube clip (GruntShield-
Inc 2016). There is a starting area on the left that is fenced
off from stationary enemies near a house. The player throws
a firecracker from a small tower in the fenced off area, all the
enemies go to it, and then he sneaks into the house. We mod-
eled this using the throwing point as the activation location,
and the place where it was aimed as the event location. The
distraction activation point and the distraction event points
are represented with light green circles, labelled “A” and “E”
respectively. Orange lines indicate direction and span of en-
emy FOVs, and the red line represents a possible solution.
The actual level is an instance of variation 8 from table 1,
however we implement it as an instance of variation 5, as
the delay between when the player throws the distraction
and when it lands is minimal, and mainly just the length of
the throwing animation.

Figure 2 is based on a portion of a level from Thief as seen
in another Youtube clip (CenterstrainO1 2016). The starting
area is in the bottom left corner. There is a stationary guard
(1) in the top left, and another stationary guard (2) in the



Figure 2: Thief Level

middle of the bottom. Finally, guard (3) starts in the bottom
left, and patrols in a square around the middle. In the video,
the player generates a distraction by shooting a “water ar-
row,” putting out a fire behind the 2™ guard and causing him
to turn around to face the wall. We model this abstractly as
a distraction, again represented by the light green circles for
activation (A) and event points (E). Much like the State of
Decay level, this is an instance of variation 8 from table 1
which we model as an instance of variation 5 by ignoring
the arrow animation time.

These levels allow us to verify that our RRT search ap-
proach is successful in realistic contexts. They also illustrate
the value of doing multiple smaller searches over a single
large search. For State of Decay, a single (optimized, but
non-compositional) search of 2500 samples achieved a suc-
cess rate of 65% over 100 trials, and using 4000 samples
only increasing that to 70%. Using 5 searches, each of 4000
nodes, however, gives a 99% success rate while still taking
less than 1s per search. The Thief level is even simpler. A
budget of 2500 sample nodes and one search completes in
0.1s with a success rate of 88%; with 4000 nodes and 5
search attempts we had a success rate of 100% with an aver-
age time of 0.15s over 100 trials.

Multi-Alarm Level

Figure 3 shows a non-trivial, synthetic level extending the
Thief level design. In this level there are four guards pa-
trolling, circling around a central obstacle. The player be-
gins in the upper-left and must traverse to the lower-right.
A distraction activation point is near the starting location of
the player, with event locations (alarms) in the bottom-left
and upper-right. When it is activated, any guard for whom
the closest corridor is one containing an alarm point will go
to that alarm point before returning to patrolling around the
central obstacle.

As well as showing a situation in which the location of the
distraction activation does not necessarily match the event
location guards go to, here we see that one distraction can

132

Figure 3: Multi-Alarm Level

Comparison of Different Search Types

Success Rate

BasicSearch ~ BasicDSearch DDSearch SimpTriSearch FullSearch

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Success Rate

Search Type

Figure 4: Success Rate of Different Searches

lead different guards to different places. Overall this is an
example of variation 2 from table 1, although it also works as
variation 6, because although the guards that are distracted
go back to the same patrol route, they are now shifted in
time, and the ensuing pattern of the guard patrols will de-
pend on the exact time the distraction was used.

This complex level is a good basis for understanding the
impact of our various improvements to the RRT search.
Comparison was made between the basic search (Basic-
Search), basic search with prevention of distraction stacks
(BasicDSearch), basic search with Euclidean distance bound
and distraction stack prevention (DDSearch), triangulated
search with distraction stack prevention (SimpTriSearch),
and finally, triangulation with distraction stack prevention
and the triangle-based distance bound (FullSearch). For each
of the experiments 100 trials were done, and the same pa-
rameters were used, which were 4000 nodes and five search
attempts.

Figure 4 shows success rates achieved under these differ-
ent execution scenarios. Preventing distraction stacks has the
largest increase, improving the 16% rate under basic search
to 53%. Distraction stacks not only waste a significant num-



Comparison of Different Search Types

Success Time

40
35
30
2
20
15
2 [r— e —

BasicSearch ~ BasicDSearch DDSearch SimpTriSearch FullSearch

Average Time Taken for Success (s)

Search Type

Figure 5: Average Success Times in Different Searches

ber of samples, in connecting later attempts to use a distrac-
tion to earlier ones they effectively prevent consideration of
using distractions at a variety of times, and avoiding such
stacks has a major impact. Triangulation further improves
on this. In analyzing BasicDSearch results we found 56%
of samples were within obstacles, a significant waste. Fo-
cusing on only viable locations through triangulation raises
success to 70%. A final inclusion of our (triangle-based)
distance bound in sampling brings success to a respectable
87%. Comparing the latter with the very low DDsearch re-
sults (12%) shows a nice synergy in our techniques—a dis-
tance constraint should reduce wasted samples that are taken
too far away from the main search tree, but this needs to be
combined with a technique like triangulation to ensure the
constrained sample space is not saturated by infeasible ob-
stacle areas.

Interestingly, our optimizations are also effective at im-
proving search time. Figure 5 shows the average time of a
successful search for all configurations (failed search takes
approximately twice as long in all cases, with less devia-
tion). We can see that avoiding distraction stacks slows down
the search, use of triangulation has only slight impact, but
distance bounds are the major contributor to improving tim-
ing. In the end our optimized search is about 3x faster than
the naive search.

Two-Part Levels

For more complex levels we further build on our single-
distraction puzzles. The two-part level, seen in figure 6, is
simply the two copies of the multi-alarm level attached end
to end, both of which must be solved to reach the goal. This
has a complexity approaching that of a small but complete
game level, with multiple stealth puzzles and sets of guards.
In much the same way as the multi-alarm level, it is a more
complicated version of variation 2 from table 1.

Searching through a large level consisting of multiple
puzzles is quite difficult, and the FullSearch mode from the
previous experiment was unable to solve the level at all, at
least not within 100 trials of our 4000 nodes and 5 attempt
searches. Enabling the midpoint compositional optimization
allowed the search to find a solution 28% of the time. Al-
though not a high success rate this is important in showing

133

Figure 6: Two-Part Level

Figure 7: Two-Part Choice Level

that a compositional version of the search is effective at al-
lowing the search to solve levels too complicated to solve
without it. The efficacy comes at some cost, however, and
average successful search time is increased to 301.7s. In-
terestingly, this cost is biased toward the second half of the
search—in a successful midpoint search the first half uses
an average of 5540 samplings summed over our allowed 5
attempts, while the second half uses 8671. This is likely due
to the fact that for the second half of the search, it starts in
the middle of the level and then searches in both direction si-
multaneously. Thus, less of the search resources are used ef-
fectively for the second half of the search. We do not restrict
the search as in general a solution may involve backtrack-
ing or complicated paths, although for some levels it may
be heuristically possible to improve success by biasing the
geometric positions sampled in the search toward the goal
position.

Choice of midpoint here is highly heuristic. The two-part
level has the advantage that traversing the central corridor



is essential in any solution; in general, however, we cannot
assume that the middle of a path is necessarily part of an ac-
tual solution path, let alone halfway. As a final set of exper-
iments, we thus evaluated our design on the two part choice
level shown in 7. The first half of this level is simply a multi-
alarm level, but attached to the end there is a choice of two
corridors to go down. The clockwise choice leads to the end
of the level, while the counter-clockwise direction seems to
lead to the end of the level, but has a stationary guard block-
ing it who cannot be distracted. This level would be diffi-
cult for a player to solve in a stealth game, as the choice of
which corridor to go down is not necessarily obvious ahead
of time, and so multiple play attempts would likely be re-
quired. Much like the regular two-part level, the distraction
in this level is an example of variation 2 from table 1, and
we again use 5 attempts of a maximum of 5000 nodes for
each search, averaged over 100 trials.

This level includes two distinct midpoints in terms of pure
pathing solutions, one on each side of the corridor divider.
A single midpoint search has a success rate of 30%, and
consideration of both midpoints raises that to 55%, unsur-
prisingly about 2x higher. Success timings are relatively
comparable though; single midpoint completes in 126.9s on
average, while multiple takes 153.3s. This better scaling is
likely due to the fact that success time depends more on the
first search, as the second merely needs to path to the goal or
not, and does not need to solve a complex distraction puzzle.

Related Work

Our work builds on the well known Rapidly Exploring Ran-
dom Tree (RRT) algorithm as a basis for heuristic search
of the stealth space. RRT is a random-based pathfinding
algorithm commonly used in robotics for navigation plan-
ning (Kuffner and LaValle 1999), and has more recently
been applied to games research (Bauer and Popovi¢ 2012;
Tremblay et al. 2013). Numerous works focus on improv-
ing the basic RRT algorithm in different ways, although
these do not always apply to our context. Our compositional
design, for instance, is similar to bidirectional approaches,
where RRT searches are done from both the start to the
goal and vice versa, aiming to meet more or less in the
middle (Kuffner and LaValle 2000). In our case the need
to guarantee the full, evolving game state matches where
the searches meet means searches cannot be entirely inde-
pendent. A game context can also make some optimizations
simpler. A retraction-based RRT planner, for example, im-
proves sampling by pushing samples within obstacles out to
the edge of obstacles, where they may still be viable (Zhang
and Manocha 2008). We address this problem by using a
spatial decomposition to ensure we never sample inside ob-
stacles in the first place.

Previous work on stealth games has also built on the RRT
search (Tremblay et al. 2013). This work assumed the move-
ments of guards was fixed, and had no reaction to the player.
This was in fact integral to the search process, since the
space was pre-populated by both obstacles and the motion
of guard fields of view, as projected into the time dimen-
sion. In this way search queries could trivially determine
whether a position was viable by testing for intersection with

134

the known position and orientation of guards at a given time.
Tremblay et al. later extended their design to include com-
bat, as a basic form of player—guard interaction (Tremblay,
Torres, and Verbrugge 2014). However, this did not affect
the movement model, and the guard movements remained
deterministic: combat was detected by intersection of a pro-
posed RRT edge with a guard field of view, resolved through
an abstract combat model, and resulted in the state space
branching, representing contexts in which each guard was
alive or not after a point, and thus whether their field of view
mattered or not for non-detection or future combat, but not
otherwise changing guard motion. Their design also incor-
porated health packs, incorporated into the RRT search by a
biased sampling procedure, a technique we also make use of
for selecting distraction points.

Other work on stealth has aimed at creating believable
guard search behaviours. Third Eye Crime used a form of
occupancy map in order to have the enemies track the po-
sition of the player, showing a probability distribution that
becomes more diffuse the longer a player remains out of
sight of the enemy (Isla 2013). Planning techniques have
also been used to solve game levels based on gameplay con-
straints, displaying solutions as a storyboard (Pizzi et al.
2010). This work was aimed at level generation more gen-
erally, but as it used Hitman as a prototype it did involve
elements of stealth in addition to combat.

Our work here is specifically focused on dealing with dis-
tractions. The use of distractions is well known trope in
stealth games, and can be found in perhaps the majority of
stealth games, with the gaming website Giant Bomb listing
66 examples of game titles that use this mechanic (Giant
Bomb 2016). Analysis of the mechanic, however, is much
less frequent, with the only prior work we could find in
this area being a game studies perspective on indexical sto-
rytelling, where distractions are mentioned as examples of
how the locations of objects can influence both the player
and other non-player characters (Fernandez-Vara 2011).

Conclusions & Future Work

In allowing players to dynamically modify the behaviour of
NPCs, distraction mechanics introduce a complex, dynamic
element into stealth gameplay, complicating ahead-of-time
analysis. Our work shows the impact is nevertheless man-
ageable, and by formalizing distraction state into the game
state model we can still determine guard positions. We note
that our design can be applied in the presence of arbitrarily
complex guard responses, as long as the behaviour is con-
structed as a deterministic function of state.

Our future work is aimed at both further scaling search
improvements, and extending the design to other stealth
puzzle features, such as sound propagation. As extracting
puzzles from actual games is laborious, building a formal
suite of stealth benchmarks would also be useful in showing
breadth and for formal testing.

Acknowledgments

This work supported by the Natural Sciences and Engineer-
ing Research Council of Canada, Application ID #249902.



References

Bauer, A. W., and Popovié, Z. 2012. RRT-based game level
analysis, visualization, and visual refinement. In AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment.

Centerstrain01. 2016. Thief: Stealth walkthrough - master
- ghost - part 26 - chapter 7 - the hidden city 1/2. https:
/Iwww.youtube.com/watch?v=icyKiYFWbBE. Accessed:
2016-05-02.

Fernandez-Vara, C. 2011. Game spaces speak volumes: In-
dexical storytelling. In Digital Games Research Association.

Giant Bomb. 2016. Enemy distraction. http://www.
giantbomb.com/enemy-distraction/3015-5692/games/. Ac-
cessed: 2016-04-02.

GruntShieldInc. 2016. State of decay - distraction. https:
/lwww.youtube.com/watch?v=7pApHmrG6LY. Accessed:
2016-04-02.

Isla, D. 2013. Third Eye Crime: Building a stealth game
around occupancy maps. In AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 206—

206.

Kuffner, J. J., and LaValle, S. M. 1999. Randomized kino-
dynamic planning. In Proceedings of the IEEE International
Conference on Robotics and Automation, 473-479.

Kuftner, J. J., and LaValle, S. M. 2000. RRT-connect: An
efficient approach to single-query path planning. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, volume 2, 995-1001. IEEE.

Pizzi, D.; Lugrin, J.-L.; Whittaker, A.; and Cavazza, M.
2010. Automatic generation of game level solutions as sto-

ryboards. IEEE Transactions on Computational Intelligence
and Al in Games 2(3):149-161.

Tremblay, J.; Torres, P. A.; Rikovitch, N.; and Verbrugge,
C. 2013. An exploration tool for predicting stealthy be-
haviour. In The Second Workshop on Artificial Intelligence
in the Game Design Process.

Tremblay, J.; Torres, P. A.; and Verbrugge, C. 2014. An al-
gorithmic approach to analyzing combat and stealth games.
In IEEE Conference on Computational Intelligence and
Games (CIG), 1-8.

Zhang, L., and Manocha, D. 2008. An efficient retraction-
based RRT planner. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 3743-3750.
IEEE.

135





