

Fiascomatic: A Framework for Automated Fiasco Playsets

Ian D. Horswill
Northwestern University, Evanston, IL

ian@northwestern.edu

Abstract
We present Fiascomatic, a mixed initiative system for gen-
erating consistent scenarios for the indie storytelling RPG
Fiasco. Players can repeatedly generate scenarios, locking
down aspects of a scenario they like and regenerating as-
pects they don’t, until they arrive at a scenario they find en-
tertaining. It is not a story generation system; it generates
scenarios from which players then generate stories. Nor is it
intended to generate optimal scenarios; it generates random
scenarios which the players can then curate according to
their taste.
 Fiascomatic presents an interesting intermediate point
between non-automated table-top RPGs and fully automated
systems such as story generators or autonomous characters.
It is a tool that can be used by Fiasco players to speed the
generation of game setups while preserving creative input
on the part of the players, and by Fiasco playset authors to
make automated playsets.

Introduction
Fiasco (Morningstar, 2009) is one of the best known of the
new generation of so-called “storytelling RPGs”: indie
table-top role-playing games that emphasize improvisa-
tional acting over combat or complicated rule systems. It is
a collaborative, GM-less game in which players improvise
a two-act story in the style of the films of the Cohen bros.
There is no winner or scoring system; the goal is simply to
produce an interesting story. For an example of a Fiasco
playthrough, see TableTop (Wheaton, Haislip, Burton, &
Rogers, 2012).
 The initial phase of a Fiasco game involves the players
collaborating to design the scenario, called the setup, in
which the action will take place. At the end of this setup
phase, each player's character has an assigned relationship
with the characters of the players sitting to either side of
her, as well as an additional scenario element: a need the
character has, an object in the game, or a location in which
action may occur. The elements of the scenario act as re-

Copyright © 2015, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

sources for improvisation, rather than as rules, require-
ments, or objectives.
 When designing the setup, players use a playset that
provides lists of candidate relationships, objects, needs,
and locations that are relevant to the theme or genre of the
playset. Playsets encode conventions and tropes of par-
ticular genres, and are often explicitly designed as distilla-
tions of particular subgenres of cult films. For example,
the Touring Rock Band playset (Morningstar, 2010) essen-
tially formalizes the tropes of films such as This is Spinal
Tap (Reiner, 1984).
 One difficulty with playing Fiasco, however, is that
while it is short compared to a Dungeons and Dragons
campaign, it is still long enough to take multiple play ses-
sions. The setup phase alone can easily take an entire play
session. Fiascomatic is a framework for authoring AI-
based playsets and generating scenarios from them. Play-
sets authored for Fiascomatic can generate complete setups
for differing numbers of players, making it straightforward
to play one-act versions of Fiasco in a couple of hours.
 Figure 1 shows an example setup generated from a play-
set based on Washington politics. In it Bill and Jenny are
politicians who staying married for the kids, Jenny had
been high school sweethearts with Sam, who is now a

Figure 1: An example scenario. Relationships, shown in
green, are read clockwise.

Experimental AI in Games: Papers from the AIIDE 2015 Workshop

22

member of a right wing militia. Justine is a Supreme Court
justice, who needs to raise $50K by Tuesday, and Sam has
a suitcase full of cash. Justine is involved in a conspiracy
with Bill’s political rival Betsy. The specifics of all these
relationships – what is the conspiracy, what are the aims of
the militia, whether Sam is attempting to bribe Justine with
the suitcase full of cash, or perhaps whether Justine needs
the money so she may give a suitcase full of cash to Sam,
who is blackmailing her – are all determined by the players
during the course of the improvisation.
 Fiascomatic is written in Prolog (Bratko, 2011) and runs
under Unity3D (Unity Technologies, 2004). It began as a
problem set for a course on knowledge representation for
game AI. It solved the pedagogical problems of letting
students play Fiasco in 50-minute class session and of
providing an interesting domain in which students could
see examples of simple knowledge representation.

Scenario generation
In normal human play, scenario (setup) generation is simp-
ly a matter of selecting relationships, objects, locations,
and needs from lists specified in the playset. The selection
process involves a dice pool and so is semi-random, but is
primarily a deliberative process in which players take turns
making selections, discussing with one another their op-
tions, and filling in elaborations such as backstory as they
proceed.
 In Fiascomatic, players choose a playset (authored in a
KR language embedded in Prolog), select the desired num-
ber of players, and specify the names of the characters. By
pressing a button, they can generate a complete random-
ized setup, and either accept it or generate a new one. If
they generate a new setup, they can specify aspects of the
previous setup to keep in the new scenario by clicking
check boxes next to those elements.
 A scenario consists of a set of relationships and details,
one each per character. Relationships are represented as
Prolog terms:

relationship(CharacterA, Relation, CharacterB)

where CharacterA and CharacterB are the two characters
involved, and Relation is the name of the relationship hold-
ing between them, e.g. old_flames or par-
ent/child. Details are also represented as the Prolog
terms:

 detail(Character, Type, Value)

where Character is the character the detail applies to, Type
is the sort of detail it is (object, location, or need),
and Value is the particular object, location, or need. For

example, if Sheila needs to get $50,000 by Tuesday, that
would be represented as:

 detail(sheila, need,
 get_50K_by_Tuesday)

A setup for a three-player game between characters Sheila,
Bob, and Chris would then be of the form:

 relationship(sheila, R1, bob)
 relationship(bob, R2, chris)
 relationship(chris, R3, sheila)
 detail(sheila, T1, V1)
 detail(bob, T2, V2)
 detail(chris, T3, V3)

Automated scenario generation thus consists of selecting
random values for the italicized variables above from the
relevant collections defined by the playset. However,
many random combinations are nonsensical. For example,
if Sheila is the manager of Bob, it’s problematic for Sheila
to also be the middle-school pupil of Chris.1 For this rea-
son, Fiascomatic playsets specify not only the possible
elements of the scenario, but their logical implications so
that the system can avoid contradictory combinations.
These implicatures collectively define a genre logic for the
playset, allowing authors to express rules such as that su-
perheroes shouldn’t have evil goals (assuming of course,
the playset encodes a straight version of the genre and not
a subverted or deconstructed version).

Playset definition
The playset definition file describes the playset's elements
(relationships, objects, needs, and locations), along with
the logical consequences of selecting particular elements,
and what consequences are logically contradictory. The
playset provides Prolog clauses (facts and rules) for Fi-
ascomatic’s built-in predicates such as �������	
���
��,
	���
��, etc. However, the playset can contain arbitrary
Prolog code. An example playset is given in the appendix.

1 It is only problematic, however, not impossible; one can certainly imag-
ine plots, particularly comedic ones, in which a middle schooler is also a
manager or even a business owner, for example if they’re operating a
secret middle-schooler drug ring, or have unexpectedly inherited the
family business, or they had been forced to drop out of school at a young
age and are now returning as an adult. While these are all entirely imagi-
nable scenarios for Fiasco, having too many of these sorts of dissonant
combinations in a given scenario would make it difficult to play. It’s
therefore important to give the author a mechanism for filtering out un-
wanted dissonance.

23

Relationships
The most important playset elements are character rela-
tionships. In Fiasco, these are always binary relations such
as “business partners” or “mother and child.” Each play-
er’s character has a specified relationship with the charac-
ters of the players sitting to either side of them.
 Relationships are declared to the system using the re-
lation predicate. That is, the clause:

 relation(lovers).

Declares that characters may be lovers. In this case, lov-
ers is a symmetric relationship so one would actually use
the declaration:

 symmetric(lovers).

Telling the system that it can automatically infer that if the
lovers relation holds between Sheila and Bob, then it
also holds between Bob and Sheila. (Symmetry is not as-
sumed by default.) Relations can also be declared to be
anti-symmetric (meaning that ��� and ��� are contradic-
tory), transitive, anti-reflexive, right-unique (meaning ���
and ��� implies � � �), and/or left-unique�
��� and ���
implies � � ��.
 Relations also have generalizations. If we declare:

 generalization(lovers, friends).
 generalization(friends,
 acquaintances).

Then the system will understand that friends are automati-
cally acquaintances, and that lovers are automatically
friends and therefore also acquaintances (the former may
not be an appropriate assumption in some genres).
 Again, playsets can be (nearly2) arbitrary Prolog code,
so relationship declarations can take the form of more gen-
eral Prolog rules such as:

 symmetric(nth_cousins(N)) :-
 member(N, [2,3,4,5]).

Which declares that there is an nth_cousins(N) rela-
tionship for all N from 2 to 5.

Roles
Many relationships in Fiasco assign roles to the characters.
For example, the parent/child relationship makes one char-

2 The current version of the solver does require that it be able to compute
all possible relationships, needs, locations, and objects in a finite number
of steps. Hence a version of the rule that allowed N to be any integer
would throw the solver into an infinite loop.

acter the parent, and another the child. These can be de-
clared explicitly via the roles_relation predicate:

 roles_relation(boss/flunky).

Tells the system that boss/flunky is a possible charac-
ter relationship and that if Sheila is in the boss/flunky
relationship with Bob, then Sheila is a boss and Bob is a
flunky. Role relations are never symmetric.
 There are a number of roles that are incompatible with
one another. One can’t, for example, be both a politician
and a lobbyist at the same time. These can be controlled
via the conflicting_roles predicate:

 conflicting_roles(boss, flunky).

This states that one can’t be the boss of one character while
being the flunky of another. Conflicting_roles can
also specify a list of mutually incompatible roles.

Objects, Locations, and Needs
Objects, locations, and needs are simpler. They are de-
fined simply through the respective predicates:

 object(ObjectName)
 location(LocationName)
 need(NeedName)

Like relations, names of objects, locations, and needs can
be arbitrary Prolog terms (i.e. they can be record struc-
tures), and they can be defined through arbitrary Horn
clauses. So for example, in the Washington DC Politics
playset (see appendix), a class of needs is defined through
the clauses:

need(hide_my_addiction_to(X)) :-
 drug(X).

drug(meth).
drug(crack).
drug(bath_salts).
drug(human_blood).

Stating that characters can have the need to hide their ad-
diction, and the addiction can be any of: meth, crack, bath
salts, or human blood.

Implications and Contradictions
Compatibility between different game elements is deter-
mined by finding the implications of each element and
testing for contradictions.
 More formally, the system determines a set of facts de-
termined to be true in the scenario. Any selected scenario

24

element – a relationship, need, location, or object, e.g.
relationship(sheila, political_rivals, bob)
– is a fact. Other facts can be inferred using the implies
predicate:

 implies(AntecedantFact, ConsequentFact)
 implies(AFact1, AFact2, ConsequentFact)

Which assert that AntecedantFact ��ConsequentFact, and
AFact1� AFact2 ��ConsequentFact, respectively. For
example:

implies(relationship(A, R, B),
 relationship(B, R, A)) :-
 symmetric(R).

is used to implement symmetric relations. Similarly:

implies(needs(C,
 make_my_parent_suffer),
 role(C, estranged_child)).

states that that if a character C wants to make their parent
suffer, then they must be an estranged child.
 Consistency is tested using the contradiction pred-
icate, which holds when two facts are inconsistent. For
example:

contradiction(
 needs(C,
 make_50_grand_before_tuesday),
 role(C, billionaire)).

Which states that it doesn’t make sense for a billionaire
character to have a goal of making $50K, since for them,
that is a small amount of money.

Finding a scenario
The system chooses a scenario using a randomized search
of the space of possible elements (relationships, needs,
objects, and locations), repeatedly trying combinations
until one is found that is logically consistent. A combina-
tion is consistent if all facts in the deductive closure of the
elements are pairwise consistent; that is, if they are con-
sistent with one another, as are their implications, the im-
plications of their implications, etc.
 Elements are selected by first computing all possible
elements of the desired type (relationship or detail) and
then making a uniform, random choice from within the set.
 Filtering for consistency is performed using forward-
chaining inference. The system maintains a set of facts
(Prolog terms) known to be true given the elements chosen

so far. This list contains both the elements chosen, and
their implications. When a new element is added, both it
and its implications are tested for consistency with the ex-
isting fact set, and added to the set if they are consistent. If
they are inconsistent, the choice of the new element is
backtracked. The algorithm for adding to the database is
simple:

add(NewFact, OldFacts)
 if NewFact � OldFacts, return OldFacts
 if NewFact contradicts some OldFact, then fail
 let Implications = all implications of NewFact
 return addList(Implications, OldFacts)

addList(NewFacts, OldFacts)
 if NewFacts empty, return OldFacts
 return addList(rest(NewFacts),
 add(first(NewFacts), OldFacts))

The actual code is written in Prolog, but is more concisely
expressed in the pseudo-functional form above. Note that
the above form is still non-deterministic in that it assumes
a fail operation to backtrack the most recent choice of ele-
ments.

User interface
The original version of Fiascomatic used in class was a
command-line program implemented in SWI Prolog
(Wielemaker, Schrijvers, Triska, & Lager, 2012). The
current version is implemented in Unity3D (Unity
Technologies, 2004) using a Prolog interpreter that runs
natively inside Unity. This gives non-programmers an
easy way to install it and interact with it through a GUI.
 The GUI provides controls for selecting the number of
players, specifying the names of their characters,
(re)generating a scenario, and locking individual generated
elements so they are preserved when regenerating the sce-
nario. The scenario is then displayed, with relationships
displayed in green between the related characters, and de-
tails displayed in red below the character to whom the de-
tail belongs.

Related work
While we are not aware of any work on this exact problem,
Fiascomatic is certainly related to a number of other re-
search areas.
 Fiasco is a form of structured improv acting. Some re-
searchers, such as Magerko and colleagues (Hodhod,
Piplica, & Magerko, 2012; Magerko et al., 2009; O’Neill,
Piplica, Fuller, & Magerko, 2011) have investigated the
problem of making AI systems that can be full-fledged

25

partners in improv exercises. This is a much more difficult
problem than the one solved here.
 Fiascomatic could also be compared to story generators,
although it would be extreme flattery to call it a story gen-
erator. There’s been a great deal of work on story genera-
tion, dating back at least to TALE-SPIN (Meehan, 1977),
and continuing to the present day with systems such as
Pérez ý Pérez and Sharples’ MEXICA (2001) and Ware and
Young’s conflict-based partial order planner (2011),
Gervas et al.’s work on case-based reasoning (2005), and
Zhu and Ontanon’s work on analogy-based generation
(2010).
 There has also been a growing body of work on logic
programming and constraint programming for procedural
content generation in games, particularly using Answer Set
Programming (Smith & Mateas, 2011). This has included
modeling of formal rule systems (Smith, Nelson, &
Mateas, 2010), level design (Smith, Andersen, & Mateas,
2012), and story generation (Chen, Smith, Jhala, Wardrip-
Fruin, & Mateas, 2010). Other logics, such as linear logic
(Martens et al., 2014) and exclusion logic (Evans & Short,
2014) have also attracted attention for interactive narrative.

Future Work
Although certainly useful in its current form, there is still
much that could be done to extend the current system. One
obvious extension would to add support for additional
kinds of constraints, such as cardinality constraints. The
standard rules of Fiasco, for example, require that there be
at least one need in the game, but the current system does
not enforce that requirement. Cardinality constraints are
straightforward to implement in Prolog using attributed
variables (Neumerkel, 1990), so this could be done
straightforwardly in code. But it’s less obvious how to
present that capability within the GUI.
 Another useful addition to the GUI would be the ability
for players to specify attributes of their characters, so that
players who wanted to play a character of a particular gen-
der, race, age group, etc. could do so. This would require
individual playsets to include the sufficient inferential in-
formation (implications and contradictions) to ensure the
system could detect violations of the attributes.
 One serious weakness of the current system is that one
needs to understand Prolog to author new playsets. It
might be preferable to use a structured natural language
front end to allow authors from non-CS backgrounds to
more easily author. This has been used very successfully
in Inform 7 (Nelson, 2011). This would involve some loss
of expressiveness over raw Prolog, but as Nelson argues,
English is already well adapted to expressing the particular
kinds of ontological assertions important to story worlds.
In some cases English is more compact than the equivalent

predicate logic assertions, e.g. because of the conciseness
of quantifiers in natural language.
 Finally, it should be observed that Fiascomatic is a near-
ly perfect application domain for Answer Set Programming
(Brewka, Eiter, & Truszczyński, 2011). Implementing it
using ASP rather than Prolog would allow considerably
more expressiveness than the current system. The choice
of Prolog was due primarily to run-time system constraints:
a Prolog that could run inside a game was available,
whereas running ASP inside a game engine is considerably
more painful. However, this issue will presumably be rec-
tified in the course of time. At that point, a reimplementa-
tion in ASP would be very appealing.

Conclusion
Storytelling RPGs such as Fiasco are an interesting point
in design space for intelligent narrative researchers. Be-
cause of their improvisational character, they're truly inter-
active and so arguably a better model for future computa-
tional interactive narrative systems than standard Aristote-
lian narrative.
 Making systems that can truly participate in storytelling
RPGs like Fiasco is extremely difficult. However, simple
kinds of computational assistance for these games, such as
scenario generation, are more practical. Fiascomatic is
low-hanging fruit in this space: it’s a demonstrably useful
system that is actually used by players in our group, but
that uses relatively modest inference technology.
 An interesting question is how one can incrementally
extend a non-interactive scenario generation system such
as Fiascomatic to actively monitor an ongoing game and
inject interesting elements (complications, plot twists)
without having to either implement AI-complete charac-
ters, or require a non-linear narrative (e.g. a set of branch-
ing plot points) to be authored in advance. If this were
possible, it would provide a useful intermediate step be-
tween simple systems like the one presented here, and full-
blown AI-based interactive narrative systems, which are
difficult to build at all, much less make aesthetically suc-
cessful.

Acknowledgements
I’d like to thank the reviewers for their suggestions and
comments, and the students of EECS-395 for testing out
the codebase and writing playsets.

Appendix: Sample Playset
The following is an early version of a playset in the do-
main of Washington DC politics. It is loosely based politi-
cal satires such as Yes, Minister (Jay & Lynn, 1980), The

26

Thick of It (Iannucci, 2005), and Alpha House (Trudeau,
2013). It is provided to give the reader a sense of both the
generativity of the system, and the limits of that generativi-
ty. At just under a page of text, it shows that playsets can
be expressed relatively concisely.

%

% Relationships

%

roles_relation(politician/lobbyist).

symmetric(political_rivals).

implies(relationship(X, political_rivals, _),

 role(X, politician)).

implies(relationship(_, political_rivals, Y),

 role(Y, politician)).

roles_relation(politician/strategist).

roles_relation(politician/estranged_child).

symmetric(old_flames).

roles_relation(journalist/politician).

roles_relation(politician/billionaire).

roles_relation(politician/staffer).

conflicting_roles(

 [politician, lobbyist, strategist,

 journalist, billionaire, staffer]).

% A staffer or strategist can only work for

% one politician

right_unique(strategist/politician).

right_unique(staff/politician).

%

% Needs

%

need(hide_my_addiction_to(X)) :-

 drug(X).

drug(meth).

drug(crack).

drug(bath_salts).

drug(human_blood).

need(kleptomaniac).

need(streaking).

need(make_my_parent_suffer).

implies(needs(C, make_my_parent_suffer),

 role(C, estranged_child)).

need(retire_with_a_cushy_wall_street_job).

implies(

 needs(C,

 retire_with_a_cushy_wall_street_job),

 role(C, politician)).

need(become_the_first_tourettes_patient_to_be_ele

cted_president).

implies(needs(C,

become_the_first_tourettes_patient_to_be_elected_

president),

 role(C, politician)).

need(get_the_big_scoop).

implies(needs(C, get_the_big_scoop),

 role(C, journalist)).

need(make_50_grand_before_tuesday).

contradiction(

 needs(C, make_50_grand_before_tuesday),

 role(C, billionaire)).

need(hide_the_body).

%

% Locations

%

location(the_capitol_building).

location(a_corn_farm_in_iowa).

location(a_fact_finding_tour_in_the_bahmamas).

implies(

 at(C, a_fact_finding_tour_in_the_bahamas),

 role(C, politician)).

location(the_oval_office).

location(a_dc_pickup_bar).

location(the_watergate_hotel).

location(the_david_letterman_set).

location(the_police_station).

%

% Objects

%

object(ronald_reagans_ouija_board).

object(an_experimental_truth_serum).

object(half_a_kilogram_of_heroin).

object(the_nuclear_football).

27

References
Bratko, I. (2011). Prolog Programming for Artificial Intelligence.
International Computer Science Series. Addison-Wesley.
Brewka, G., Eiter, T., & Truszczyński, M. (2011). Answer set
programming at a glance. Communications of the ACM.
doi:10.1145/2043174.2043195
Chen, S., Smith, A. M., Jhala, A., Wardrip-Fruin, N., & Mateas,
M. (2010). RoleModel : Towards a Formal Model of Dramatic
Roles for Story Generation. Proceedings of the Intelligent
Narrative Technologies III Workshop, 1–8.
doi:10.1145/1822309.1822326
Evans, R., & Short, E. (2014). Versu - A Simulationist
Storytelling System. IEEE Transactions on Computational
Intelligence and AI in Games, 6(2), 113–130.
Gervás, P., Díaz-Agudo, B., Peinado, F., & Hervás, R. (2005).
Story plot generation based on CBR. In Knowledge-Based
Systems (Vol. 18, pp. 235–242).
doi:10.1016/j.knosys.2004.10.011
Hodhod, R., Piplica, A., & Magerko, B. (2012). A formal
architecture of shared mental models for computational
improvisational agents. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) (Vol. 7502 LNAI, pp. 440–446).
doi:10.1007/978-3-642-33197-8-45
Iannucci, A. (2005). The Thick of It. BBC Television.
Jay, A., & Lynn, J. (1980). Yes, Minister. BBC Television.
Magerko, B., Manzoul, W., Riedl, M., Baumer, A., Fuller, D.,
Luther, K., & Pearce, C. (2009). An Empirical Study of Cognition
and Theatrical Improvisation. In Seventh ACM Conference on
Creativity and Cognition (pp. 117–126). doi:doi:
10.1145/1640233.1640253
Martens, C., Ferreira, J., Bosser, A.-G., & Cavazza, M. (2014).
Generative Story Worlds as Linear Logic Programs. In Intelligent
Narrative Technologies 7. Milwaukee, WI: AAAI Press.
Meehan, J. R. (1977). TALE-SPIN, an interactive program that
writes stories. In Proceedings of the 5th international joint
conference on Artificial intelligence (pp. 91–98). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.
Morningstar, J. (2009). Fiasco. Chapel Hill, NC: Bully Pulpit
Games.
Morningstar, J. (2010). Touring Rock Band. Chapel Hill, NC:
Bully Pulpit Games. Retrieved from
http://www.bullypulpitgames.com/wiki/index.php?title=Touring_
Rock_Band
Nelson, G. (2011). Natural Language, Semantic Analysis, and
Interactive Fiction. In K. Jackson-Mead & J. R. Wheeler (Eds.),
IF Theory Reader. > TRANSCRIPT ON PRESS.
Neumerkel, U. (1990). Extensible Unification by Metastructures.
Retrieved from
http://mips.complang.tuwien.ac.at/ulrich/papers/PDF/meta90.pdf
O’Neill, B., Piplica, A., Fuller, D., & Magerko, B. (2011). A
Knowledge-Based Framework for the Collaborative
Improvisation of Scene Introductions. In Proceedings of the 4th
International Conference on Interactive Digital Storytelling.
Vancouver, Canada.
Pérez ý Pérez, Mike Sharples, R. (2001). MEXICA: A computer
model of a cognitive account of creative writing. Journal of

Experimental & Theoretical Artificial Intelligence.
doi:10.1080/09528130118867
Reiner, R. (1984). This is Spinal Tap. Metro Goldwyn Mayer.
Smith, A. M., Andersen, E., & Mateas, M. (2012). A Case Study
of Expressively Constrainable Level Design Automation Tools
for a Puzzle Game. In International Conference on the
Foundations of Digital Games. Raleigh: ACM Press. Retrieved
from
http://users.soe.ucsc.edu/~amsmith/papers/fdg2012generation.pdf
Smith, A. M., & Mateas, M. (2011). Answer Set Programming
for Procedural Content Generation : A Design Space Approach.
IEEE Transactions on Computational Intelligence and AI in
Games, 3(3), 187–200. doi:10.1109/TCIAIG.2011.2158545
Smith, A. M., Nelson, M. J., & Mateas, M. (2010).
LUDOCORE : A Logical Game Engine for Modeling
Videogames. Elements, 91–98. doi:10.1109/ITW.2010.5593368
Trudeau, G. (2013). Alpha House. Amazon Studios.
Unity Technologies. (2004). Unity 3D. San Francisco, CA.
Ware, S. G., & Young, R. M. (2011). CPOCL: A Narrative
Planner Supporting Conflict. In The Seventh Annual International
Conference on Artificial Intelligence in Interactive Digital
Entertainment. Stanford, CA: AAAI Press.
Wheaton, W., Haislip, A., Burton, B., & Rogers, J. (2012).
TableTop, episode 8: Fiasco.
Wielemaker, J., Schrijvers, T., Triska, M., & Lager, T. (2012).
SWI-Prolog. Theory and Practice of Logic Programming.
doi:10.1017/S1471068411000494
Zhu, J., & Ontanon, S. (2010). Story representation in analogy-
based story generation in Riu. In Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games, CIG2010
(pp. 435–442). doi:10.1109/ITW.2010.5593324

28

