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Abstract

Domain model acquisition is the problem of learning the
structure of a state-transition system from some input data,
typically example transition sequences. Recent work has
shown that it is possible to learn action costs of PDDL mod-
els, given the overall costs of individual plans. In this work
we have explored the extension of these ideas to narrative
planning where cost can represent a variety of features (e.g.
tension or relationship strength) and where exact solutions
don’t exist. Hence in this paper we generalise earlier results
to show that when an exact solution does not exist, a best-fit
costing can be generated. This approach is of particular in-
terest in the context of plan-based narrative generation where
the input cost functions are based on subjective input. In or-
der to demonstrate the effectiveness of the approach, we have
learnt models of narratives using subjective measures of nar-
rative tension. These were obtained with narratives (presented
as video in this case) that were encoded as action traces,
and then scored for subjective narrative tension by viewers.
This provided a collection of input plan traces for our domain
model acquisition system to learn a best-fit model. Using this
learnt model we demonstrate how it can be used to generate
new narratives that fit different target levels of tension.

Introduction
In our work we were interested in extending the NLOCM
domain model acquisition system, which learns action costs
in planning domains, to learn models of narrative planning
domains in order to develop tools to assist in the task of
narrative authoring. However, a feature of narrative plan-
ning domains is that cost models are based on subjective
input which don’t necessarily yield exact action cost models
and thus required extensions to NLOCM. In this paper we
present our new system NLOCMBF , standing for Numeric
LOCM Best-Fit, which extends the NLOCM domain model
acquisition system, to learn action cost models in domains
in which no exact action cost model can be found.

Domain model acquisition can be thought of as automated
modelling. Modelling is the activity of formally specify-
ing a problem that can then be reasoned about using au-
tomated techniques. Modelling in the context of interac-
tive narrative is more accurately called authorship. Within
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the interactive narrative setting, numeric variables can rep-
resent varied structures, such as strength of relationships
in social networks (Porteous, Charles, and Cavazza 2013;
2015) and the level of tension (Porteous et al. 2011) within a
certain scene. In addition to evaluating on standard bench-
marks, we apply NLOCMBF in the context of interactive
narrative. Specifically, we apply our system to the task of au-
tomated story authorship, allowing variations of stories to be
created from existing ones. We learn cost models for a nar-
rative planning representation of the Scooby-Doo1 cartoon,
where the cost approximates subjective narrative tension,
and then demonstrate their use for generating new Scooby-
Doo episodes. We show that NLOCMBF can approximate
challenging benchmarks with a typical error of around 10%
to 15%, and can accurately model subjective narrative ten-
sion with around 10% error.

Background
This work builds upon two different strands of research: that
of domain model acquisition and plan-based interactive nar-
rative. We now consider each of these areas.

Domain Model Acquisition
In this work, what we refer to as domain model acquisition,
is the learning of a planning domain from example data that
includes sequences of state transitions. This work builds on
the LOCM family (Cresswell, Mccluskey, and West 2009;
Cresswell and Gregory 2011; Gregory and Cresswell 2015)
of domain model acquisition systems. These algorithms are
all developed with the aim of learning from the smallest
amount of input data possible, preferably only the transition
sequences. The LOCM algorithms learn models of domains
in which each object type is represented by one or more fi-
nite state machines. Figure 1 shows an example of the state
machines learnt by LOCM in the Transport domain. Each
state represents a particular state that an object type can hold.
Within each state, state parameters (shown in square brack-
ets) record temporary associations that an object has. For ex-
ample, the package state machine has a state parameter of a
location to record its position. One weakness of LOCM and

1SCOOBY-DOO and all related characters and elements are
copyright and trademark Hanna-Barbera
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Figure 1: The finite state machines derived by LOCM in the
transport domain for the two interesting object types: pack-
age and truck. The truck state machine has a single state,
with two state parameters for the location of truck and truck
capacity.

LOCM2 is that they only learn the dynamic aspects of do-
mains. LOP learns the static relations in planning domains,
such as road networks in logistic-style domains.

NLOCM (Gregory and Lindsay 2016) addresses the prob-
lem of learning domain models in the presence of action
costs. In addition to the transition sequences, NLOCM also
has the complete cost of each plan as input. The system then
learns the numeric action costs using a constraint program-
ming approach. NLOCM works by first learning a planning
model using LOP without action costs, and then each plan
can be seen as a linear equation over the transitions within
that plan. Importantly, it uses the information gained from
the LOCM2 state machines and LOP static relations in or-
der to filter the choices for which operator parameters are
hypothesised to participate in the cost function.

Interactive Narrative
Planning has been widely applied to the problem of story
generation in Interactive Narrative (IN) systems e.g. (Young
2000; Aylett, Dias, and Paiva 2006; Riedl and Young 2010;
Gilroy et al. 2013). However, these systems pose interesting
challenges since planning goals need not equate to the end
of the narrative (they can evolve over time), re-planning is
frequently required in response to user interaction and sub-
optimal trajectories may be needed in order to shape a trajec-
tory to display narrative concepts. One of particular interest
to us is narrative tension as in the classic Aristotelian arc. In
this work we were motivated to explore the use of a best-cost
fit model to drive generation of different narrative variants.

In order to provide some degree of author control over
narrative shape a number of declarative mechanisms have
been proposed that help bridge the gap between authors on
the one hand and the planner on the other. These include the

approach of (Riedl 2009) which allowed for the specification
of author goals to complexify the planning problem (Riedl
2009), HTN approaches where the information is embedded
in method decompositions (Hoang, Lee-Urban, and Munoz-
Avila 2005; Kelly, Botea, and Koenig 2007) and meta-level
control via authored constraints (Porteous et al. 2011).

For our experiments with learnt cost models, which we
report in section , we have adapted the approach of (Por-
teous et al. 2011) and use authored constraints as pseudo-
landmarks which are used as intermediate goals to guide
generation of plans that display the required narrative shape,
i.e. visit interesting narrative states (situations). As illustra-
tion, for our Scooby-Doo domain there are certain elements
which are frequently required in episodes, such as introduc-
ing the monster and the team starting investigating, repre-
sented as:

(introducedMonster ?sc-storyControl)
(startInvestigating ?sc-storyControl)

Then in order to enforce their inclusion, and any required
orders, in a generated narrative plan they can be modelled in
the narrative planning problem using the PDDL3 modal op-
erators sometime and sometime-before. For example, in the
Scooby-Doo domain, to force the introduction of the mon-
ster to occur at some stage in the narrative before the team
start investigating then this can be represented as:

(sometime-before (startInvestigating ?sc-storyControl)
(introducedMonster ?sc-storyControl))

During narrative generation the partially ordered authored
constraints are used to decompose the process of narrative
generation into a sequence of sub-problems, where each sub-
problem has a constraint as its goal and the planner gener-
ates a narrative for each decomposed sub-problem in turn. A
final narrative can be assembled by composition of the sub-
narratives in turn, however, since planning is embedded in
an IN system a complete plan is not output in the traditional
sense: instead sub-narratives are presented to a user as they
are generated (mapped to pre-recorded video segments).

The NLOCMBF Domain Model Acquisition
System

The NLOCM system (Gregory and Lindsay 2016) is a do-
main model acquisition system for domains which include
action costs. The NLOCM system learns action costs by
modelling the task as a constraint programming problem.
Underlying the approach is the assumption that a plan’s cost
can be explained by costs associated with each action. In
this work, we relax this assumption, aiming instead to find
an allocation of cost that minimises the error in the model.
This is necessary for our application to subjective measures
of tension, however, it can also allow generating approxi-
mate models in domains with large search spaces (as demon-
strated in Subsection ). In this section we present the con-
struction of the problem model in NLOCM and its relaxation
to the best-fit model.

NLOCM Domain Model Acquisition System
In order to discuss the constraints model generated by
NLOCM, we introduce a formalisation of the system’s in-
put. The system operates from a collection of plans, denoted
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by Π, and a cost function over these plans, based on the input
costs. For P input plans, we have:

Π = [π1, ..., πP ]

c(πi) = input cost (1 ≤ i ≤ P )

We also define a length function, based on the number of
ground actions in a plan.

l(πi) = input length (1 ≤ i ≤ P )

We use the subscript to refer to ground actions within each
plan, in the following way:

πi = [πi1, ..., π
i
l(πi)]

And finally, we can define the set of all observed ground
actions as the union of all of the actions seen in all plans:

A =
⋃
π∈Π

{π1, ..., πl(π)}

We also denote by AO ⊆ A the set of ground actions ob-
served of the operator O. Using this formalism, we will now
describe the constraints model generated by NLOCM.

Base Model In the base model, ground action costs are en-
coded and constraints are posed over the input plans. There-
fore, for each ground action, an integer variable is defined:

A1..|A| : Integer (V1)
Then for each input plan, a linear constraint is encoded, such
that the sum of the costs of its individual actions is equal to
the cost of the entire plan:

l(πp)∑
i=1

(πpi ) = c(πp) (πp ∈ Π) (C1)

Any two identical ground actions in the input plans are rep-
resented by the same variable in the constraint model. This
is true even between different input plans, so long as they
are drawn from the same state space (i.e. the same plan-
ning problem). The base model can be used to learn a model
of the ground action costs for a specific set of problem in-
stances.

Encoding Operator and Ground Action Templates The
second layer of the model allows the cost of the ground ac-
tions to be further broken down into its specific contribu-
tors. For each operator, O, a set of templates, TO, is defined
over the arguments that have been determined as interesting
(see Subsection ). The number of possible templates makes
a complete exploration impractical, so different subsets are
explored in NLOCM. The choice of templates in NLOCM
was driven pragmatically from the structure of target for-
malism, and was also informed by the output of LOCM2 and
LOP. The templates can be defined generally as follows:

TO ⊆ P(args(O)) (O ∈ O)

It is useful to define TA = TO, where A is an instantiating
action of operator O. Each template within TO defines a set

of arguments that are assigned a constant cost in each prob-
lem instance. The system uses variables to represent ground
template values in order to discover the contribution of the
template to the specific costs of actions in the input plans.
For each operator, O, the following variables are used:

GroundAτ : Integer (A ∈ AO, τ ∈ TO) (V2)

For example, Ground
(GangLoseMember Shaggy Museum)
{2} = 50

defines a variable that represents the model’s cost associated
with the second parameter of the GangLoseMember action.
In this case associating the specific parameter, Museum,
with a cost of 50. Following the assumption that these con-
tributors are the only contributors to the cost of the operator,
the ground action cost is equated with the sum of the corre-
sponding action templates. For each operator, O:

A =
∑
τ∈TA

GroundAτ (A ∈ AO) (C2)

Given an adequate selection of templates, this model will
support searching for satisfying action cost configurations,
as was the intention in NLOCM.

Best-Fit Cost Model
We now consider how this model can be relaxed so that ac-
tion costs can be learnt for domains where plan costs can-
not be accurately explained. Our approach is to relax the
NLOCM model and instead encode the best fit model. This
is supported with the introduction of an error variable for
each input plan:

E1..|Π| : Integer (V3)
And replace (C1) with the constraint stating that the sum of
the ground action costs plus the new error term, is equal to
the plan cost:

Ep +

l(πp)∑
i=1

(πpi ) = πp (πp ∈ Π) (C3)

The error terms can therefore be summed, and the total error
minimised. The final solution returned represents the action
costs that best explain the input plan costs given the tem-
plates that were used as input.

Selection of Contributing Templates
As mentioned previously, there are different templates avail-
able to select what contributes to the action cost of each
operator in the domain. Although we are exploring best-fit
models and therefore there will be a solution for any set of
templates, we have explored several layers of increasingly
complex template sets. This allows us to explore the balance
between model error and model complexity. The ordering of
the templates is as follows:

1. Operator costs: Operator costs are those fixed costs asso-
ciated to an operator in all problem instances. The most
obvious example is the unit operator cost in pure STRIPS
domains.
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2. Action costs: Action costs are instance-specific costs as-
signed to operators. These are less common in the bench-
mark domains.

3. State Parameters: As discussed in the background section,
LOCM and LOCM2 identify state parameters by finding
object associations within operator argument lists. Certain
operators change the object identified in the state parame-
ter. For example, the location state parameter in the truck
machine of the Transport domain (Figure 1) is changed by
arguments 2 and 3 of the drive action. Because these rela-
tionships are known to be significant, we add their corre-
sponding templates as potential contributors to the action
costs.

4. Static Parameters: Similarly to state parameters, we now
consider adding templates based on the static relations
identified by the LOP system. Recall that LOP identifies a
static relation for each operator. The scope of these static
relations thus forms a new template for each operator.

5. Single Transition Costs: This step allows costs to be as-
sociated with individual operator arguments (imagine, for
example, that the Museum makes a far more tense set-
ting of a scene than the Mines). In NLOCM the inclusion
of single parameter templates was made using a series of
steps, where each step allowed increasing numbers of sin-
gle parameter templates to contribute to a single action
cost. Our approach is to allow their combination in one
layer; therefore using those that best combine to explain
the cost.

Empirical Evaluation
We now provide a discussion of our empirical evaluation on
several planning benchmarks and an application from inter-
active narrative. All of our experiments are run on CentOS
Linux using a 16-core Intel Xeon E5-2665 with 64 GB sys-
tem memory. NLOCMBF is implemented in Java (version
1.7.65) using the Choco constraint library (Prud’homme,
Fages, and Lorca 2014) version 3.3.3. We use the domain
over weighted degree variable selection heuristic, with a ge-
ometric restart policy. We use an hour time cutoff for any
one constraint search.

Hard Action Cost Domains
Empirical analysis in (Gregory and Lindsay 2016) shows
that the majority of action costs in benchmark domains can
be learnt exactly using the NLOCM system. Three domains,
however, are currently out of reach for this system using the
default parameterisation. These are the Transport domain,
the Woodworking domain and the Elevators domain. The
domains all have an exact action costing, but involve mul-
tiple costing templates. Since these domains have exact so-
lutions, they form a useful benchmark set for the NLOCMBF

algorithm.
Table 1 shows the result of running NLOCMBF on in-

creasingly large input sets in these three challenging do-
mains. For each domain, 100 random walks of length 10
were generated for the first five instances of the IPC bench-
mark instances. The column labelled ‘OC’ shows the abso-
lute error of NLOCMBF on the entire plan set alongside the

Domain # OC Err BF Err

Transport 1 2344* 11% 1687 8%
2 5341* 13% 5341 13%
3 7575* 12% 7575 12%
4 10744* 13% 10744 13%
5 12965* 12% 12965 12%

Woodworking 1 2540 14% 2473 13%
2 5794 14% 5738 14%
3 8920 15% 8752 14%
4 12271 16% 12045 15%
5 15384 16% 15384 16%

Elevator 1 1055* 11% 1055 11%
2 2372 12% 2372 12%
3 4033 13% 4033 13%
4 5549 14% 5549 14%
5 6943 14% 6943 14%

Table 1: Results of NLOCMBF on challenging benchmark
instances. This table reports the absolute error and the per-
centage error when running NLOCMBF on between one and
five plan sets in each domain, each with 100 plans. Asterisks
denote when the result was proven optimal. OC refers to the
Operator Cost level of the search strategy, BF refers to the
best found value using any selection on contributing tem-
plates. Err in both cases refers to the percentage error in the
solution.

percentage error. In several cases, NLOCMBF finds the exact
best-fit operator costs for the problem instances. The ‘BF’
column shows the best result gained using further templates
than operator costs. Although NLOCMBF fails to find the
overall best-fit action costs (these domains have zero-error
costings), learning an approximate costing (between 8% and
16% here) provides a better solution than having no costing
at all, and using more complex templates can lead to smaller
errors.

Scooby-Doo: A Case-Study
In order to test NLOCMBF on data without an exact solu-
tion, we applied it to an interactive narrative application, and
we built a domain model based on the cartoon Scooby-Doo.
The rationale for choosing this narrative domain is that the
formulaic nature of the show means that a large number of
actions will be shared across the episodes. This allows us to
model multiple episodes of the show whilst maintaining a
relatively small modelling domain. Scooby-Doo is targeted
at children which is ideal for two reasons: scenes that are in-
tended to be tense have been created so that they convey this
in an obvious manner. To help in gathering data it should be
clear which actions increase the tension for the audience.
Secondly, episodes of the show are fairly short, approxi-
mately 20 minutes, and contain a large number of actions.
Since input to NLOCMBF will be generated by people sub-
jectively rating the tension of a story, using Scooby-Doo al-
lows a large amount of actions to be sampled in a relatively
short time.
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Figure 2: The narrative tension arcs for the three different
version of the Scooby-Doo episode shown in Figure 4

Data Collection
A sample of episodes were selected for creation of the do-
main model (episodes 1-4, 21 from Scooby-Doo, Where Are
You! (1969-1970)). From analysis of the episodes a gen-
eral formula, i.e. baseline, was identified as shown in Fig-
ure 3. It consists of 5 phases and within these the narrative is
structured around a number of sub-states. Despite its formu-
laic nature the domain still allows for considerable variation
around the baseline since there are multiple sequences of ac-
tion paths through the different phases. For example, alterna-
tive ways that the the first story event can unfold include the
gang discovering a crime scene, an early encounter with the
monster, or the gang getting lost somewhere. Similarly, dur-
ing the investigation phase some of the alternatives include:
the gang splitting up and reuniting, members becoming lost
or trapped, and the gang meeting new characters.

Since we collect data per scene in the story, we can use
the NLOCMBF system with a cost for each ground action in
the training data. Training data from the ScoobyDoo domain
was gathered by subjective ratings of narrative tension of se-
lected episodes. Ratings were collected from 10 participants
who watched 2 episodes, resulting in 4 ratings per episode.
While watching episodes, participants moved a mouse along
a scale of 0-100. No clicking or dragging was required so
participants could remain focused on the episodes with min-
imal distraction. Ratings were recorded every half second
for the duration of the episode. The start and end 10% of
each scene was ignored so that ratings recorded in transi-
tions between scenes weren’t taken into account.

Narrative Generation
Whereas (Porteous et al. 2011) relied on manual assignment
of tension levels to constraint factss, in our model the tension
levels have been learnt from approximation to the subjective
estimates obtained during our user study. During narrative
generation the constraint-based decomposition approach is
augmented to use a target accumulated tension level for the
individual story phases, specified for each story phase as:

lower bound < tension < upper bound

Figure 3: A schematic diagram showing the 5 phases of a
Scooby-Doo episode and the sub-goals for each phase

We investigated the impact of changes in the target accumu-
lation bounds impacted on the narrative generation and show
that changes in the target tension enabled the generation of
alternative narratives, as shown in Figure 2.

Table 2 shows the result of the learning Scooby-Doo mod-
els for each phase of each episode. The table shows the
users’ subjective rating for each episode, alongside the learnt
model both for the operator cost level of the search strategy,
and the complete search strategy. Note that for the full sto-
ries, including more templates always improves the accuracy
of the result. Once learnt, the planning model can be used in
order to generate new episodes of Scooby-Doo, or to present
the existing episodes in an alternative way.

Related Work
This work builds on the rich literature on domain model ac-
quisition in planning. NLOCMBF improves upon the ideas
in the NLOCM system, providing a way of learning ac-
tion costs in planning domains. NLOCM itself inherits ideas
and the general philosophy of learning using minimal input
from the LOCM systems (Cresswell, Mccluskey, and West
2009; Cresswell and Gregory 2011; Gregory and Cresswell
2015), and before those, OpMaker (McCluskey et al. 2009;
Richardson 2008). These all target the OCL (McCluskey
and Porteous 1997) language, either directly or indirectly,
as the structure of the state-machines underlying the formal-
ism provides constraints crucial to learning with sparse in-
put. Other domain model acquisition systems require more
input information (examples include ARMS (Wu, Yang, and
Jiang 2007) and LAMP (Zhuo et al. 2010), which can target
part of the ADL fragment of PDDL, or learn models in the
presence of noisy and incomplete data (Mourao et al. 2012).

This work also contributes to the emerging body of work
on planning for interactive narrative which challenges re-
ceived wisdom about plan quality criteria and shifts the fo-
cus to properties of plan trajectories which determine narra-
tive structure. Examples include the manipulation of narra-
tive tension to drive plot development (Porteous et al. 2011;
Gilroy et al. 2013) and manipulation of discourse level
mechanisms to maintain user interest via the introduction of
suspense (Cheong and Young 2014; Bae and Young 2008)
and cinematic representation (Jhala and Young 2010).

194



Figure 4: Storyboard representations of Scooby-Doo Vari-
ants: (1) the baseline Scooby-Doo episode; (2) and (3) are
episodes generated using the learnt planning model repre-
senting high and low tension, respectively. For the high ten-
sion episode the high cost narrative content is highlighted.

Episode Phase User Ave. Op. Cost Best Fit

Episode 1 Intro 131.25 160 163
Pre-Inv. 357.25 432 421
Investi. 882 747 753
Chase 544 392 467
Concl. 130.75 140 195
Total 2045.25 1871 1999

Episode 2 Intro 99.25 154 101
Pre-Inv. 332.5 429 386
Investi. 1374.5 1458 1463
Chase 138.5 111 111
Concl. 60.5 140 108
Total 2005.25 2292 2169

Episode 3 Intro 116.25 154 137
Pre-Inv. 318.5 386 355
Investi. 989.75 1112 1073
Chase 369.75 276 312
Concl. 60 140 102
Total 1854.25 2068 1979

Episode 4 Intro 33 154 102
Pre-Inv. 314.25 501 437
Investi. 1060.25 1107 1099
Chase 136.25 90 90
Concl. 107.75 140 140
Total 1651.5 1992 1868

Episode 5 Intro 116.25 154 132
Pre-Inv. 480.25 512 512
Investi. 1160 1062 1081
Chase 244 162 168
Concl. 116.75 140 143
Total 2117.25 2030 2036

Table 2: Learnt tension levels over the story phases of the
five Scooby-Doo episodes. The ‘Op Cost’ column is the
value learnt in the operator cost level of the search strategy.
‘Best Fit’ refers to the best cost for any template set. Consid-
ering more templates improves the accuracy of NLOCMBF .

Conclusions
We have introduced the NLOCMBF domain model acqui-
sition system that extends a previous approach to learning
domain models with action costs, to learn approximations
of cost functions when no exact cost function exists. Nar-
rative planning provided our motivating application area.
NLOCMBF has been shown as effective, providing models
with roughly 10% - 15% error in benchmark instances pre-
viously out of range for domain model acquisition systems.

We have also demonstrated the utility of NLOCMBF in
learning models of subjectively scored plans (narratives pre-
sented as videos and rated by users), which will have natural
variation, thus providing new ways to aid automatic author-
ship of interactive narrative.
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