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Abstract

Interactive narratives suffer from the narrative paradox:
the tension that exists between providing a coherent nar-
rative experience and allowing a player free reign over
what she can manipulate in the environment. Knowing
what actions a player in such an environment intends to
carry out would help in managing the narrative paradox,
since it would allow us to anticipate potential threats to
the intended narrative experience and potentially medi-
ate or eliminate them. The process of observing player
actions and attempting to come up with an explanation
for those actions (i.e. the plan that the player is trying to
carry out) is the problem of plan recognition. We adopt
the framing of narratives as plans and leverage recent
advances that cast plan recognition as planning to de-
velop a symbolic plan recognition system as a proof-
of-concept model of a player’s reasoning in an interac-
tive narrative environment. In this paper we outline the
system architecture, report on performance metrics that
demonstrate adequate performance for non-trivial do-
mains, and discuss the implications of treating players
as plan recognizers.

Introduction
Interactive narratives are systems that mediate a player’s in-
teraction within a virtual environment through a narrative
framing. These systems afford their players the opportu-
nity to step into a dramatic role to influence the develop-
ment of a storyline through their actions [Riedl and Bulitko,
2013]. This type of virtual environment has become increas-
ingly commonplace in educational, training, and entertain-
ment contexts, but remains a challenging task to develop.
One reason for this challenge is due to what Aylett [2000]
calls the narrative paradox: for an experience to count as a
story it must have some kind of satisfying structure, which
participants can directly affect and make incoherent.

One way to help ameliorate the narrative paradox is to
attempt to model the player’s reasoning process to predict
what goal the player intends to accomplish in the game, as
well as how the player aims to achieve that goal. With that
information, a drama manager [Nelson et al., 2006] could
potentially adapt the interactive narrative dynamically, mak-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing sure to avoid narratively undesirable states, while guid-
ing the player toward narratively desirable ones. In this pa-
per we present a proof-of-concept symbolic plan recognition
system within an interactive narrative. While the plan recog-
nition system attempts to find the player’s plan given their
actions, we use the system as a proxy for the player’s rea-
soning process in an interactive narrative. This is because
we posit that as a player engages with an interactive narra-
tive, she is trying to perform plan recognition herself by at-
tempting to identify what author-intended narrative plan she
fits into. Our approach builds upon prior work that repre-
sents narratives as plans [Young, 1999] from an automated
planning context. We additionally present the reasons why
we represent players as plan recognizers, as well as an eval-
uation of the plan recognition system’s performance for a
non-trivial domain.

Players in Interactive Narratives
The work outlined here is meant as a proof-of-concept of a
model of one aspect of a player’s reasoning in an interactive
narrative environment. Specifically, we care to characterize
the player’s story reasoning during her interactive narrative
experience: we would like to model what the player intends
to accomplish given her understanding of the story, her per-
ceived narrative role, and her perceived affordances to act
within the story context [Young and Cardona-Rivera, 2011].
In this section, we outline some of the implications of con-
sidering players as plan recognizers within interactive nar-
rative contexts. Our focus here is on interactive narratives
from a player-centric perspective. We therefore look to what
some cognitive psychologists and narratologists tell us about
the way in which humans engage with narrative artifacts.

...as Problem Solvers
The concept of “gameplay” is difficult to precisely de-
fine [Salen and Zimmerman, 2003]. While we do not care
to weigh in on what gameplay is, we do care to point
out that a great deal of research work in interactive nar-
rative play tacitly assumes that the game player acts as a
problem-solver during gameplay [Roberts and Isbell, 2007;
Riedl and Bulitko, 2013]; that is, the player is assumed to
be reasoning forward through potential courses of action
toward a specific goal. Indeed, prior work [Young et al.,
2013] has cast a player’s experience of playing through an
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interactive narrative as a deliberative problem solving pro-
cess, computationally represented in a classical planning
paradigm, which can be used to model key structural aspects
of narratives, including the causal relationship between nar-
rative events and the relative ordering between them [Young,
1999]. In this view, a player monitors the current world state,
attempts to identify which planning operators have their pre-
conditions satisfied, and choses actions that lead to a desired
world state. This view is consistent with an empirical cog-
nitive psychology account of a person’s story understand-
ing process: Gerrig and Bernardo [1994] frame readers as
problem solvers whereby humans transport themselves into
a story they are reading, and attempt to solve the plot-related
problems on behalf of the protagonist(s). Given the map-
ping between narrative structures and planning data struc-
tures and the psychological experimental support, automated
planning seems a natural fit to characterize a player’s inter-
active narrative experience.

...as Plan Recognizers
However, according to the narratologist Herman [2013], a
key component of consuming a narrative is the ascription of
intentions on behalf of the audience to the narrative’s au-
thor. This ascription is akin to Dennett’s [1989] stance: in
essence, when explaining and predicting the behavior of an
object, we can choose to view it at varying levels of ab-
straction. Herman reviewed converging evidence in cogni-
tive psychology and narratology that support the idea that
when consuming a narrative, the default mode of ascription
is in the intentional plane, where we are concerned with be-
liefs, desires, and intentions (BDI) of an object to explain
its behavior. Herman [2013] claims that this level of rea-
soning goes beyond the attribution of BDI to characters,
extending intentional attribution to the author herself. The
importance of this reasoning process to interactive narrative
play has been noted by Murray [1998] who stated that in-
teractive narrative designers must constrain a player’s rea-
soning process to identify (in the context of their play ex-
perience) the set of dramatically appropriate actions, those
that an interactive narrative expects the player to execute
to successfully advance the narrative experience. Concor-
dantly, players are expected to make their in-game actions
meaningful in the context of the designed experience; a de-
signer affords a coherent experience if the player behaves
in coherent ways [Adams, 2013]. The reasoning process by
which players correctly identify the sequences of action that
successfully complete their narrative experience (i.e. those
intended by the game designer) is therefore key during in-
teractive narrative play. Ascription of intent in the classical
AI sense [Cohen and Levesque, 1990] involves identifying
the goal the agent (in our case, the author) is attempting to
pursue, and the corresponding plan that will be pursued in
service of the goal. In other words, players must perform
plan recognition a priori to being able to realize a particular
plan in an interactive environment. Put simply, a player in
an interactive narrative must identify how the game wants
her to proceed in order to bring about the plan that achieves
game progress. Plan recognition is a paradigm well suited to
computationally modeling this reasoning process.

Plan Recognition
In the plan recognition problem, we seek two things: a) the
goals that explain the observed actions (often referred to
as the goal recognition problem [Sukthankar et al., 2014]),
and b) the actions that will occur next in pursuit of the ex-
pected goal [Carberry, 2001]. Plan recognition appears in
three different forms: a) plan recognition when the agent is
aware and actively cooperating in the recognition (called in-
tended plan recognition), b) plan recognition when the agent
is unaware of the recognition (called keyhole plan recogni-
tion), and c) plan recognition when the agent is aware of
and actively obstructs the recognition process (called ob-
structed plan recognition). Importantly, plan recognition as-
sumes a priori that there exist a set of possible goals Gi
that an agent cares to achieve. We denote the set of these
disjunctive goals as G = {G0, . . . , Gn}. Plan recognition
has historically operated over a plan library, a set of recipes
that record likely actions toward assumed goal states. In this
light, the plan recognition problem is to identify which goal-
recipe pair is the observed agent’s intended course of action,
given the actions that the agent has undertaken in an envi-
ronment. Recognizing that plan recognition is planning in
reverse, Ramı́rez and Geffner [2009] proposed a novel way
of casting the plan recognition problem that avoids the need
for a plan library: by assuming that an observed agent in
a plan recognition task will prefer optimal plans (i.e. those
plans with minimal cost), Ramı́rez and Geffner proposed to
compile the agent’s observed actions as additional goals (to
the set of assumed goals) that an agent must plan for. As
part of this compilation process, new planning operators are
added to the domain that uniquely satisfy the observed ac-
tion goals, effectively placing a lower bound on the optimal
plans in the compiled domain; i.e. the agent must pursue
plans in service of the assumed possible goals that satisfy
the observations that were identified in the plan recognition
task.

Definition 1. An action sequence π = a0, . . . , an satisfies
the observation sequence OBS = obs0, . . . , obsm if there
is a monotonic function f mapping the observation indices
j = 0, . . . ,m into action indices i = 0, . . . , n such that
af(j) = obsj .

This formulation of plan recognition depends on a model
of automated planning. We adopt a typical STRIPS-like
representation [Fikes and Nilsson, 1971], which has been
used to model key aspects of stories and the discourse about
them [Young et al., 2013].

Definition 2 (Planning Domain). A Planning Domain is a
triplet P = 〈F, I,A〉, with atoms F , initial state I ⊆ F , and
action operators A. A state is a conjunction of function-free
atoms that describe a state of the world. An action operator
is a template for an action that can occur in the world, de-
fined by preconditions and effects: preconditions describe
the conditions of the world that must be true in order for
the operator to execute, and effects describe the conditions
made true in the world via the execution of the operator. Op-
erators may contain variable terms to convey ideas such as
move(x, y) to convey “move from x to y”.
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Figure 1: Plan recognition in a robot navigation domain with
initial position A, possible goals G = {C, I,K}, and ob-
served unit-cost actions move(A,B) and move(F,G).

Example
In lieu of the full description of how to achieve plan recog-
nition with planning, we present an example to help explain
the intuition behind the procedure. For this, we leverage the
example used by Ramı́rez and Geffner: plan recognition in a
robot navigation domain, illustrated in Figure 1. In the orig-
inal paper by Ramı́rez and Geffner, there was an implicit
assumption that we make explicit here: recognized plans
are represented by the goals they achieve, i.e. there is only
ever one optimal plan that achieves a given assumed goal
Gi ∈ G (if there exists more than one plan, then the se-
lection of which plan satisfies the observations is done ran-
domly). In Figure 1, the initial position of the robot agent
is given by the circle (the agent is in room A at the start),
and the possible goals for the agent are to be in any one
of the squared rooms C, I , or K. In addition, we have ob-
served the agent’s unit-cost actions of moving from room
A to room B, as well as moving from room F to room G.
Ramı́rez and Geffner [2009] frame a plan recognition task
as a plan recognition over a domain theory:

Definition 3 (Plan Recognition Theory). A plan recog-
nition theory is a triplet T = 〈P,G, OBS〉, where P =
〈F, I,A〉 is a planning domain, G is the set of sets of pos-
sible goals Gi ⊆ F , and OBS = obs0, . . . , obsm is an
observation sequence with each obsi ∈ A.

The plan recognition theory T for the example domain is:

P =

F = {
at(x), denoting that the agent is at location x
adj(x, y), denoting that x is adjacent to y
A . . .K, denoting rooms A through K
}
I = {at(A)}, the agent is at room A
A = {move(x, y)}, the agent can move from x to y
(with preconditions and effects as in Figure 2)

G = {G0 = {at(C)}, G1 = {at(I)}, G2 = {at(K)}}
OBS = {obs0 = move(A,B), obs1 = move(F,G)}
Intuitively, the plan recognition compilation proposed by

Ramı́rez and Geffner creates two new actions obsmove(A,B)

and obsmove(F,G) from the input observations of the plan
recognition theory, as shown in Figure 2. The action
obsmove(A,B) that is created from the first observation

Figure 2: Observation compilation for the domain example
illustrated in Figure 1 adds two actions obsmove(A,B) and
obsmove(F,G) based on the operator move(x, y). Operators
are shown with their preconditions (left) and effects (right).

obs0 = move(A,B) has all the preconditions and effects
from the move(x, y) operator in A. However, the operator
is fully grounded with the preconditions at(A), adj(A,B),
and effects at(B) and ¬at(A). In addition, the opera-
tor’s effects have been augmented with a fluent that de-
notes that the operator has executed; in essence, the effect
pmove(A,B) reifies that the operator has happened. The ac-
tion obsmove(F,G) that is created from the second observa-
tion obs1 = move(F,G) is defined in a similar manner,
with the added precondition pmove(A,B), because the obser-
vation of the action move(A,B) comes before the observa-
tion of the action move(F,G). In addition to the expansion
of the planning domain operators, the compiled domain also
expands the existing set of assumed goals; each assumed
goal becomes a set of assumed goals, and is expanded by
the atoms representing the observed actions. Thus, the trans-
formed plan recognition theory T ′ is:
P ′ = 〈F ′, I ′, A′〉
F ′ = {
at(x), adj(x, y), A . . .K,
pmove(A,B), denoting that move(A,B) happened
pmove(F,G), denoting that move(F,G) happened
}
I ′ = {at(A)}
A′ = {move(x, y), obsmove(A,B), obsmove(F,G)},
G′ = {
G′0 = {at(C), pmove(A,B), pmove(F,G)},
G′1 = {at(I), pmove(A,B), pmove(F,G)},
G′2 = {at(K), pmove(A,B), pmove(F,G)}
}
OBS′ = {∅}

The solution to the plan recognition theory is then found by
identifying the plans of minimal cost that achieve the respec-
tive assumed goals. Each pair (P, Gi) with Gi ∈ G forms
a planning problem that a planner attempts to solve. The
cost of any plan πi is denoted by c(πi) and is defined as
the sum of the cost of the actions that make up the plan:
c(πi) =

∑
ai∈πi

c(ai). In this implementation, only one
plan πi serves as the solution to a given planning prob-
lem, such that goals uniquely identify planning problems.
We therefore use the notation c(Gi) to denote the cost of
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the plan that achieves the Gi. Assuming unit costs for every
action, the cost of a plan will be the plan’s length. For the
example above, the cost for the plan to pursue each of the
goals is as follows: c(G′0) = 10, c(G′1) = 7, and c(G′2) = 7.
Thus the recognized plans are the plans that achieve G′1 and
G′2.

Existing Approaches in Interactive Narratives
Existing approaches to activity recognition have either fo-
cused on statistical approaches [Albrecht, Zukerman, and
Nicholson, 1998; Synnaeve and Bessière, 2011] or on the
related but distinct problem of goal recognition [Mott, Lee,
and Lester, 2006; Gold, 2010; Baikadi et al., 2013]. In or-
der to represent narratives as plans and perform plan recog-
nition given this knowledge representation, we developed a
plan recognition system that follows a more symbolic ap-
proach. Our implementation of plan recognition leverages
Ramı́rez and Geffner’s [2009] intuition in a plan-based in-
teractive narrative context [Young et al., 2013].

The Plan Recognition Optimality Assumption
Our implementation of plan recognition assumes that the ob-
served agent will act optimally, which in our case means that
the agent (i.e. the player) will pursue plans of the smallest
possible cost to any goal from the state the agent is observed
to be in. To continue the previous example, in Figure 1 the
last action we have observed is the agent transitioning from
room F to room G. Since it is the last action the recognizer
knows of, the most conservative assumption to make is that
the agent is at roomG. We additionally know that from room
G it is more costly to return to room C than to continue to
either room I or K. Thus, the recognizer identifies plans to
get to either room I or K as optimal. In our current imple-
mentation, we assume that the player is playing optimally
with respect to executing the shortest possible sequence of
actions to achieve his or her goal. This notion of optimality
is idealized and we admit that it is possible (and even likely)
that players will play in sub-optimal ways; exploratory be-
havior, for instance, would be poorly modeled by our ba-
sic plan recognizer, since it may involve several sub-optimal
(vis-à-vis plan cost/length) moves and repetition. While our
assumption may not be tenable in elaborate environments,
we will not account for this discrepancy in this work. Future
work will address how to relax this optimality assumption.

Implementation
We used an existing interactive narrative system called the
General Mediation Engine (GME) [Robertson and Young,
2014], a unified game engine and experience manager that
creates and manages gameplay experiences based on a Plan-
ning Domain Description Language (PDDL) [McDermott,
2000] domain and problem file, and a linear narrative gen-
erator/planner. GME was embedded into a Unity1 game en-
vironment for our prototype, where it linked game assets to
internally represented plan objects [Robertson and Young,
2015]. The GME works with a range of planners, includ-
ing FAST DOWNWARD [Helmert, 2006] a classical planning

1http://unity3d.com

Figure 3: Architecture for our implementation. The plan
recognition system has access to the Unity GME-driven
game. Components in the plan recognition loop are in gray.

system based on heuristic search. Within the GME, game
actions are discretized, but not limited: the player can take
game actions, but only those that conform to the automated
planning knowledge representation that represents the do-
main will be interpreted by the GME as having occurred. We
used the Unity GME to create a game environment where the
player could accomplish one of many pre-established goals.

The Plan Recognition Architecture
Our implementation is illustrated in Figure 3. The plan
recognition component was implemented by taking the code
base that Ramı́rez and Geffner [2009]2 created and adapting
it to work with FAST DOWNWARD [Helmert, 2006]. As the
player plays in the environment, the plan recognition loop
(illustrated in Figure 3) triggers: For every action the player
takes that GME recognizes as part of the domain: the action
is logged by the OBSERVATION GATHERER, which sends it
to the OBSERVATION COMPILER developed by Ramı́rez and
Geffner [2009]. Then, the compiler produces a new planning
domain as outlined prior and passes it to the FAST DOWN-
WARD planner, which produces the output plan that is recog-
nized by using A* with a context-enhanced additive heuris-
tic [Helmert and Geffner, 2008]. This system produces one
such plan, settling ties randomly.

The Planning Domain
Our planning domain was designed to reflect a fantasy-genre
adventure game in the style of The Legend of Zelda [Nin-
tendo R&D4, 1986]. The domain contains seven action op-
erators representing the types of actions that collectively
support completing key-lock quests [Ashmore and Nitsche,
2007]. It contains 23 predicates that describe relationships
between objects in the domain, and 20 objects the predicates
could describe. This domain was encoded in PDDL and in-
put to the Unity GME, which created a virtual environment
similar to that illustrated in Figure 4. In this example, the
player can complete the game by getting one item from each
non-Center location.

2This code can be found at http://goo.gl/38vLZ2

19



Figure 4: An illustration of a procedurally generated game
instance generated by the GME from a plan recognition the-
ory. The player can beat the game by obtaining one sword
from the West location and one book from the East lo-
cation. There are four such winning conditions, which are
specified in disjunctive normal form to the plan recognizer
as discussed in the Plan Recognition Section.

Evaluation
Blaylock and Allen [2003] defined four metrics to evaluate
statistical goal recognizers, which we present in the context
of our own work:

1. Speed of computation – since gameplay happens in
real-time, the recognizer needs to be able to execute
fast enough to avoid affecting the player’s overall play
experience in a way that would interrupt the game.

2. Early/Partial prediction accuracy – the recognizer
should identify plans as economically/accurately as
possible.

3. Convergence – ideally, as more information is provided
to the recognizer, the more specific the recognized plan
should be. This criterion may not be tenable in a realis-
tic game context, since players always have the option
of abandoning their current plan in service of another
and are not required to communicate when or what they
switch to ahead of time.

4. Generalizability – the recognizer should use as little
domain-specific heuristics as possible in its calculation
of the recognized plan.

Our evaluation focused on speed of computation, although
we indirectly addressed the generalizability criterion since
we did not use domain-specific information in our system.
Future work will address the remaining criteria in an exper-
imental game context, for which a reasonably fast speed of
computation must be guaranteed to avoid adversely affecting
the player’s experience (hence our focus on the first criterion
in this work). However, speed is evaluated in context. Prior
work by Ramı́rez and Geffner [2009] evaluated the perfor-
mance of the plan recognizer across several task domains. In
this work, we were concerned with plan recognition within
an interactive narrative environment that is managed by the
Unity GME. We therefore configured our domain to run per-
formance tests in several scenarios. We then characterized
runtime trends of the plan recognition loop in these scenar-
ios to explore the feasibility of this proof-of-concept for rec-
ognizing player actions.

Materials
We developed a game with the Unity (v5.1.0) game engine,
using the Unity GME and planning domain discussed in the
Implementation Section. The game ran on a Origin-brand
Personal Computer with a 3.50 GHz Intel Core i7 Processor
and an available 8.0 GB of RAM. The operating system was
the 64-bit version of Windows 7 Home Premium (SP1).

Procedure
The first author generated all of the data for this experiment
manually by playing all of the diverse game configurations,
never playing sub-optimally vis-à-vis plan cost/length. The
data was produced by executing the plan recognition loop af-
ter every GME-recognized player step. The plan recognizer
ran as a separate thread within the Unity environment. To
evaluate the plan recognition system within the Unity GME,
we ran several configurations of the planning domain. Over-
all we collected data on 36 different configurations and each
configuration was run 10 times. The different configurations
were along four dimensions:

1. Number of goals |G|. Because the recognizer must work
to find potential plans of players toward potential goals,
we varied the number of potential goals Gi ∈ G a
player could have. We arbitrarily chose two values for
the number of goals: 4 and 8. Each goal Gi was con-
structed as a conjunction of two literals such that the
actions needed to accomplish both overlap in a way
that makes it difficult for the recognizer to identify one
unique plan as recognized. In effect, the number of
goals in the plan recognition theory dictates the amount
of planning problems the recognizer must consider and
the number of overlapping actions represents how dif-
ficult it is for the recognizer to perform its task.

2. Length of the optimal plan length(π∗). This is one es-
timator of the amount of processing time a domain-
independent planner consumes during the search pro-
cess. Since the plan recognition theory defines a set of
planning problems, the evaluation domain was config-
ured to support optimal plans of equal length for all
planning problems from the initial state of the domain.
These optimal plans used three of the seven available
operators in the domain. We selected two values for the
varying lengths: 9 and 15.

3. Number of actions in the domain |A|. This is another
estimator of the amount of processing time a domain-
independent planner consumes during the search pro-
cess. To inflate the number of actions in the domain, we
created differently-named copies of each of the seven
domain actions, leading us to three values for the to-
tal number of actions: 7, 14, and 21. For each set of
actions, the compiled actions during plan recognition
proportionately increase, so the overall branching fac-
tor impact is captured in this dimension.

4. Percentage of optimal plan actions observed (O%). As
gameplay continues, the observations that are compiled
and input to the domain compiler increases. We ob-
served runtime performance of the plan recognition
loop across three monotonically increasing percentages
of optimal plan actions observed: 30%, 50%, and 70%.
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Table 1: Linear regression results for Equation 1. Of the pa-
rameter estimates, only β4 is practically significant.
Parameter Estimate (in ms) SE (in ms) p-value

Intercept β0 =1178.9653 67.399632 < 0.0001
|G| β1 =-52.8709 5.9510353 1
length(π∗) β2 =73.4028 2.7986799 < 0.0001
|A| β3 =30.8058 2.0786601 < 0.0001
O% β4 =417.3162 41.319289 < 0.0001

Fstat = 270.7372 (p < 0.0001), R2
adjusted = 0.4065

Results and Analysis
We conducted an exploratory analysis to assess variations
in the response variable (runtime) as a function of the lin-
ear combination of the predictor variables |G|, length(π∗),
|A| and O%. Because these parameters are continuous, our
model was a linear regression of the following form:

time = β0+|G|β1+length(π∗)β2+|A|β3+O%β4+ε (1)

The alternate hypothesis used in the linear regression was
HA > 0 (under the null H0 = 0) because we expected in-
creases in any of the predictor variables to lead to an in-
crease in the response variable. The results of the regression
are illustrated in Table 1. We fail to reject the null hypoth-
esis for |G|, the number of goals predictor, but reject the
null in all other cases. One likely reason for having failed
to reject the null hypothesis for |G| is due to significant
(p < 0.0001) interaction effects detected between |G| and
both length(π∗) (β = 10.6272) and |A| (β = −9.9678).
Thus, care should be taken in how to interpret results with
regards to |G|. Intuitively, as mentioned in the Procedure
Section, the number of goals input to the plan recognizer dic-
tates how many unique planning problems the solver must
consider in its identification of a recognized plan. We there-
fore expect more nuanced experimentation to reflect the in-
tuition that a higher number of goals will result in a more
time-consuming computational process.

The other three predictors were statistically significant,
but only one of these (the O% predictor) was practically
significant in terms of magnitude increases to runtime: for
a unit increase in the number of observed actions over the
optimal plan in the domain, the runtime increases on aver-
age by 0.417 seconds. This indicates that a promising area
of future work is the intelligent selection of observed ac-
tions to input to the plan recognition loop. Finally, this work
suggests that this technique for plan recognition inside an
interactive narrative will scale well, since other predictors
were not detected as practically significant. Of course, fu-
ture work shall address this last point in a more exhaustive
manner since this work was more exploratory.

Limitations Unfortunately, no benchmark tasks exist for
plan recognition systems. Thus, our evaluation here was
done according to our intuition of what plan recognition the-
ories would be difficult for the plan recognizer to perform
its task. Namely, we designed the goals of the plan recog-
nition theory to require overlaps in the actions for the opti-
mal plan from the initial state. Our implementation of plan

recognition is planning-based, and automated planning is
a PSPACE-complete problem in general [Bylander, 1994].
Our system solves several planning problems in order to
come up with a solution to the plan recognition theory, so
even though our evaluation was not normative, it is infor-
mative. An interesting avenue for future work is to quantify
the difficulty of a plan recognition theory, but that is beyond
the scope of this work. A second limitation is that we as-
sume the player will play optimally. This means that, in the
context of gameplay, it will be easy for the player to “fool”
the plan recognizer (e.g. through backtracking). Future work
shall address how we could potentially relax this limitation
by intelligently selecting the information the recognizer pays
attention to during gameplay (which may have positive ef-
fects in the overall performance, as suggested in the previous
section). A third limitation is that the architecture currently
executes the plan recognition loop after every player step,
which is a naı̈ve strategy – players do not necessarily change
their mind with regards to what they wish to accomplish in
the environment after every step, thus eliminating the need
to recognize her plan after every action. Thus, future work
shall find principled ways to schedule the plan recognition
process to better reflect the player’s thought process as she
engages the interactive narrative.

Conclusion
We have discussed and evaluated a symbolic plan-
recognition system inside an interactive narrative virtual en-
vironment. This system relies on automated planning data
structures and computation, which provide advantages for
representing player actions over statistical-based approaches
including a readable knowledge representation and clear se-
mantics for arbitrary domains. While future work is needed
for this approach to gain traction as a procedure to model a
player’s expectation of upcoming action, we are optimistic
about this line of work given the favorable performance met-
rics that we have presented.

Several narrative scholars have highlighted the impor-
tance of understanding intention attribution when studying
how story consumers engage with narrative artifacts. We
have taken a step in service of this directive by modeling
intention attribution as a plan recognition process. Our over-
all goal is to use plan recognition as a proxy for a player’s
interactive narrative comprehension processes. The results
presented here form the baseline reasoning that we posit a
player is engaging in within interactive narrative contexts
and future refinements will help more closely approximate a
player’s actual cognitive engagement. We thus advocated for
considering players as plan recognizers and have proposed a
computational representation and procedure to describe their
reasoning process.
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