
Rock, Paper, StarCraft: Strategy Selection in Real-Time Strategy Games

Anderson Tavares, Hector Azpúrua, Amanda Santos, Luiz Chaimowicz
Laboratory of Multidisciplinary Research in Games

Computer Science Department
Universidade Federal de Minas Gerais

Email: {anderson,hector.azpurua,amandasantos,chaimo}@dcc.ufmg.br

Abstract

The correct choice of strategy is crucial for a successful real-
time strategy (RTS) game player. Generally speaking, a strat-
egy determines the sequence of actions the player will take
in order to defeat his/her opponents. In this paper we present
a systematic study of strategy selection in the popular RTS
game StarCraft. We treat the choice of strategy as a game it-
self and test several strategy selection techniques, including
Nash Equilibrium and safe opponent exploitation. We adopt
a subset of AIIDE 2015 StarCraft AI tournament bots as the
available strategies and our results suggest that it is useful
to deviate from Nash Equilibrium to exploit sub-optimal op-
ponents on strategy selection, confirming insights from com-
puter rock-paper-scissors tournaments.

1 Introduction
In games with large state spaces, players often resort to
strategies, i.e., sequences of actions that guide their be-
havior, to help achieving their goals. For example, games
like Chess, Go and StarCraft have known opening libraries,
which are strategies that help players achieve favorable sit-
uations from initial game states. Strategies usually interact
with each other. Dedicated players study and develop new
strategies that counter older ones, and these new strategies
will be studied in the future to be countered as well. Thus,
the study and correct selection of strategies is crucial for a
player to succeed in a game.

In real-time strategy games, several works deal with strat-
egy construction, which involves developing a sequence of
actions that would reach desired situations, as in (Stanescu,
Barriga, and Buro 2014; Uriarte and Ontañón 2014), or
strategy prediction, which involves comparing opponent be-
havior with known ones, as in (Weber and Mateas 2009;
Synnaeve and Bessière 2011; Stanescu and Čertickỳ 2016).
Moreover, most state-of-the-art software-controlled Star-
Craft players (bots) employ simple mechanisms to strategy
selection, ignoring the adversarial nature of this process, i.e.
that the opponent is reasoning as well.

In the present work, we perform a systematic study on
strategy selection in StarCraft. We model the process of
strategy selection as a normal-form game. This adds a layer

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of abstraction upon StarCraft, which we call the strategy se-
lection metagame. We fill the metagame’s payoff matrix
with a data-driven approach: strategies play a number of
matches between each other and we register their relative
performances. We proceed by estimating a Nash Equilib-
rium in the metagame which specifies a probability distri-
bution over strategies to achieve a theoretically-guaranteed
expected performance.

We observe that some strategies interact in a cyclical
way in StarCraft, thus we draw some insights from com-
puter rock-paper-scissors tournaments (Billlings 2001). In
those, a player usually benefits by deviating from equilib-
rium to exploit sub-optimal opponents, but must guard itself
against exploitation by resorting to equilibrium when its per-
formance drops.

Experiments in this paper are performed with participant
bots of AIIDE 2015 StarCraft AI tournament. Each bot is
seen as a strategy, thus, in our experiments, strategy selec-
tion becomes the incorporation of which behavior (specified
by the chosen bot) the player will adopt to play a match. Re-
sults show that it is indeed useful to deviate from equilibrium
to exploit sub-optimal strategy selection opponents and that
a player benefits from adopting safe exploitation techniques
(McCracken and Bowling 2004) with guaranteed bounded
losses.

This paper is organized as follows: Section 2 reviews
related work. Section 3 presents the strategy selection
metagame, whereas Section 4 instantiates it upon StarCraft.
Section 5 presents and discusses results of experiments con-
sisting of a tournament between different strategy selection
techniques. Section 6 presents concluding remarks and op-
portunities for future study.

2 Related Work
Works on strategic reasoning in real-time strategy games can
be divided (non-exhaustively) in strategy prediction, strat-
egy construction and strategy selection itself.

Strategy prediction is concerned with recognizing a
player’s strategy, classifying it into a set of known strate-
gies or predicting next moves from a player, possibly from
partial and noisy observations. This can be done by encod-
ing replay data into feature vectors and applying classifica-
tion algorithms (Weber and Mateas 2009), using bayesian
reasoning (Synnaeve and Bessière 2011) or answer set pro-

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

93



gramming, a logic paradigm able to deal with uncertainty
and incomplete knowledge (Stanescu and Čertickỳ 2016).

Strategy construction is concerned with constructing a se-
quence of actions from a given game state, which is re-
lated to search and planning. To deal with the huge search
space of real-time strategy games, hierarchical or abstract
representation of game states can be used in conjunction
with adapted versions of classical search algorithms, as in
(Stanescu, Barriga, and Buro 2014; Uriarte and Ontañón
2014). Also, techniques based in portfolio (a set of prede-
fined strategies, or scripted behavior) are used either as com-
ponents for playout simulation (Churchill and Buro 2013)
or to generate possible actions for evaluation by higher-level
game-tree search algorithms (Churchill and Buro 2015).

Strategy selection is concerned with the choice of a course
of action to adopt from a set of predefined strategies. Mar-
colino et al. (2014) studies this in the context of team for-
mation. Authors demonstrate that, from a pool of stochastic
strategies, teams composed of varied strategies can outper-
form a uniform team made of copies of the best strategy as
the size of the action space increases. In the proposed ap-
proach, a team of strategies votes for moves in the game of
Go and their suggestions are combined. Go allows this con-
sulting stage due to its discrete and synchronous-time nature.
As real-time strategy games are dynamic and continuous in
time, such approach would be difficult to evaluate.

Regarding strategy selection in real-time strategy games,
Preuss et al. (2013) use fuzzy rules to determine strategies’
usefulness according to the game state. The most useful
strategy is activated and dictate the behavior of a StarCraft
bot. A drawback of this approach is the need of expert
knowledge to create and adjust the fuzzy rules.

A case-based strategy selection method is studied by Aha,
Molineaux, and Ponsen (2005) in Wargus, an open-source
Warcraft II clone. Their system learns which strategy to se-
lect according to the game state. However, the study as-
sumes that opponent makes choices according to a uniform
distribution over strategies, which is unrealistic.

State-of-the art StarCraft bots perform strategy selection,
according to the survey of Ontañón et al. (2013): they
choose a behavior according to past performance against
their opponent. However, their mechanisms lack game-
theoretic analysis or performance guarantees because they
ignore the opponent’s adaptation and strategic reasoning.
The survey of Ontañón et al. (2013) also notes that bots in-
teract in a rock-paper-scissors fashion, based on previous AI
tournament analysis.

A game-theoretic approach to strategy selection is stud-
ied by Sailer, Buro, and Lanctot (2007), where authors
also note the rock-paper-scissors interaction among strate-
gies. At certain decision points, playouts among strategies
are simulated to fill a normal-form game’s payoff matrix.
Nash equilibrium is calculated and a strategy is selected ac-
cordingly. This is performed online, during a match. In
this sense, Sailer, Buro, and Lanctot (2007) go beyond the
present work, because here the single decision point is at the
game beginning. However, their online approach is possi-
ble because their simplified game considers only army de-

ployment1. Moreover, the game’s forward model is avail-
able so that simulation of players’ decisions is possible. In
the present work we consider StarCraft, a complete real-time
strategy game with unavailable forward model2. Besides, in
the present work, we go beyond Nash Equilibrium by testing
various strategy selection techniques, including safe oppo-
nent exploitation (see Section 5).

The major novelty of the present work is the focus
on strategy selection instead of planning or prediction for
real-time strategy games. Moreover, we analyse the in-
teraction among sophisticated strategies (full game-playing
agents) in a complex and increasingly popular AI bench-
mark, analysing the performance of various strategy selec-
tion techniques.

3 The Strategy Selection Metagame

We refer to the process of strategy selection as the strategy
selection metagame because it adds an abstract layer of rea-
soning to a game. We refer to the game upon which the
metagame is built as the underlying game. At principle,
the strategy selection metagame can be built upon any game
where it is possible to identify strategies.

In this paper, we define strategy as a (stochastic) policy,
i.e. a mapping from underlying game states to (a probability
distribution over) actions. The policy specified by a strategy
must be a total function, that is, any valid underlying game
state should be mapped to a valid action. This is important
to guarantee that a strategy plays the entire game, thus we
can abstract from the underlying game mechanics.

3.1 Definition

The strategy selection metagame can be seen as a normal-
form game and formally represented by a payoff matrix P
where component Pij represents the expected value in the
underlying game by adopting strategy i while the opponent
adopts strategy j.

Payoff matrix P can be filled according to domain-
specific knowledge. In this case, an expert in the underlying
game would fill the matrix according to strategies’ relative
performance. If domain-specific knowledge is not available,
but strategies are known, data-driven approaches can be em-
ployed to populate the matrix. For instance, match records
could be used to identify strategies and register their rela-
tive performances. Another data-driven approach would be
to execute a number of matches to approximate the expected
value of each strategy against each other. In any case, as a
convention for zero-sum games, the matrix’s diagonal can
be filled with zeros, meaning that a strategy draws against
itself, or that it wins half the matches if the underlying game
cannot end in a draw.

1This is related to strategic combat decisions such as grouping
forces, attacking a base or moving to specific locations.

2Although combat can be simulated via SparCraft (Churchill
and Buro 2013), other important aspects do not have similar en-
gines available.

94



3.2 Playing the Metagame
In several games with large state spaces, dominant strategies
are usually not known, meaning that, in general, it is pos-
sible to defeat any sequence of actions. Moreover, known
strategies can interact in a cyclical way, so that a given strat-
egy defeats a second one and is defeated by a third one. This
form of rock-paper-scissors interaction may suggest that in-
sights from strategy selection in rock-paper-scissors would
be useful for a strategy selection metagame.

The definition of the strategy selection metagame as a
normal-form game (Section 3.1) allows us to employ game-
theoretic reasoning. For instance, a metagame player can
adopt a Nash Equilibrium strategy so that it has theoret-
ical guarantees in its expected payoff over a sequence of
matches. Nash Equilibrium can be determined by solving
a linear program related to the game (Nisan et al. 2007, Sec-
tion 1.4.2).

4 The Metagame in StarCraft
4.1 StarCraft
In this paper, the strategy selection metagame is played upon
real-time strategy (RTS) game StarCraft, but the concepts
are general enough for any adversarial game. StarCraft is
increasingly being adopted as a benchmark for artificial in-
telligence techniques because of its challenging characteris-
tics, which include imperfect information, dynamicity, and
a huge state-action space. In RTS games, players usually
perform hundreds of actions per minute. The actions are
divided in several tasks involving resource gathering, cre-
ation of new units, construction of buildings, attacks to the
enemy and technology advancements (Weber, Mateas, and
Jhala 2011).

StarCraft has three playable races with different charac-
teristics: Protoss, which has powerful and expensive units;
Zerg, which has weak and cheap units and Terran, with units
of intermediate power and cost. To win a match, a player
must destroy all buildings of his opponent.

4.2 Metagame Instantiation
In StarCraft, bots that can play an entire game satisfy our
definition of strategy (Section 3), because they depart from
the game’s initial state and are able to perform valid actions
in any situation. Bots usually act differently from each other
so that different bots can be considered distinct strategies
within this given concept. Thus, in our instantiation of the
strategy selection metagame, to choose a strategy means to
play a StarCraft match following the policy dictated by the
chosen bot. On the ongoing discussion, we use the terms bot
and strategy interchangeably.

In our experiments, without loss of generality, the set
of available StarCraft strategies is represented by bots that
played with Protoss race in AIIDE 2015 StarCraft AI Tour-
nament3. Thus, the strategy selection metagame’s payoff
matrix is estimated by counting the number of victories in
matches among the tournament bots. AIIDE 2015 tourna-
ment data could be used to populate the matrix, but we ran

3http://webdocs.cs.ualberta.ca/∼cdavid/starcraftaicomp/2015/

a new tournament with persistent knowledge disabled. In
StarCraft AI tournaments, bots use persistent knowledge to
accumulate experience and improve performance in future
matches. When this happens, bots may change their be-
havior between matches, defining new policies. This non-
stationarity in strategies is out of the scope of this paper.
Nevertheless, bots’ policies can be stochastic, i.e., they can
perform different actions from a given state in different
matches, as long as they are stationary, that is, for a given
state, the probability distribution over actions remain un-
changed.

Table 1 shows the percent of victories in matches among
Protoss AIIDE 2015 tournament bots. Matches were exe-
cuted with StarCraft AI Tournament Manager, modified to
disable persistent knowledge4. Every bot played against ev-
ery other for 100 matches in Fortress map. We ran a sin-
gle map to reduce the influence of distinct maps in results.
Match outcomes are either victory or defeat. If a match runs
until timeout (one hour of gameplay), ties are broken by in-
game score.

Eight bots played with Protoss in AIIDE 2015 tour-
nament: UAlbertaBot, Ximp, Xelnaga, CruzBot, NUS-
Bot, Aiur, Skynet and SusanooTricks. Among these, UAl-
bertaBot, Ximp and SusanooTricks are not included in Table
1 because UAlbertaBot and Ximp “dominate” all others and
SusanooTricks “is dominated” by all others. The term dom-
inance here means that a bot wins more than 50% matches
against another. Dominant bots were removed because oth-
erwise a pure Nash Equilibrium strategy would exist (select
the dominant bot in all matches), and dominated bots would
never be chosen, which is not interesting.

Bot Xelnaga CruzBot NUSBot Aiur Skynet
Xelnaga - 26% 86% 73% 73%
CruzBot 74% - 80% 67% 16%
NUSBot 14% 20% - 74% 97%

Aiur 27% 33% 26% - 79%
Skynet 27% 84% 3% 21% -

Table 1: Win percentage of AIIDE 2015 Protoss bots in
Fortress map. Cases where bots are dominated by others
are highlighted in bold.

There is no dominant pure strategy from the metagame
defined from Table 1, since any pure strategy has a best
response, which is highlighted in bold. Moreover, strate-
gies interact in a cyclical way. For example, Skynet domi-
nates CruzBot, which dominates Xelnaga, which dominates
Skynet.

Table 2 shows the calculated Nash Equilibrium, obtained
with Game Theory Explorer (Savani and von Stengel 2015).
Before entering Table 1 into Game Theory Explorer, we
transformed each percentage of victories into an expected
payoff (by adding the product of the victory percentage mul-
tiplied by 1 to the defeat percentage multiplied by -1) and
filled the payoff’s matrix diagonal with zeros.

4The modified manager is in http://github.com/andertavares/
StarcraftAITournamentManager. It is a fork of Dave Churchill’s

95



Strategy Probability
Xelnaga 41.97%
CruzBot 28.40%
NUSBot 0%

Aiur 0%
Skynet 29.63%
Total 100%

Expected payoff 0

Table 2: Nash Equilibria among selected strategies.

In equilibrium, two strategies have zero probability:
NUSBot and Aiur. This is the case because, although they
dominate other bots, Xelnaga dominates them and their
dominated bots. The expected payoff of zero means that
the equilibrium probability distribution over strategies is ex-
pected to win half the matches.

4.3 Strategy Selection Techniques
The instantiated metagame from Section 4.2 has similarities
with the classical game of rock-paper-scissors: strategies in-
teract in a cyclical way and the expected payoff in equilibria
is zero. A difference is that actual outcomes are stochastic,
since a strategy does not lose every match against its best-
response, given the imperfect information, map variations
(e.g. starting locations) and the dynamic nature of StarCraft.

Computer rock-paper-scissors tournaments (Billlings
2001) have shown that it is useful to deviate from equilib-
rium to exploit sub-optimal opponents. In the first tourna-
ment, the participant playing the equilibrium strategy placed
only 27th among 55 competitors. In general, strong com-
petitors detect patterns in opponent actions and predict their
next move, with several enhancements to anticipate second-
guessing. Moreover, they adopt the equilibrium strategy as
a failsafe, activated when their performance drops by failing
to predict opponent moves. Strong competitors are differen-
tiated by how well they exploit weaker ones.

In order to test insights from computer rock-paper-
scissors tournaments, we evaluate the following strategy se-
lection techniques in StarCraft (which could be referred to
as metagame players):

1. Frequentist: attempts to exploit opponent by selecting the
best-response of its most frequent strategy;

2. Reply-last: attempts to exploit opponent by selecting the
best-response of its last strategy;

3. Single choice: selects a predefined single strategy, regard-
less of what the opponent does;

4. Nash: selects a strategy according to Nash Equilibrium,
given in Table 2;

5. ε-Nash: attempts to exploit opponent with probability ε
(by playing frequentist) and plays the safe strategy (Nash
Equilibrium) with probability 1− ε.

software.

6. α-greedy: selects a random strategy (exploration) with
probability α, and its most victorious strategy (exploita-
tion) with probability 1− α.

Frequentist, reply-last and single choice do not have the-
oretical guarantees on performance. Frequentist is based on
the intuition that a player is likely to repeat its most frequent
choice. Reply-last is based on the idea that a player can re-
peat its last choice, especially if it was victorious. Single
choice is the most exploitable technique, since it does not
react to opponent choices. Frequentist was also participant
of the computer rock-paper-scissors tournament and reply-
last had a similar counterpart (Billlings 2001). Single choice
is a “dummy” technique put in the tournament to test other
techniques’ exploiting abilities.

Nash and ε-Nash have theoretical guarantees on perfor-
mance. Nash is an equilibrium strategy for the metagame. It
is expected to win 50% of matches regardless of its adver-
sary. In ε-Nash, the exploitability (the maximum expected
payoff that is lost by deviating from equilibrium) is theo-
retically bounded by ε. Thus it is an ε-safe strategy (Mc-
Cracken and Bowling 2004). In the worst case, ε-Nash loses
all matches where it tries to exploit its opponent, which is
attempted only with probability ε.

Technique α-greedy is an action selection method de-
signed to balance exploration and exploitation in multi-
armed bandits, which is a problem of action selection with
stochastic rewards (Sutton and Barto 1998, Chapter 2)5. α-
greedy performs well when the process generating its re-
wards is well-behaved (e.g. stationary). In StarCraft, the
reward generation process for α-greedy is an adversary,
which, except for single choice, is not well-behaved.

Strategies available for the techniques to choose are the
bots in Table 2. Techniques that play a best-response do so
by querying Table 1. For example, if opponent selected Xel-
naga in previous match, reply-last technique would choose
CruzBot for the next match.

5 Experiments
5.1 Experimental Setup
Before evaluating the strategy selection techniques de-
scribed in Section 4.3, we built a pool with records of 1000
StarCraft matches between each pair of AIIDE 2015 bots
from Table 2, which are the available choices for the strategy
selection techniques. When two techniques face each other
and select their strategies, a previously recorded match result
is selected from the pool, victory is awarded to the technique
that has chosen the winning bot and the match is removed
from the pool. If two techniques select the same bot, vic-
tory is randomly awarded to any technique. This process
is repeated for the determined number of matches between
the two techniques. For a new contest between strategy se-
lection techniques, the pool is restored. This methodology
was adopted to speed up contests between strategy selec-
tion techniques by avoiding the execution of a new StarCraft

5α-greedy is usually referred to as ε-greedy in multi-armed ban-
dit literature, but to avoid confusion with ε-Nash, we adopt α as the
exploration parameter.

96



match every time techniques face each other. The pool is
generated with bots’ persistent knowledge disabled, so that
bots’ relative performance remain stationary, i.e., Table 1
would not change significantly if bots play more matches.

In order to evaluate the strategy selection techniques, we
ran a round-robin tournament between them. In the tour-
nament, every technique played 1000 matches against every
other6. Before each match, techniques have access to pre-
vious match history and to the metagame’s payoff matrix
(constructed via Table 1) in order to select a strategy for the
next match.

We configured single choice technique to pick Xelnaga
every time, because it was the best-performing pure strat-
egy from Table 1. Parameters α and ε were configured to
0.2 and 0.4 respectively, because, in prior experiments, they
achieved a good trade-off between exploration vs. exploita-
tion (for α) and exploitation vs. exploitability (for ε).

5.2 Results
Table 3 shows the results of contests between pairs of strat-
egy selection techniques. Results are averaged over 30 rep-
etitions. Figure 1 shows the average performance of tech-
niques against all adversaries (last column of Table 3).

Single choice Nash

Frequentist

α-greedy
ε-N

ash

Reply-l
ast

20

30

40

50

60

70

A
ve

ra
ge

w
in

pe
rc

en
t

28.1

50.5
52.9 53.0

54.7

60.9

Figure 1: Average percent of victories of techniques against
all adversaries. Error bars are the 95% confidence intervals.

To verify statistical significance of differences among av-
erages, we performed one-way ANOVA and Tukey’s HSD
test with significance level of 0.05. These indicated that,
except between α-greedy and frequentist, average perfor-
mance is significantly different between all pairs of tech-
niques.

Reply-last was the most successful technique in this tour-
nament. It won most matches against all but ε-Nash and
Nash, whose performances are theoretically guaranteed.
Reply-last plays well against frequentist: it wins a sequence
of matches until its current choice becomes the most fre-
quent, then frequentist responds and wins one match. Reply-

6This is the same number of matches of computer rock-paper-
scissor tournaments (Billlings 2001).

last responds right away and starts winning another sequence
of matches and this cycle repeats. In fact, reply-last could be
easily second-guessed by an opponent (by choosing in next
match a response to the best-response of current choice), but
no technique was programmed to do so.

On average (Fig. 1), Nash reached the expected payoff
of zero by winning roughly 50% of its matches. Neither it
exploits opponents nor it is exploited. Against specific op-
ponents such as frequentist and single choice (Table 3), there
were small deviations from its expected payoff. These dif-
ferences can be explained because Nash Equilibrium is esti-
mated from 100 previous matches between strategies (Table
1).

Reply-last and frequentist achieved identical performance
against single choice, because its last choice is also the most
frequent. In this case, deviating from equilibrium pays off.
For example ε-Nash’s performance against single choice is
superior to Nash’s. Besides, guarding itself against exploita-
tion is useful. For example, reply-last consistently defeats
frequentist, whereas it fails to do so against ε-Nash which
can be seen as an enhanced version of frequentist, protected
against exploitation. This illustrates that ε-Nash successfully
performed safe opponent exploitation.

Technique α-greedy successfully learned how to exploit
single choice, but has failed to do so against frequentist,
reply-last and ε-Nash, because they aren’t well-behaved re-
ward generation process for a multi-armed bandit (as dis-
cussed in Section 4.3). Even so, it was not dominated by
any adversary except reply-last. It performed similarly to
frequentist (Tukey’s HSD revealed no significant differences
between their average performances), because their behav-
ior is also similar: the most victorious choice can also be the
one that counters opponent’s most frequent choice.

5.3 Discussion
Insights from computer rock-paper-scissors tournaments
were useful to strategy selection in StarCraft: a player bene-
fits by exploiting sub-optimal opponents as well as by guard-
ing itself against exploitation. This is remarkably done by
ε-Nash. Moreover, for this specific tournament, if ε-Nash
adopted reply-last as its exploitive strategy, its results could
have improved, especially against frequentist.

Results in this paper are coherent with those of Mc-
Cracken and Bowling (2004), where previously weak rock-
paper-scissors bots performed better when enhanced with
safe exploitation techniques. Here, ε-Nash which is an en-
hanced version of frequentist, performed better.

A limitation of our approach is that the game-theoretical
guarantees (expected payoff and bounded exploitation) are
valid only if players select strategies within the set used to
calculate the equilibrium. In several games, including Star-
Craft, the number of possible strategies is infinite so that
these guarantees seem little reassuring at first.

The mentioned limitation could be tackled by adopting a
set of strategies that is general enough for the game. This
way, opponent behavior can be observed and classified ac-
cording to its similarity with known strategies. In StarCraft,
this could be done by adapting some opening prediction or
opponent modeling methods, such as (Weber and Mateas

97



Technique Reply-last ε-Nash α-greedy Frequentist Nash Single choice Average
Reply-last - 50.2 62.5 63.0 48.1 80.8 60.9
ε-Nash 49.8 - 49.8 53.6 51.3 69.1 54.7
α-greedy 37.5 50.2 - 52.5 51.3 73.5 53.0
Frequentist 37.0 46.4 47.5 - 52.5 80.8 52.9
Nash 51.9 48.7 48.7 47.5 - 55.5 50.5
Single choice 19.2 30.9 26.5 19.2 44.5 - 28.1

Table 3: Percent of victories between pairs of strategy selection techniques. Lines are sorted according to average performance
against all opponents, shown in last column.

2009; Synnaeve and Bessière 2011; Stanescu and Čertickỳ
2016), to predict a complete strategy.

Our model assumes that a strategy is followed until the
end, but a player can naturally switch its strategy, respond-
ing to a real game situation. To tackle this, we could extend
our approach by associating the metagame with a context
related to the game state. This “contextual metagame” ap-
proach would be similar to (Sailer, Buro, and Lanctot 2007),
where a metagame is solved online (during gameplay) to de-
cide player’s next strategy. Although such online approach is
currently infeasible in StarCraft (see Section 2), offline sim-
ulations could be performed and state approximation tech-
niques (Sutton and Barto 1998, Chapter 8) could be used to
generalize from offline simulated states.

In our view of strategy selection as a multi-armed bandit
problem via α-greedy we abstract the adversary, treating it
as the bandit’s reward generation process. This is not an is-
sue when such a process is well-behaved, which is not the
general case of an adversary in StarCraft. Thus, other sam-
pling techniques based on the same assumptions as α-greedy
are unlikely to perform significantly better. Instead, mod-
eling strategy selection in StarCraft as an adversarial multi-
armed bandit problem7 (Auer et al. 1995) has more potential
of success.

As we note on Section 2, StarCraft bots may change their
behavior according to experience gathered against oppo-
nents (Ontañón et al. 2013). This could violate our assump-
tion that bots are stationary strategies, because in this case
they change with experience. However, without persistent
knowledge, bots do not accumulate experience, thus they de-
termine stationary strategies. Even if bots randomly select a
behavior at match beginning, they would still be valid for
the purposes of our experiments, because expected relative
performance against opponents does not change with expe-
rience, that is, metagame’s payoff matrix remain stationary.

To apply our findings in practice, that is, to employ a
technique such as ε-Nash to choose strategies in situations
such as a StarCraft AI tournament, all bots that had non-
zero probability of choice in equilibrium (Table 2) should
be merged into one, which we will refer to as MegaBot. At
match beginning, MegaBot could apply ε-Nash to choose
which bot it will enable to play that match. In tournaments,
such an approach would have an advantage that does not
exist in this paper: the adversary’s bot is identified. In a

7This variation considers that an adversary can change the re-
wards over player’s choices every turn.

tournament, if MegaBot is facing a known adversary, it can
select the best-response against it. The idea of merging sev-
eral bots into one is being currently undertaken.

6 Conclusion
6.1 Overview
This work presented a systematic study of strategy selection
in StarCraft, defining this process as a metagame, because
it adds a layer of reasoning to the game. We modeled the
strategy selection metagame as a normal-form game and dis-
cussed game-theoretical concepts such as Nash Equilibrium
and safe opponent exploitation.

For experiments, we chose a subset of AIIDE 2015 Star-
Craft AI tournament Protoss bots as the set of strategies to
be chosen, because each bot defines a complete mapping
of states to actions, fitting our definition of strategy. We
filled the strategy selection metagame’s payoff matrix by
running a prior tournament among selected bots and register-
ing their relative performance. This allowed us to estimate
the metagame’s Nash Equilibrium and expected payoff. The
metagame’s equilibrium strategy wins half the matches in
expectation.

In the metagame, we observed that strategies interact in
cyclical ways and we tested insights from computer rock-
paper-scissors tournaments. Our experiments suggest that,
whereas equilibrium strategies indeed result in safe pay-
offs, it is useful to deviate from equilibrium to exploit sub-
optimal opponents and achieve superior payoffs, confirming
insights from rock-paper-scissors. However, it is just as use-
ful to guard itself against exploitation and this can be suc-
cessfully done by adopting safe opponent exploitation tech-
niques, as they have theoretical guarantees in the maximum
loss attainable when deviating from equilibrium.

Metagame source code, including strategy selection tech-
niques and tournament engine is available8.

6.2 Future Work
Future work could address the issue that the expected payoff
of the strategy selection metagame equilibrium is valid only
if players select among the same strategies used to calculate
the equilibrium. One possible approach to address this lim-
itation is to adopt a wide set of strategies, so that arbitrary
behavior can be classified into a known strategy through ob-
servation.

8https://github.com/h3ct0r/StarcraftNash

98



To implement the strategy selection metagame in an ac-
tual StarCraft bot, we need to address the techical challenge
of merging distinct bots into one to allow the activation of a
single bot when a match begins. This approach is currently
being pursued. Moreover, future work could develop meth-
ods to track the non-stationarity in the metagame’s payoff
matrix that arises due to persistent knowledge that allows
bots to evolve between matches (our experiments were per-
formed without persistent knowledge).

Another useful extension of the present work is to deal
with “contextual metagames”, that is, metagames associated
with game states. This would allow a player to switch strate-
gies during gameplay: if the current situation is similar to a
state associated with a metagame, the player can adopt the
recommended strategy of that metagame.

Acknowledgments
Authors acknowledge support from CNPq, CAPES and
FAPEMIG in this research. We would like to thank the
anonymous reviewers for their valuable feedback and sug-
gestions for paper improvements.

References
Aha, D. W.; Molineaux, M.; and Ponsen, M. 2005. Learning
to win: Case-based Plan Selection in a Real-Time Strategy
Game. In Case-based reasoning research and development.
Springer. 5–20.
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
1995. Gambling in a rigged casino: The adversarial multi-
armed bandit problem. In Foundations of Computer Science.
Proceedings, 36th Annual Symposium on, 322–331. IEEE.
Billlings, D. 2001. RoShamBo programming competition.
https://webdocs.cs.ualberta.ca/∼darse/rsbpc.html.
Churchill, D., and Buro, M. 2013. Portfolio Greedy Search
and Simulation for Large-Scale Combat in StarCraft. In
Computational Intelligence in Games (CIG), 2013 IEEE
Conference on, 1–8. IEEE.
Churchill, D., and Buro, M. 2015. Hierarchical Portfolio
Search: Prismata’s Robust AI Architecture for Games with
Large Search Spaces. In Proceedings of the Artificial In-
telligence in Interactive Digital Entertainment Conference
(AIIDE).
Marcolino, L. S.; Xu, H.; Jiang, A. X.; Tambe, M.; and
Bowring, E. 2014. Give a Hard Problem to a Diverse Team:
Exploring Large Action Spaces. In The Twenty-Eighth AAAI
Conference on Artificial Intelligence (AAAI), 1485–1491.
McCracken, P., and Bowling, M. 2004. Safe Strategies for
Agent Modelling in Games. AAAI Fall Symposium on Arti-
ficial Multi-Agent Learning 103–110.
Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazirani, V. V.
2007. Algorithmic Game Theory, volume 1. Cambridge
University Press Cambridge.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A Survey of Real-Time
Strategy Game AI Research and Competition in StarCraft.
IEEE Transactions on Computational Intelligence and AI in
Games 5(4):293–311.

Preuss, M.; Kozakowski, D.; Hagelback, J.; and Trautmann,
H. 2013. Reactive Strategy Choice in StarCraft by Means
of Fuzzy Control. In Computational Intelligence in Games
(CIG), 2013 IEEE Conference on, 1–8. IEEE.
Sailer, F.; Buro, M.; and Lanctot, M. 2007. Adversarial
Planning Through Strategy Simulation. In Computational
Intelligence and Games (CIG). 2007 IEEE Symposium on,
80–87. IEEE.
Savani, R., and von Stengel, B. 2015. Game Theory Ex-
plorer: software for the applied game theorist. Computa-
tional Management Science 12(1):5–33.
Stanescu, M., and Čertickỳ, M. 2016. Predicting Opponent’s
Production in Real-Time Strategy Games With Answer Set
Programming. IEEE Transactions on Computational Intel-
ligence and AI in Games 8(1):89–94.
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014. Hier-
archical Adversarial Search Applied to Real-Time Strategy
Games. In Proceedings of the Artificial Intelligence in Inter-
active Digital Entertainment Conference (AIIDE).
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction, volume 1. MIT press Cambridge.
Synnaeve, G., and Bessière, P. 2011. A Bayesian Model
for Opening Prediction in RTS Games with Application to
StarCraft. In Computational Intelligence and Games (CIG),
2011 IEEE Conference on, 281–288. IEEE.
Uriarte, A., and Ontañón, S. 2014. Game-Tree Search Over
High-Level Game States in RTS games. In Proceedings of
the Artificial Intelligence and Interactive Digital Entertain-
ment Conference (AIIDE).
Weber, B. G., and Mateas, M. 2009. A Data Mining Ap-
proach to Strategy Prediction. In Computational Intelli-
gence and Games (CIG). 2009 IEEE Symposium on, 140–
147. IEEE.
Weber, B. G.; Mateas, M.; and Jhala, A. 2011. Building
Human-Level AI for Real-Time Strategy Games. In Pro-
ceedings of the AAAI Fall Symposium on Advances in Cog-
nitive Systems, 329–336.

99




