
Comparing Player Skill, Game Variants,
and Learning Rates Using Survival Analysis

Aaron Isaksen Andy Nealen
aisaksen@nyu.edu nealen@nyu.edu

NYU Game Innovation Lab

Abstract

Game designers can use computer-aided game design
methods to quantitatively compare player skill levels,
different game variants, and learning rates, for the pur-
pose of modeling how players will likely experience a
game. We use Monte-Carlo simulation, hazard functions,
and survival analysis to show how difficulty will quanti-
tatively change throughout a game level as we vary skill,
game parameters, and learning rates. We give a mathe-
matical overview of survival analysis, present empirical
data analyses of our player models for each game vari-
ant, and provide theoretical probability distributions for
each game. This analysis shows the quantitative reasons
why balancing a game for a wide range of player skill
can be difficult; our player modeling provides tools for
tuning this game balance. We also analyze the score dis-
tribution of over 175 million play sessions of a popular
online Flappy Bird variant to demonstrate how learn-
ing effects can impact scores, implying that learning is
crucial aspect of player modeling.

1 Introduction
We aim to help game designers better balance their games
by quantitatively comparing players of different skill lev-
els, comparing different game variants, and comparing how
players experience a game after practice and learning from
repeated plays. A designer can use game metrics (El-Nasr,
Drachen, and Canossa 2013) to study and improve the game,
but this requires the game to be publicly available, have sig-
nificant numbers of players, and time to gather enough data –
and therefore can’t be used for rapid iteration in the early de-
sign process. Automated game testing (Nelson 2011), which
simulates players of varying difficulty at high speeds, can be
used for tuning a game. It’s especially useful as designers
and playtesters become experts at the game, and often forget
how novices may experience it.

In this paper, we show how computer-aided game design,
which we loosely define as a system where human designers
work together with computers to co-create a game (Yan-
nakakis, Liapis, and Alexopoulos 2014), can help us better
understand our craft and provide knowledge to make better
games. Specifically, we show how probabilities are a useful

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

player with
higher skill

player with
lower skill

(a) score: x
pr

ob
ab

ilit
y:

 f(
x)

0 10 20 30 40 500.
00

0.
05

0.
10

0.
15

0.
20

player with
higher skill

player with
lower skill

(b) score: x

ha
za

rd
: h

(x
)

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 1: Two players with different skill playing the same
game show uniquely different play experiences. (a) Resulting
score probability distributions shows significantly different
shapes. (b) Hazard functions, equivalent to a designer’s “diffi-
culty curve,” show how the difficulty changes for each player.

tool for understanding, modeling, and comparing player expe-
rience; in past work probability distributions have been used
for modeling session times (Feng et al. 2005) and total play
time (Bauckhage et al. 2012). Probability distributions tell
us the likelihood that a player will achieve a specific score,
and we can create these distributions by repeatedly playing
a game and collecting the resulting score frequencies. As
shown in Fig. 1a, differing player skill can give rise to signifi-
cantly different score distributions. Isaksen et al (2015) show
how to use exponential distributions for designing simple
action games like Flappy Bird (Nguyen 2013) which do not
change in difficulty when ignoring learning effects. In this
paper, we explore games that increase in difficulty as a player
progresses, and we make a first attempt at modeling learning
effects, which we show has influence on the resulting scores.
We also show how hazard functions (Rinne 2014), shown in
Fig. 1b, can be used to theoretically and empirically model
changes in difficulty for different players.

Through our analysis, we have discovered what we hope to
be interesting and useful results for game designers. Firstly,
we show with Monte Carlo simulation how to quantify how
players of different skill levels will likely experience the same
game variant in significantly different ways, giving the de-
veloper precise methods to accurately balance their game for
varying skill. Secondly, these methods can help developers
balance a game that has increasing levels of difficulty as the

Player Modeling: Papers from the AIIDE 2015 Workshop

15

player progresses. Finally, we show that learning effects can
significantly impact the analysis of game data and should not
be ignored when computationally modeling players.

We demonstrate these findings using a minimal one-button
game (Nealen, Saltsman, and Boxerman 2011), where we
record thousands of plays with an AI simulating human error
due to motor skill imprecision. By varying game parameters,
player skill, and introducing learning effects, we can gener-
ate score distribution data and then model empirically and
theoretically how each change leads to varying difficulty.

To explain how the probability distributions predictably
change, we use survival analysis, a branch of statistical mod-
eling that helps predict how long in the future an event will
occur (Lee and Wang 2013). It is used to study how long
mechanical parts will last, the effectiveness of medical treat-
ments, and for predicting human lifetimes, but to our knowl-
edge is not commonly used by game designers. Here we use
survival analysis to predict the likelihood of a player achiev-
ing a certain score. In most action games, the longer a player
survives in a game, the higher their score, so we use score
as a replacement for lifetime and leverage existing work on
survival analysis. Although this paper focuses on measuring
probabilities of achieving specific scores, one can use our
approach to model difficulty as any non-decreasing factor,
such as time played, coins collected, enemies killed, etc.

In Section 3, we give an short mathematical overview of
survival analysis. A probability distribution f(x), which we
can obtain from actual or simulated game play, tells us how
likely a player is to achieve a specific score x (Fig. 1a). From
this, we can create a survival function S(x), which tells us
the likelihood that a player will reach a score ≥ x. Finally,
the hazard function h(x) tells us how likely a player will
die at a specific score x, given they have already survived
up to that score (Fig. 1b). When a designer talks about the
“difficulty curve” for a game, they are talking about a hazard
function. We demonstrate how the hazard function is often a
simpler way to compare different players and games.

We then simulate different games and players in Sec. 4,
showing how varying different parameters of the game or
player model leads to different probability distributions and
hazard functions, and therefore player experiences. For each
of these game types, we plot empirical probability distribu-
tions and derive hazard rates from the generated data, and
then present a matching theoretical hazard function model.

Finally, we use our theory to analyze over 175 mil-
lion plays of flappybird.io (McDonnell 2014). This dataset
matches the type of probability distributions and hazards
associated with our learning model, showing the likely pres-
ence of learning effects when humans repeatedly play a game.
This has an important impact when designing games, so that
the game remains interesting after repeated plays and does
not become too simple for improving players.

2 Simulated Game Play
In order to explore how varying difficulty and player skill
affects resulting game scores, we collect simulation data from
a simple game that can be played by an AI using a model
of human-like motor skill. The game, shown in Figure 2, is
a minimal version of an infinite runner, and is designed to

box$ boxbox

Belt$speed$Player$

Figure 2: In our simulated game, the player earns a point by
tapping a button once when the box is underneath. The game
ends if a box is missed or the player taps when there is no
box. In some variants, the belt speeds up after each point.

be easy and fast to simulate. In this model game, the player
is standing above to a conveyor belt with an endless series
of empty boxes. The player must tap a button to pack each
box while it is under the player. If the player misses a box
or taps when there is no box under them, they lose the game.
The final score of the game is equal to the number of boxes
successfully packed. We can expect that wider boxes would
make the game easier since the player has a wider window
for error, and faster belt speed would make the game harder
since the player would have less time to react to each box.

Isaksen, et al. (2015) showed that one can simulate human
performance in simple action games using an AI which plans
into the future and then adjusts the reaction time by a normal
distribution. By increasing and decreasing the standard devi-
ation of the normal distribution, we simulate less skilled (i.e.
less accurate) and more skilled (i.e. more accurate) players.
In our system, the AI tries to tap when the box is centered
below the player, but we adjust the actual time the AI taps by
a normal distribution representing the AI’s skill.

We try different versions of the game, varying the single
design parameter belt speed, and examine the impact on the
distributions of scores that result from the simulation. We test
versions where the belt speed is constant, as well as some that
speed up as the player progresses. We also vary the modeled
skill level of the AI, allowing us to (1) simulate novice and
expert players and (2) simulate players that learn and improve
each time they play. Each of these simulations results in data
that shows a different probability distribution.

3 Overview of Survival Analysis
To understand how these simulations of games of different
difficulty and players of different skill give rise to unique
probability distributions, we need a mathematical founda-
tion to model player performance. The simulation data we
create are in the form of discrete scores, but the underlying
distributions are easier to describe in the continuous domain.

3.1 Probability Distribution Functions
We begin by looking at the probability distribution function
f(x) for a game, which tells us the probability that the player
will achieve a score of x on the next play. For example, if
f(5) = .20 then the likelihood a player will achieve a score
of 5 on the next play is 20%.

In this paper, for simplicity and clarity, probability distri-
bution function (PDF) refers to a probability density function

16

when using continuous probabilities and a probability mass
function when using discrete probabilities. We explicitly de-
note cumulative distribution functions where needed.

In practice, we can create a discrete probability distribution
by recording all of the scores on each play of the game, then
summing up the frequency of each score, and dividing by
the total number of plays. This is often recorded for each
play when using analytics such as Google Analytics, and the
frequency of each score is easily output by these systems.
For games with a wide range of scores, or with gaps between
scores, specific individual scores might have zero or very low
frequencies. In this case, it could help to quantize the scores
in a histogram.

3.2 Survival Functions
The survival function S(x) tells us the probability that a
player will still be alive given they have already reached a
score of x on the current play. In other words, it describes
the likelihood that a player will achieve a score ≥ x. For
example, if S(10) = .25 there is a 25% probability that the
player will achieve a score of 10 or higher. It is closely related
to more commonly known cumulative distribution function
F (x). The survival function is defined as:

S(x) = 1− F (x) = 1−
∫ x

0

f(s)ds (1)

S(x) = 1 when x ≤ 0 because every player will at least
achieve a score of 0, and S(∞) = 0 because all players will
eventually reach a termination state and receive a final score.

3.3 Hazard Functions
The hazard function h(x) is useful for comparing probability
distributions and understanding the difficulty of a game. Also
called the hazard rate, it is defined as:

h(x) =
f(x)

S(x)
f(x) = h(x)S(x) (2)

The hazard function tells us the rate at which we should
expect to fail, given we’ve already reached a specific score
x. This is not the probability that we will fail at this exact
score x, given by f(x), but a conditional probability that the
player has already survived to a score of x. For example, if
h(10) = .15, this means that once the player gets to a score
of 10, they now have a 15% chance of failing at this point.

The hazard function is especially useful when analyzing
games because its directly related to how we as designers
think about adjusting difficulty curves in a game. We aren’t
as concerned about the entire probability distribution as much
as how difficult a game is at a specific section, assuming the
player has already reached that point in the game. We give
many visual examples of hazard functions in Section 4.

Therefore, game designers are effectively working on mod-
ifying the hazard function h(x) so the difficulty curve feels
good to players (Swink 2009). If we want to understand how
these changes affect the resulting probability distribution
f(x) and survival function S(x) for the game, we need a
method to derive f(x) and S(x) from a given hazard h(x).

First, we write the cumulative hazard function H(x),
which represents the total amount of risk (Cleves 2008) that
a player has faced up to their current score x, as:

H(x) =

∫ x

0

h(u)du (3)

We then take the derivative of Eq. 1:

f(x) = −dS(x)
dx

= −S′(x) (4)

Using Eq. 4, we rewrite Eq. 2 as h(x) = −S′(x)/S(x).
This is a first order differential equation with the following
solution (Boyce, DiPrima, and Haines 1992):

S(x) = e−
∫
h(x)dx = e−H(x) (5)

By using Eqs. 4 and 5 we obtain the final relation:

f(x) = −dS(x)
dx

= − d

dx
e−H(x) (6)

We can now derive a theoretical f(x) and S(x) from any
theoretical h(x), which helps us understand how changes in
difficulty affect the resulting score distributions.

3.4 Working with Discrete Data
We use continuous distributions when building models, but
since scores from our games are discrete values (that is we
can receive a score of 1 or 2, but not 1.245), we work in the
discrete domain when analyzing game data. We can create
the discrete probability distribution ḟ(x), discrete survival
function Ṡ(x), and discrete hazard function ḣ(x) as follows
(a dot over each function signifies we are talking about the
discrete domain).

First, we run the game N times and save each score in a
vector Z. We now create a histogram from this data with bin
size of 1, and define ṅ(x) as the number of scores in Z equal
to x. We can now calculate these values from our data as:

ḟ(x) =
ṅ(x)

N
Ṡ(x) =

∑
s≥x

ḟ(s) ḣ(x) =
ḟ(x)

Ṡ(x)

Because Ṡ(x) becomes very small as higher scores become
less likely, ḣ(x) is susceptible to noise. One option is to
smooth the hazard function using techniques based on kernel
smoothing (Muller and Wang 1994) or splines (Rosenberg
1995). For this paper, we simply do not plot ḣ(x) for values
of x where Ṡ(x) < ε, where ε ranges between 0.01 and 0.001
depending on how many samples were used to generate the
plots. This avoids the noisiest parts of the hazard function,
which are undersampled due to low probability.

4 Survival Analysis of Simulated Games
We now simulate variants of our experimental game, ad-
just parameters of the game and player model, and collect
histograms of score data. This data is used to create a em-
pirical discrete probability distribution ḟ(x) for each game,
and we calculate the empirical discrete hazard ḣ(x) from
ḟ(x). We then show how each system can also be modeled
with a matching theoretical hazard h(x) which leads us to
a theoretical probability distribution f(x) that predicts the
probabilities generated by our simulation.

17

belt speed
1.00
1.25
1.50
1.75

(a) score: x

pr
ob

ab
ilit

y:
 f(

x)

0 20 40 60

0.
0

0.
1

0.
2

0.
3

(b) score: x

lo
g

pr
ob

ab
ilit

y:
 lo

g(
f(x

))

0 20 40 60

−7
−6

−5
−4

−3
−2

−1

easiest

hardest

(c) score: x

ha
za

rd
: h

(x
)

0 20 40 60

0.
0

0.
1

0.
2

0.
3

easiest

hardest

Figure 3: Data collected from simulated games with constant
belt speed, constant skill level, and no learning effects. (a)
Harder games have a higher probability of getting a lower
score. (b) The log probabilities are linear, indicating an ex-
ponential distribution. (c) Constant hazard rates indicate con-
stant difficulty.

4.1 Constant Difficulty: Exponential
Distribution / Constant Hazard

We start by examining games that do not modify their param-
eters as the game progresses, and therefore have a constant
difficulty if one ignores learning effects. Flappy Bird (Nguyen
2013) is an example of this type of game. We show with our
simulation that these conditions lead to a constant hazard.

Using the score results from our simulated game, the data
shown in Figure 3 shows empirical evidence of an expo-
nential distribution and constant hazard rate when using a
constant belt speed, constant skill level, and ignoring learning
effects. In Fig. 3a we show the probabilities for 4 versions
of the game, each with a different belt speed (increasing in
speed from the black line to the red line). Exponential distri-
butions become linear in log plots, so we can tell from Fig. 3b
that the data indeed comes from the exponential distribution.
The derived hazard rates, shown in Fig. 3c, also increase,
indicating as expected that faster belts lead to a more difficult
game. There is some noise in the hazard function as we are
simulating human error using a stochastic process. This noise
can be reduced with more iterations of the simulation. The
harder games have shorter lines, because its unlikely a player
will achieve higher scores in them.

Given the evidence for a constant hazard, we now theoret-
ically model the constant hazard function h(x) = λ, which
means that the player is equally likely to die at every moment
in the game. Using Eqs. 2-6, we have:

h(x) = λ

H(x) =

∫ x

0

h(u)du = λx

S(x) = e−H(x) = e−λx

f(x) = h(x)S(x) = λe−λx

Thus, a constant hazard rate (i.e. constant difficulty) leads
to an exponential probability distribution. A more difficult
game has a higher λ: a player is more likely to die after each
point and has a lower likelihood of reaching a higher score.

speed increase
.05
.10
.15
.20

(a) score: x

pr
ob

ab
ilit

y
=

f(x
)

0 5 10 15 200.
00

0.
05

0.
10

0.
15

0.
20

easiest

hardest

(b) score: x

ha
za

rd
: h

(x
)

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

easiest

ha
rde

st

Figure 4: Data collected from simulated games with linearly
increasing belt speed, constant skill, and no learning. Af-
ter each point, the belt speed goes up by speed increase.
(a) Slower speed increases are more likely to exhibit higher
scores, following a shifted Rayleigh probability distribution.
(b) Steeper hazard lines indicate faster difficulty increases.

4.2 Increasing Difficulty: Rayleigh Distribution /
Linear Hazard

Most games do not exhibit constant difficulty, but instead
increase in difficulty as the player gets further in to the game.
Figure 4 shows four simulated games where we start with a
shared belt speed and increase it by a fixed amount after each
successfully packed box. The black line indicates the smallest
increase in speed and the red line is the largest increase.

Fig. 4a shows the resulting empirical probability distribu-
tion for each variant. As expected, games with the slower belt
speed increase show a higher likelihood of a higher scores.
The initial game difficulty chosen for the experiment shows
the nice design property that the player is more likely to
achieve a score of around 3-5 than a score of 0, which means
the player will likely experience some small success at the
start (unlike the constant hazards described in Section 4.1).

In Fig. 4b we show the derived empirical hazard rate for
each variant, which are approximately linear, although there
is a slight curve downwards showing that the hazards aren’t
perfectly linear. Each line comes to the same point because
each variant starts out with the same belt speed. Increasing
the belt speed at a faster rate means the game gets more
difficult more quickly, indicated by a steeper slope in the
hazard plot.

We can theoretically model this with a linear hazard func-
tion h(x) = a+bx, where a defines the game’s base difficulty
and b > 0 defines the rate at which difficulty increases. Using
Eqs. 2-6, we find the theoretical probability distribution:

h(x) = a+ bx

H(x) =

∫ x

0

h(u)du = ax+
b

2
x2

S(x) = e−H(x) = e−ax−
b
2x

2

f(x) = h(x)S(x) = (a+ bx)e−ax−
b
2x

2

When a = 0 and b = 1/σ2, this reduces to the well known
one-parameter Rayleigh distribution f(x) = x

σ2 e
−x2/2σ2

.
Our data matches a two-parameter Rayleigh distribution with
location parameter (due to the a > 0 constant term).

18

highest skill

lowest skill
std. dev.

20ms
30ms
40ms
50ms
60ms

(a) score: x

pr
ob

ab
ilit

y:
 f(

x)

0 10 20 30 40 500.
00

0.
05

0.
10

0.
15

0.
20

highest s
kill

low
es

t s
kil

l

(b) score: x

ha
za

rd
: h

(x
)

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 5: Data collected from simulated games with linear in-
creasing difficulty. Smaller standard deviation models higher
skill. (a) Skill greatly influences the shape of the empirical
probability distribution. (b) Skill affects the y-intercept for
the hazard rate, which causes the probability distribution in a.
to shift and change shape.

4.3 Varying Skill Levels with Linear Hazards
We now explore how a single game variant with increasing
belt speed can be experienced by players of different skill
levels. In Figure 5 we simulate the same variant with linearly
increasing difficulty, but use a different player skill for each
line. The black line is the highest skilled player and the
lightest blue line is the lowest skilled player. Recall that we
increase simulated player skill by decreasing the standard
deviation of the time adjustment.

The resulting empirical probability distributions from the
experiment, shown in Fig. 5a, are especially interesting. We
can see that players of low skill experience a very different
game from high skilled players. The low skilled player finds
that a score of 0 is most likely, meaning they don’t experience
any positive feedback early on to encourage them. The high
skilled player however has some early notion they are doing
well as the most likely score for them is around 25, and it is
very unlikely they will achieve a score ≤ 5.

In Fig. 5b, we see that the hazard rates derived from the
data are still approximately linear as in Figure 4, but here the
intercept a is changing as well as the slope b. Because hazard
rates can not be negative, the black hazard line flattens near
the origin, while the trend of the line is towards a negative
y-intercept a. Easier parts of the game are trivial and unlikely
to lead to the AI failing, which causes a flat hazard rate. Its
not until the line starts turning upward that this AI begins to
experience a challenge.

It is important to reiterate that the shape of the probability
distribution is dependent on the player’s skill – the low skilled
player and high skilled player do not experience the game
in the same way. This quantitatively impacts the designer’s
ability to make a game that can please all players without
making some sacrifices on game balance.

5 Modeling Learning
So far we have only looked at examples where the hazard
rate derived from the experimental data is increasing, as we
tend to find that games become more difficult as a player
progresses. We now model players improving over time as
they repeatedly play the same game. Learning is typically

(a) score: x

pr
ob

ab
ilit

y:
 f(

x)

learning rate
0
.1
.2
.3
.4

0 10 20 30

0.
0

0.
1

0.
2

most learning

no learning

(b) score: x

lo
g

pr
ob

ab
ilit

y:
 lo

g(
f(x

))

0 10 20 30

−6
−5

−4
−3

−2

most learning

no learning

(c) score: x

ha
za

rd
: h

(x
)

0 10 20 30 40 50 60 70

0.
0

0.
1

0.
2

no learning

(d) score: x

re
ci

pr
oc

al
 h

az
ar

d:
 1

/h
(x

)

0 10 20 30 40 50 60 70

0
10

0
20

0
30

0

most l
earning

Figure 6: Data collected from simulated games with constant
belt speed when modeling learning effects. (a) Empirical PDF
follows the Generalized Pareto Distribution. (b) Log plots
show faster learning increasingly diverges from exponential.
(c) Hazard rates shows a decreasing trend as the learning rate
increases. (d) Reciprocal hazards 1/h(x) derived from the
data are linear, which fit the Generalized Pareto Distribution.

modeled with a power law function:

T = A+B(n+ E)−R (7)

where the time T to perform a task decreases as the number
of repetitions n increases, A defines the best possible time to
achieve the task, B defines the performance on the first trial,
R > 0 is the learning rate, and E represents prior experience
(Lane 1987). Power law functions model improvement which
goes quickly at the beginning, but then slows down as the
player learns the easiest ways to improve, but then takes more
time to develop the ability to improve at higher level skills.

Instead of modeling a decrease in time to complete a task,
we model a decrease in player error, which has similarly been
shown to follow power laws. In our system, we model this
improvement by decreasing the standard deviation of the time
adjustment after each play. To generate the data, we simulate
50,000 AI players, each repeating the game 10 times. After
each of the 10 times, the standard deviation is reduced to
follow the power law learning equation. We vary the learning
rate R for each test to explore the learning effect.

5.1 Generalized Pareto / Hyperbolic Hazard
We can see the empirical results of modeling learning in
Figure 6. This is the same game as in Sec. 4.1 with constant
belt speed, but now each player has a learning rate R. Black
has no learning, and light green has fastest learning. From the
empirical distributions in Fig. 6a we can’t tell exactly what
the distribution may be, but the log plot in Fig. 6b shows that
faster learning rates cause a larger departure from exponential
(as exponential curves are lines in a log plot).

By deriving the hazard from our data, as shown in Fig. 6c,
we see for the first time a decreasing hazard rate with increas-

19

ing score x. The decreasing behavior arises because with
repeated plays, the player is learning and improving, which
makes higher scores easier to obtain. The hazard decreases
faster with a higher learning rate, and reduces to a constant
hazard for a zero learning rate. We can see in Fig. 6d further
evidence these curves are hyperbolic (i.e. reciprocal linear)
hazard rates, when free parameters for inverting the hazard
are set appropriately.

We theoretically model this using hyperbolic hazards:

h(x) = a+
b

x+ c

H(x) =

∫ x

0

h(u)du = ax+ b log(1 + x/c)

S(x) = e−H(x) = e−ax(1 + x/c)−b

f(x) = h(x)S(x) =

(
a+

b

x+ c

)
e−ax(1 + x/c)−b

where a is related to initial difficulty at the start of the game,
b determines the learning rate, and c allows us to have scores
x = 0 and helps model previous experience. These equa-
tions model the Generalized Pareto Distribution (Leemis and
McQueston 2008; Leemis et al. 2012), commonly used to
understand extreme events such as floods and earthquakes.

6 Analyzing Actual Game Distributions
We now apply this type of survival analysis to examine the
distribution of scores from flappybird.io (McDonnell 2014),
a popular web-based version of the original Flappy Bird. As
explained in Sec. 4.1, Flappy Bird has a constant difficulty,
so without learning effects would exhibit a constant hazard
rate and an exponential probability distribution.

Figure 7 shows the actual score distributions for 4 months
from March 2014, when flappybird.io first launched, to June
2014. This time period covers over 175 million individual
plays. The spike at the left of the graphs occur because the
first pipe is easier to score in Flappy Bird due to scoring
at the center of pipes and setup time for the first pipe. It is
not apparent from Fig. 7a which distribution is occuring, but
non-linear log plots in Fig. 7b shows it is not exponential.

By deriving the hazard from the data, we see in Fig. 7c
that the hazard rate decreases rapidly, indicating that learning
and past experience may be a factor at making the game less
difficult for higher scoring players. Plotting score vs recipro-
cal hazard rate 1/h(x) in Fig. 7d shows a linear relationship,
indicative of the Generalized Pareto Distribution. This shows
the same distribution as we showed with simulation in Sec.
5.1, giving evidence we are dealing with learning effects.

The hazard rate curves appear to be proportional hazards
(Kleinbaum and Klein 1996), but show a trend in Fig. 7c
where later months have lower hazard rates at higher score
values. We hypothesize this is due to (1) players having
more time to practice and improve and (2) poorly performing
players becoming frustrated and exiting the sampling pool,
which shifts the probabilities towards more skilled players.
Although the difference in the graphs appear slight, because
of the high number of samples these effects are significant.

(a) score: x

pr
ob

ab
ilit

y:
 f(

x)

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3 Month

Mar 2014
Apr 2014
May 2014
Jun 2014

(b) score: x

lo
g

pr
ob

ab
ilit

y:
 lo

g(
f(x

))

0 10 20 30 40−1
0

−8
−6

−4
−2

0

(c) score: x

ha
za

rd
: h

(x
)

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

first month
fourth month

(d) score: x

re
ci

pr
oc

al
 h

az
ar

d:
 1

/h
(x

)

0 10 20 30 40

0
2

4
6

8
10

12
14

first month

fourth
 month

Figure 7: Actual, not simulated, player data from over 175
million plays of flappybird.io matches a Generalized Pareto
distribution. (a) The probability spike occurs because in
Flappy Bird the first pipe is easier to pass than the rest. (b)
Non-linear log probability means the distribution is not expo-
nential (c) Hazard rates show a divergence at higher scores.
(d) Divergence is more apparent with the reciprocal hazard.

7 Conclusion
Although our simulated game was invented for simple experi-
mentation, the computer-aided game design and survival anal-
ysis techniques presented here can be used to improve more
complicated games during the design stage. Even though we
have shown it is statistically challenging to create a game
variant that is well balanced for all skill levels, examining haz-
ard rates can help tune a game for a specific range of player
skills, giving insight into how difficulty changes as a player
repeatedly plays a game. We have used similar analysis to
show power law hazards lead to Weibull distributions, and
exponential hazard rates lead to the Gompertz distribution,
but did not have room to present this here. Finally, we have
presented evidence that learning rates should not be ignored
when modeling players, and we hypothesize for future work
that one can find an optimal rate to increase difficulty to keep
up with the loss of difficulty due to the natural learning rate.
This could lead to an effective constant difficulty to players,
which would, in theory at least, keep players in flow.

8 Acknowledgments
Thank you to James Marion, creator of Peter Panic, for in-
spiring the box packing game, to Adam M. Smith, Julian
Togelius, and Dan Gopstein for helpful discussions about
the paper, to Max McDonnell for providing the analytics for
flappybird.io, and to Dong Nguyen for creating the original
Flappy Bird.

20

References
Bauckhage, C.; Kersting, K.; Sifa, R.; Thurau, C.; Drachen,
A.; and Canossa, A. 2012. How players lose interest in
playing a game: An empirical study based on distributions
of total playing times. In Computational Intelligence and
Games (CIG), 2012 IEEE Conference on, 139–146. IEEE.
Boyce, W. E.; DiPrima, R. C.; and Haines, C. W. 1992. Ele-
mentary differential equations and boundary value problems,
volume 9. Wiley New York.
Cleves, M. 2008. An introduction to survival analysis using
Stata. Stata Press.
El-Nasr, M. S.; Drachen, A.; and Canossa, A. 2013. Game
analytics: Maximizing the value of player data. Springer.
Feng, W.-c.; Chang, F.; Feng, W.-c.; and Walpole, J. 2005. A
traffic characterization of popular on-line games. Networking,
IEEE/ACM Transactions on 13(3):488–500.
Isaksen, A.; Gopstein, D.; and Nealen, A. 2015. Exploring
game space using survival analysis. In Foundations of Digital
Games.
Kleinbaum, D. G., and Klein, M. 1996. Survival analysis.
Springer.
Lane, N. E. 1987. Skill acquisition rates and patterns.
Springer Science & Business Media.
Lee, E. T., and Wang, J. W. 2013. Statistical methods for
survival data analysis. John Wiley & Sons.
Leemis, L. M., and McQueston, J. T. 2008. Univariate distri-
bution relationships. The American Statistician 62(1):45–53.
Leemis, L. M.; Luckett, D. J.; Powell, A. G.; and Vermeer,
P. E. 2012. Univariate probability relationships. Journal of
Statistics Education 20(3).
McDonnell, M. 2014. flappybird.io. http://flappybird.io.
Muller, H.-G., and Wang, J.-L. 1994. Hazard rate estimation
under random censoring with varying kernels and bandwidths.
Biometrics 61–76.
Nealen, A.; Saltsman, A.; and Boxerman, E. 2011. Towards
minimalist game design. In FDG, 38–45. ACM.
Nelson, M. J. 2011. Game metrics without players: Strategies
for understanding game artifacts. In Artificial Intelligence in
the Game Design Process.
Nguyen, D. 2013. Flappy bird. Apple App Store.
Rinne, H. 2014. The Hazard rate : Theory and inference
(with supplementary MATLAB-Programs). Justus-Liebig-
Universitt.
Rosenberg, P. S. 1995. Hazard function estimation using
b-splines. Biometrics 874–887.
Swink, S. 2009. Game Feel. Morgan Kaufmann.
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Proceedings of the 9th
Conference on the Foundations of Digital Games.

21

