
Map Sketch Generation as a Service

Antonios Liapis
Institute of Digital Games

University of Malta
antonios.liapis@um.edu.mt

Abstract

This paper describes the structure of a webservice able
to generate simple game levels via constrained evolu-
tionary optimization. The provided webservice allows
users to generate playable game levels without need-
ing to understand the underlying process and without
having to allocate computational resources for doing so;
combined with the highly expressive and customizable
generator, a broad range of levels for different genres
and purposes can meet many user needs.

Introduction
Research in Procedural Content Generation (PCG) for
games often focuses on the design and implementation of
generators for a specific game such as Starcraft (Togelius
et al. 2010) and Civilization (Barros and Togelius 2015), or
for a genre such as action-adventure games (Dormans and
Bakkes 2011) or arcade games (Lim and Harrell 2014). Such
generators are usually domain-specific and closed-source;
their findings are elaborated in the accompanying papers,
while the generators themselves are not readily available to
interested readers. Among the rare instances where level
generators have been open-sourced and re-used by the re-
search community, the generator for Infinite Mario Bros is
worthy of note as it has been extensively used as a basis of
further research and competitions (Togelius et al. 2013) —
admittedly in part due to the original game’s popularity.

Making a generator publicly available as open-source
software is often a lower priority due to, in part, the need
for the original developers to provide sufficient documenta-
tion of the code so that interested users can understand its
inner workings. However, research (and its accompanying
code) rarely follows a straight path from questions to an-
swers; even more critically, the code for research projects is
not built on or adheres to a priori defined software specifi-
cations. The generator often acts as a demonstrator or case
study of the ideas in accompanying papers; it is thus under-
standable that code clarity, interoperability, and usability (in
the case of human-computer interfaces) take a back seat to
the novelty of the underlying algorithmic technique. Even if

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

research projects are released as open-source software, how-
ever, their adoption by end-users or other researchers is hin-
dered by requirements for obscure code libraries or for spe-
cific operating systems and development environments. In
addition, interested users often need to thoroughly read the
available code and its documentation, which is made more
difficult as it integrates novel, cutting-edge research.

A potential solution to the problem of making research
output available to a wider audience without the need for
the audience itself to fully understand it (and for the devel-
opers to fully document it) is the webservice. According
to the World Wide Web Consortium (2004), “web services
provide a standard means of interoperating between differ-
ent software applications, running on a variety of platforms
and/or frameworks”. Among the most important properties
of webservices is that (a) they are self-contained and self-
describing, and (b) they communicate via open protocols;
the former allows a webservice to have its own underlying
architecture (including complex algorithms in obscure lan-
guages, as often found in research prototypes) and the lat-
ter allows data to be passed to and from a webservice in a
straightforward, standardized form which allows a webser-
vice to link with other software or other webservices.

This paper describes how an evolutionary system capa-
ble of generating small-scale game levels, identified as map
sketches, is integrated into a webservice. The low-resolution
abstract map sketches can represent a broad range of game
levels for different genres by customizing the tiles included
in each map sketch. This makes the generator highly expres-
sive and thus appealing to a broad audience and use cases;
therefore it is appropriate for release as a publicly available
webservice. The webservice method calls allow end-users or
other software to request the generation of new game levels,
to specify game levels as seeds for further optimization, or to
evaluate game levels passed along as arguments. The web-
service comes with many fitness functions and constraint
tests, which guide the generative process or can be used to
assess the quality of generated or authored game levels.

Generating Map Sketches for Games
A map sketch is a low-resolution, high-level abstraction of
a game level. Map sketches are sufficiently simple both for
a human designer and for a genetic algorithm to optimize.
Map sketches are typically comprised of a small number

Experimental AI in Games: Papers from the AIIDE 2015 Workshop

42

of tiles, arranged on a grid; tiles can represent fundamen-
tal gameplay properties for specific game genres such as
bases for strategy game levels, monsters for rogue-like dun-
geons, weapon pickups for first person shooters etc. Map
sketches have been used in Sentient Sketchbook (Liapis,
Yannakakis, and Togelius 2013a) as the target of a human-
machine co-creative process (Yannakakis, Liapis, and Alex-
opoulos 2014), where map sketches are generated by the
computer as alternatives to human designs. Several compu-
tationally lightweight fitness functions have been defined by
Liapis, Yannakakis, and Togelius (2013b) for evaluating hu-
man designs and as objectives for genetic algorithms. Map
sketches represent game levels with playability constraints;
these constraints are satisfied through a constrained evolu-
tionary optimization algorithm described below.

Evolutionary algorithm details
The evolutionary algorithm used to generate map sketches
performs constrained optimization: the map sketches need
to fulfill some minimal criteria in order to be playable, while
playable map sketches should possess certain desirable fea-
tures. Evolution is performed via a feasible-infeasible two-
population genetic algorithm (FI-2pop GA), which evolves
infeasible individuals (which fail any constraints) in a sep-
arate population to feasible ones (Kimbrough et al. 2008).
Feasible individuals evolve to optimize a domain-specific
fitness function, while infeasible individuals evolve to min-
imize their distance from feasibility; infeasible individuals
close to the feasible border are more likely to create feasi-
ble individuals (Schoenauer and Michalewicz 1996). Fea-
sible offspring of infeasible parents migrate to the feasible
population (and vice-versa), thus allowing a form of inter-
breeding which is likely to increase the diversity of both
populations. Evolution is performed via asexual mutation
alone, or via crossover and mutation (De Jong 2006). If mu-
tation is applied, the mutated offspring transforms several of
its tiles; mutation can swap adjacent tiles or change a tile’s
type to another type (e.g. change walls to empty tiles and
vice versa). All parameters of the evolutionary algorithm
can be defined in the input of the webservice method calls.

Evaluating sketches
Map sketches must fulfill certain criteria in order to be mini-
mally playable, and must also have certain qualities in order
to be useful in a game. In earlier work (Liapis, Yannakakis,
and Togelius 2013b), the core playability criterion for map
sketches was that all level features can be reached, i.e. there
should be a path between all tiles with gameplay properties
(“special” tiles). Other criteria include limits to the number
of certain tiles (e.g. a dungeon can only have one entrance
and one exit). For feasible map sketches, the general level
design patterns (Björk and Holopainen 2004) of symmetry,
exploration and area control were used as inspiration for fit-
ness functions which evaluate resource control, area control
and exploration as well as their balance dimensions (e.g. the
balance of resource control of two player bases in a strategy
game map). Resource control and area control are derived
from each tile’s safety score: a tile’s safety score to one spe-
cial tile is high if it is much closer to that special tile than

to any other special tile of this type. On the other hand, ex-
ploration is evaluated based on a flood fill algorithm starting
from one special tile and stopping when another special tile
has been reached; the exploration score averages the explo-
ration effort from one special tile to all other special tiles of
this type. More information on the map sketch evaluations
can be found in previous publications (Liapis, Yannakakis,
and Togelius 2013b).

Webservice structure
The webservice can generate new map sketches, create
variations of provided map sketches, or evaluate existing
map sketches; all of these functionalities will be described
later in this section. The webservice communicates with
other applications (clients) using data structures in the JSON
(JavaScript Object Notation) format, which is a lightweight
data-interchange format easily understandable by both hu-
mans and machines. For all method calls, a client applica-
tion must provide as input (via a POST request) a JSON ob-
ject containing the specifications of the map sketch, the de-
sired qualities and constraints on the generated or evaluated
sketches, and (optionally) any parameters needed for the ge-
netic algorithm; the webservice processes this input and re-
turns a JSON data structure as a result, the format of which
depends on the method call made. The input JSON object
can customize the generation or evaluation properties of the
method call; the next sections describe its components.

Defining a map sketch
A map sketch consists of tiles of different types laid on a
grid. The input JSON object contains a TileTypes value
which is an array of tile type definitions; each definition in-
cludes the tile type’s name which acts as its unique iden-
tifier (for e.g. fitness evaluations), its asciiChar for pro-
ducing the ASCII map which is output by the webservice, a
passable flag which is false if the tile type blocks move-
ment and an optional defaultTile flag (presumed false if
missing). Only one tile type can be the defaultTile; a
newly initialized map consists primarily of this type of tiles.

Defining fitness functions and constraints
In order to evaluate map sketches (e.g. when optimizing
them through evolution, or when testing if their playabil-
ity constraints are met), multiple fitnesses and constraints
can be defined in the input JSON object in a Fitness ar-
ray and a Constraints array respectively. Each fitness
or constraint definition has a name for displaying the map
sketch’s fitness scores in evaluation method calls, a type
which specifies the algorithms used to evaluate the fitness
score, an optional weight which specifies the impact of this
dimension to the overall fitness score (presumed 1 if miss-
ing), referenceTiles and targetTiles which specify
which tile types are considered or targeted (respectively)
when evaluating this fitness score and arguments which
includes any additional arguments for this type of fitness.

Among the parameters of a fitness or constraint defini-
tion, the type is most important as it specifies the algorithms

43

used to calculate the fitness score but also how all other pa-
rameters (except name and weight) will be interpreted. For
instance, targetTiles or arguments are necessary for
certain types of fitnesses and constraints, but can be omitted
in others. Each of the referenceTiles, targetTiles
and arguments is a text string which may contain multi-
ple parameters separated by commas (the text string is split
within the webservice). The different fitness functions and
constraints are described below, according to their type:

SafeAreaThresholdFitness evaluates the number of
tiles which are safe to any referenceTiles. If the fit-
ness definition has a targetTiles parameter, then only
tiles of the types in targetTiles are considered; oth-
erwise all passable tiles are considered. The arguments
parameter defines the lowest safety score for a tile to be
considered safe.

SafeAreaThresholdBalance uses the same structure as
SafeAreaThresholdFitness and evaluates if each of
the referenceTiles has a similar number of safe pass-
able tiles (if targetTiles is omitted) or safe tiles of a
type found in the targetTiles parameter.

TileSafetyFitness evaluates the total safety score of all
targetTiles with regards to all referenceTiles.

TileSafetyBalance evaluates if the cumulative safety
score of all targetTiles for each of the reference-
Tiles is similar.

ExplorationFitness evaluates the exploration effort to
discover all targetTiles from all referenceTiles.
If targetTiles are omitted, the fitness evaluates the ex-
ploration effort from all referenceTiles to all other
referenceTiles.

ExplorationBalance evaluates if the exploration effort
is similar for each of the referenceTiles when dis-
covering all of the targetTiles or when discovering all
other referenceTiles (if targetTiles are omitted).

ConnectivityConstraint measures how many of the
targetTiles are not connected via a passable path to
referenceTiles; if targetTiles are omitted, this
constraint enumerates the disconnected paths between all
referenceTiles. Optionally, if the arguments has a
"disconnected" value then the constraint is only satis-
fied if no passable paths exist between the specified tiles.

NumericalConstraint measures the number of ex-
cess or missing referenceTiles as specified in
the arguments. The arguments parameter can
specify a number (A) or two numbers (A,B) as the
numerical bounds: the possible syntax for arguments
is "equals,A", "notEquals,A", "maximum,A",
"minimum,A", "inRange,A,B", "notInRange,A,B".

ConditionalConnectivityConstraint is similar to
ConnectivityConstraint but enumerates discon-
nected paths as if certain tile types were impassable
or passable (overriding specifications in TileTypes).
Passability/impassability is specified in the arguments,
where a tile type is preceded by “passable” or “impass-
able” (e.g. for a map sketch with “wall” and “treasure”

tile types, this constraint could have an arguments value
of "passablewall,impassabletreasure").

DistanceConstraint enumerates those shortest paths
between referenceTiles and targetTiles which are
within numerical bounds specified in the arguments as
per NumericalConstraint. If targetTiles is omit-
ted, paths between all referenceTiles are considered.

Defining evolutionary parameters
The input JSON object can include evolutionary param-
eters as a Parameters object, used for generating new
map sketches. Some parameters are necessary for any gen-
eration method call, while optional parameters can over-
ride the system’s default values used for evolution. Nec-
essary parameters are runs (i.e. the number of evolutionary
runs and the number of returned map sketches), mapSizeX
and mapSizeY which specify the output maps’ dimensions,
population (i.e. the number of evolving feasible or infea-
sible individuals) and maxGenerations of evolution before
the webservice returns its output map sketches.

Optional parameters override default values used by the
webservice, and include the fi2pop flag which, if false,
uses a single population which applies the death penalty (i.e.
a fitness of 0) to infeasible individuals for evolution (de-
fault is true), steadyPercentage (i.e. the number of best
individuals copied to the next generation), crossover-
Points (i.e. the N in the N -point crossover used by GAs),
mutateOnlyProbability (i.e. the chance in 100 of asex-
ual mutation), mutateAnyProbability (i.e. the chance in
100 of mutating an offspring of two parents). For mutation,
mutateTileMinNumber and mutateTileMaxNumber de-
scribe the range in the number of tiles changing in each mu-
tation cycle, mutateShift specifies the chance in 100 of
any mutation swapping adjacent tiles and mutateToggleA
specifies the chance in 100 of any mutation changing a tile of
type A (A being the tile type’s name) to the defaultTile
and vice versa. At the system’s default values for mutation,
there is no chance of any tile type changing to another tile
type but there is a 5% chance of swapping adjacent tiles.

Evolving a map sketch
Map sketches can be evolved via the sketchgenerator
method call; this call returns the fittest feasible individual
of an evolutionary run, or the fittest individuals of multiple
runs (one individual per run). The client provides a JSON
object as input (via a POST request) which must contain
values for TileTypes, Fitness, Constraints (even if
it is empty) and Parameters with the essential parame-
ters described above. Optionally, the input JSON object can
also contain a ReferenceTileMaps value as an array of
one or more sketches which seed evolution; the sketches are
provided as ASCII text, with characters defined in the ac-
companying TileTypes; rows are divided by semi-colons.
Note that the map size of ReferenceTileMaps overrides
the mapSizeX and mapSizeY parameters (which can be
omitted): evolved sketches will have the same map size as
the ReferenceTileMaps. The output of the evolutionary
process is a JSON array containing one or more sketches

44

in ASCII text in the same format as ReferenceTileMaps.
The number of sketches should be equal to the runs value of
the Parameters object; however, some runs may not result
in feasible individuals — e.g. in cases of highly constrained
search spaces, few generations of evolution, or poorly de-
signed constraints. In such cases, the number of sketches
in the output may be fewer than the number of runs, or the
array may even be empty.

Evaluating a map sketch
Evolution requires that every map sketch is tested for con-
straint satisfaction and also evaluated on the provided fit-
ness scores; however, the results of evolution method calls
do not contain such information for the sake of readabil-
ity and bandwidth. Generated or custom-made sketches
can be evaluated via the same fitness functions and con-
straints used internally in the generator. Two method
calls allow for such an evaluation: sketchevaluator
and sketchdetailevaluator, the latter offering all the
functionalities of the former but with additional feedback for
visualizing properties of the map sketch. For both methods,
the client provides a JSON object as input (via a POST re-
quest) with a ReferenceTileMaps array of map sketches
to be evaluated (in the same format as the evolution method
call), along with TileTypes, Fitness and Constraints.
The output of sketchevaluator is a JSON array of the
same size as the input ReferenceTileMaps. Each item
of the array is a JSON object which includes a feasible
boolean value which is true if the map sketch satisfies all
constraints and a scores array containing the map’s scores
for all fitnesses in the Fitness collection, if the map is
feasible, or the map’s distance from feasibility for all con-
straints in the Constraints collection, if the map is in-
feasible. Within the scores collection, each score is pre-
ceded by the name of the fitness or constraint being eval-
uated. In addition to the feasible and scores argu-
ments, the output contains a parsedInput argument; for
sketchevaluator method calls, parsedInput only con-
tains the asciiMap argument with the same map sketch
as provided in the input JSON object (for easier reference
or asynchronous requests). For sketchdetailevaluator
method calls, the parsedInput argument of each map con-
tains (beyond asciiMap) a layers object containing sev-
eral maps used internally by the generator; these maps can
contain boolean (0 or 1) or floating point values (with each
number separated by commas); map rows are divided by
semi-colons. The names and types of maps depend on the
constraints and fitnesses used for evaluation.

Examples
To better demonstrate how the webservice inputs and out-
puts data, several method calls for generating and evalu-
ating map sketches of different types are included in Ta-
bles 1–3 along with the responses of those calls. Customiz-
able examples of these method calls can be found online at:
www.sentientsketchbook.com/webservice.php.

Table 1 showcases a method call which generates lev-
els for the MiniDungeons game. MiniDungeons is a sim-

ple puzzle rogue-like game developed primarily for the pur-
poses of modeling human decision-making (Holmgård et
al. 2014). Levels of MiniDungeons contain empty passable
tiles, impassable walls, potions, monsters, treasure, an en-
trance and an exit: these are defined in the TileTypes ar-
ray, with the defaultTile being empty (i.e. all levels start
with mostly empty tiles). Constraints for playable levels
are found in the Constraints array, and include numer-
ical constraints (of the type NumericalConstraint) on
exits (only one exit allowed, as per the "equals,1" value
of arguments), entrances, monsters, treasures and potions.
A constraint that all entrance, exit, monster, potion and
treasure tiles are connected via passable paths is added as
connectAll, where the referenceTiles parameter has a
comma separated list of those tile types’ names. The fitness
dimensions for optimizing MiniDungeons levels are found
in the Fitness array: a TileSafetyFitness evaluates
how safe treasure tiles (in targetTiles) are to monster
tiles (in referenceTiles) and a TileSafetyBalance
evaluates how balanced treasure safety is among mon-
sters; a SafeAreaThresholdFitness evaluates how
much area is controlled by each monster tile, en-
trance tile and exit tile (in referenceTiles) con-
sidering only tiles above a safety score of 0.35 (in
arguments), and a SafeAreaThresholdBalance eval-
uates how balanced the safe areas are among these tiles;
an ExplorationFitness evaluates how easy it is to dis-
cover the exit (in targetTiles) starting from the entrance
(in referenceTiles), using only the cardinal directions
(noDiagonals value in arguments). Finally, the gener-
ative parameters (i.e. Parameters) specify 5 optimization
runs (thus resulting in 5 feasible MiniDungeons levels as the
best of each run), a level size of 12 by 12 tiles, and results
returned after 50 generations of evolution using a total of
50 feasible and infeasible individuals. Evolution is carried
out only via asexual mutation (as mutateOnly is 100 out of
100 and thus certain); beyond standard mutation operators,
an additional mutation which converts wall tiles to empty
tiles (the default tile type) and vice versa is specified (with a
5% chance of occurring as per mutateTogglewall). The
response of the webservice (at the bottom of Table 1) is a
JSON array of 5 ASCII strings representing the 5 best feasi-
ble levels from the 5 optimization runs. The resulting ASCII
strings use the same notation for tiles as in the asciiChar
parameter of each tile type in the TileTypes; see Fig. 1 for
a visualization of the first ASCII string in the array.

Table 2 showcases a method call which generates map
sketches for shooter games, with a custom map sketch used
as the seed for evolution. These map sketches contain
empty passable tiles, impassable walls, team spawn points,
weapons and healthpacks, as defined in the TileTypes ar-
ray. Similar to MiniDungeons levels, the Constraints ar-
ray specifies numerical constraints on spawnpoints, weapons
and healthpacks as well as a ConnectivityConstraint
that those tile types are all connected via passable paths.
The Fitness array includes an ExplorationFitness
which evaluates the discovery effort of spawnpoints and
weapons starting from any other spawnpoint or weapon
(in referenceTiles) and an ExplorationBalance

45

{"TileTypes":[{"name":"empty","asciiChar":".","passable":"true","defaultTile":"true"},{"name":"wall","asciiChar":

"#","passable":"false"},{"name":"entrance","asciiChar":"x","passable":"true"},{"name":"exit","asciiChar":"X","p

assable":"true"},{"name":"potion","asciiChar":"p","passable":"true"},{"name":"treasure","asciiChar":"t","passa

ble":"true"},{"name":"monster","asciiChar":"m","passable":"true"}],"Constraints":[{"name":"connectAll","type":

"ConnectivityConstraint","referenceTiles":"monster,potion,treasure,entrance,exit"},{"name":"monsterNumber","type":

"NumericalConstraint","referenceTiles":"monster","arguments":"equals,8"},{"name":"potionNumber","type":"Numerical

Constraint","referenceTiles":"potion","arguments":"equals,4"},{"name":"treasureNumber","type":"NumericalConstraint

","referenceTiles":"treasure","arguments":"equals,7"},{"name":"entranceNumber","type":"NumericalConstraint","refer

enceTiles":"entrance","arguments":"equals,1"},{"name":"exitNumber","type":"NumericalConstraint","referenceTiles":

"exit","arguments":"equals,1"}],"Fitness":[{"name":"treasureSafety","type":"TileSafetyFitness","referenceTiles":

"monster","targetTiles":"treasure"},{"name":"treasureSafetyBalance","type":"TileSafetyBalance","referenceTiles":

"monster","targetTiles":"treasure"},{"name":"exit+monsterArea","type":"SafeAreaThresholdFitness","referenceTiles":

"exit,entrance,monster","arguments":"0.35"},{"name":"exit+monsterAreaBalance","type":"SafeAreaThresholdBalance","

referenceTiles":"exit,entrance,monster","arguments":"0.35"},{"name":"exitExploration","type":"ExplorationFitness"

,"referenceTiles":"entrance","targetTiles":"exit","arguments":"noDiagonals"}],"Parameters":{"runs":5,"mapSizeX":

12,"mapSizeY":12,"maxGenerations":50,"population":20,"mutateTogglewall":"5","mutateOnly":"100"}}

["#.p...t.....;..#..m.##m.#;#tt#t.#.....;...####m.##.;...#.x.m.#p#;#m##..#....#;p..###...p.#;.....##.t..t;.#.#.#.##.t

.;m#.m.....###;..##...#.X..;m..#..###...","##...#.#...m;..m###..###.;##t.tx...m..;..#......##.;..##.p###.m.;.m...#.#

###.;p.##..#p.###;.##.#.#.##..;.#m....p#.m.;tm#.#.t.....;t##..###.###;.#.t.#.t...X","..#.##m##...;.###.#....#.;#Xp..

.#x.##.;###t..#.#t.m;.#t.m.###.#.;##.m..#.#.#p;###p#.t##p##;.##mtm.t...#;#.##m##.#...;######.#.##.;##.##....t..;#..#

#....m#.","X.#.#....mt#;#..m#...####;.#..##.#...#;#.p.##...#.m;.p.#t.#m.#..;#..##.t.##.#;..#.#.###..#;#t..#.#p#tmt;#

m#.#.#.###.;#..#.##.##..;##..m#.m..x#;..#....#.tp#","##...#.####.;##.m.m#.###.;##......m#.#;.x.##.##..#p;p.t.#..###.

.;.#..#.#t.ppt;#tm##..m#...;.#..#.#.##..;mm.#.#..##.#;#t..#..##t##;..##........;##.m.t#...X."]

Table 1: Generation JSON for MiniDungeons levels, with the webservice response below it (5 levels, best of 5 runs).

(a) ASCII map (b) Level for MiniDungeons

Figure 1: A 2D visualization of the first ASCII map from
the result JSON array of Table 1.

evaluating whether that discovery effort is balanced; a
SafeAreaThresholdFitness evaluates the extent of
passable tiles which are considered safe by healthpacks (of
any positive safety score due to 0.0 in arguments), and
SafeAreaThresholdBalance evaluates if it is balanced
among all healthpacks. The map seed, copies and permu-
tations of which constitute the initial population for evo-
lution, is found in the ReferenceTileMaps array as an
ASCII string. The generative parameters (i.e. Parameters)
specify one optimization run; no map size information
(mapSizeX and mapSizeY) is provided, as those parameters
are collected from the ReferenceTileMaps. Optimization
uses a single population with infeasible individuals assigned
a fitness of 0 (since fi2pop is false), and evolves for 100
generations on a population of 50 individuals; evolution is
carried out via 2-point crossover and 5% chance of mutat-
ing the offspring, as per the default evolutionary parameters,

{"TileTypes":[{"name":"empty","asciiChar":".","p

assable":"true","defaultTile":"true"},{"name":

"wall","asciiChar":"#","passable":"false"},{"name":

"spawnpoint","asciiChar":"P","passable":"true"},

{"name":"healthpack","asciiChar":"h","passable":

"true"},{"name":"weapon","asciiChar":"w","passable":

"true"}],"Constraints":[{"name":"connectAll","type":

"ConnectivityConstraint","referenceTiles":"spawnpo

int,healthpack,weapon"},{"name":"spawnpointNumbe

r","type":"NumericalConstraint","referenceTiles":

"spawnpoint","arguments":"inRange,2,2"},{"name":

"weaponNumber","type":"NumericalConstraint","referen

ceTiles":"weapon","arguments":"inRange,3,5"},{"name":

"healthpackNumber","type":"NumericalConstraint","ref

erenceTiles":"healthpack","arguments":"inRange,6,1

2"}],"Fitness":[{"name":"healthpackSafeArea","type":

"SafeAreaThresholdFitness","referenceTiles":"healthp

ack","arguments":"0.0"},{"name":"healthpackSafeAre

aBalance","type":"SafeAreaThresholdBalance","refere

nceTiles":"healthpack","arguments":"0.0"},{"name":

"spawnpoint+weaponExploration","type":"ExplorationFi

tness","referenceTiles":"spawnpoint,weapon"},{"name":

"spawnpoint+weaponExplorationBalance","type":"Explora

tionBalance","referenceTiles":"spawnpoint,weapon"}],

"Parameters":{"runs":1,"maxGenerations":100,"fi2pop":

"false","population":20,"mutateTogglewall":"5"},"Refe

renceTileMaps":["..#.#..#;P#wh...h;..#.##.#;#.#..#.#;#

....w.#;###.#h#w;....#...;.##...##;hw###h..;..#.#.#.;#

#..#h.#;.#..##..;####.##.;.#....#P;#..#.#h."]}

["..##...#;P#w....h;..#h##.#;#.#..#.#;#..#.w.#;##..#h

#w;....#...;.##...##;hw###h..;..#.#.#.;##..#.h#;.#..##

..;####.##.;.#...##P;#.#...h."]

Table 2: Generation JSON for shooter levels, seeded from
an authored level; below is the webservice response.

while the mutateTogglewall parameter adds a chance of

46

{"TileTypes":[{"name":"land","asciiChar":".","passa

ble":"true"},{"name":"water","asciiChar":"˜","pass

able":"false","defaultTile":"true"},{"name":"mount

ain","asciiChar":"M","passable":"false"},{"name":

"city","asciiChar":"C","passable":"true"},{"name":

"horses","asciiChar":"h","passable":"true"},{"name":

"iron","asciiChar":"i","passable":"true"}],"Constrai

nts":[{"name":"connectAll","type":"ConnectivityConst

raint","referenceTiles":"city,horses,iron"},{"name":

"cityNumber","type":"NumericalConstraint","referen

ceTiles":"city","arguments":"equals,2"},{"name":

"cityDistance","type":"DistanceConstraint","refere

nceTiles":"city","arguments":"minimum,7"}],"Fitness":

[{"name":"cityExploration","type":"ExplorationFitness"

,"referenceTiles":"city"},{"name":"resourceSafeArea"

,"type":"SafeAreaThresholdFitness","referenceTiles":

"city","targetTiles":"horses,iron","arguments":

"0.0"},{"name":"resourceSafeAreaBalance","type":

"SafeAreaThresholdBalance","referenceTiles":"city"

,"targetTiles":"horses,iron","arguments":"0.0"}],"Ref

erenceTileMaps":["˜.˜˜.˜C˜;.˜.M˜..M;˜.M....˜;Mh..˜i˜˜;

M˜hi˜.M.;˜..M˜M˜˜;..˜˜...˜;˜.......;..˜....˜;M..˜˜˜.˜;

.˜˜˜M..˜;.˜.....˜;˜˜.˜M.˜˜;.˜˜C˜.M˜;.M..h..M;.˜˜M˜˜˜˜"

,"˜C˜˜.˜.˜;....˜..M;˜.M....˜;Mh.C˜i˜˜;M˜hi˜˜M˜;˜..M˜M

˜˜;...˜...˜;˜.......;..˜....˜;M..˜˜˜˜˜;.˜˜˜M..˜;.˜...

..˜;˜˜.˜M.˜˜;.˜˜.˜.M˜;.M..h..M;.˜˜M˜˜˜˜"]}

[{"scores":{"resourceSafeArea":"1.0","cityExplorati

on":"0.9907407407407407","resourceSafeAreaBalance":

"0.25"},"feasible":true,"parsedInput":{"asciiMap":

"˜.˜˜.˜C˜;.˜.M˜..M;˜.M....˜;Mh..˜i˜˜;M˜hi˜.M.;˜..M˜M

˜˜;..˜˜...˜;˜.......;..˜....˜;M..˜˜˜.˜;.˜˜˜M..˜;.˜...

..˜;˜˜.˜M.˜˜;.˜˜C˜.M˜;.M..h..M;.˜˜M˜˜˜˜"}},{"scores":

{"connectAll":"0.2857142857142857","cityNumber":

"0.0","cityDistance":"1.0"},"feasible":false,"parse

dInput":{"asciiMap":"˜C˜˜.˜.˜;....˜..M;˜.M....˜;Mh.C

˜i˜˜;M˜hi˜˜M˜;˜..M˜M˜˜;...˜...˜;˜.......;..˜....˜;M.

.˜˜˜˜˜;.˜˜˜M..˜;.˜.....˜;˜˜.˜M.˜˜;.˜˜.˜.M˜;.M..h..M;.

˜˜M˜˜˜˜"}}]

Table 3: Evaluation JSON for two strategy game map
sketches; below is the webservice response, with the first
map sketch being feasible and the second one infeasible.

mutating wall tiles to the default empty tiles and vice versa.
The response of the webservice (at the bottom of Table 2) is
an array of one ASCII string (best of one optimization run);
the resulting map sketch shares some structural similarities
with the original map sketch used as a seed (see e.g. the
spawnpoint positions which are identical), but 100 genera-
tions of optimization have caused changes via tile shifting or
wall addition due to the custom mutation operator.

Table 3 showcases a method call which evaluates two
map sketches for 4X strategy games1 similar to Civilization
IV (Firaxis 2005). These map sketches contain land tiles,
water tiles and mountain tiles (the latter two being impass-
able) as well as city tiles (denoting players’ starting cities),
horse resource tiles and iron resource tiles; these tile types
are defined in the TileTypes array, with water being the
defaultTile. The Constraints array includes numeri-
cal constraints on cities and a ConnectivityConstraint

1The 4X subgenre of strategy games stands for “explore, ex-
pand, exploit, exterminate” and revolves around empire building.

that city, horses and iron tiles are all connected via pass-
able paths. An additional DistanceConstraint en-
sures that cities are at least 7 tiles away from each other
(as the arguments parameter is "minimum,7") for the
map sketch to be feasible. The Fitness array includes
an ExplorationFitness evaluating discovery effort be-
tween city tiles, a resourceSafeAreaFitness evaluat-
ing the extent of passable tiles safe to horse and iron re-
source tiles with any degree of safety considered (safety
threshold of 0.0 in the arguments), and how balanced
those safe areas are with resourceSafeAreaBalance.
The maps to be evaluated are stored in an array under
the referenceTileMaps parameter. The response of the
sketchevaluator method call (at the bottom of Table
3) is an array of two objects (one for each map in the
referenceTileMaps array): each object has a scores
parameter, a feasible parameter and a parsedInput pa-
rameter (which denotes which map sketch is being evalu-
ated). Based on the feasible parameter, the first map
sketch is feasible while the second one is not. Since the
first map sketch is feasible, the scores object contains
the names of fitnesses in the Fitness array of the in-
put JSON along with the numerical scores in each. On
the other hand, the scores object of the infeasible sec-
ond map sketch contains the names of the constraints in the
Constraints array of the input JSON along with the nu-
merical scores in each; non-zero constraint scores signify
violated constraints, so in this case DistanceConstraint
and ConnectivityConstraint have been violated.

Discussion
As elaborated in the introduction, using a webservice for the
purpose of generating map sketches allows novice users to
generate game levels without needing to download software
or read source code. However, similar functionalities could
be offered by a downloadable executable, and there are many
examples of such generators (e.g. dungeon generators for
tabletop RPGs). The main affordances of a webservice (ver-
sus a downloadable executable) is its independence of the
user’s operating system or file execution privileges (which
are common concerns with executables) and that the com-
putational burden of artificial evolution is alleviated by mov-
ing it to the cloud. This makes level generation possible on
mobile devices or web browsers, broadening the adoption
potential of the underlying system. Towards this broader ap-
peal, the webservice-based generator is highly customizable
and can generate levels for many different genres as demon-
strated by the examples included in the paper — admittedly
at the cost of specificity which will be discussed below.

An important argument for using webservices rather than
open-source solutions is that researchers do not need to doc-
ument the elaborate (and often obscure and specialized) al-
gorithms used for game content generation. Admittedly, the
need for documentation is not bypassed when using webser-
vices; a large portion of this paper consisted of a rundown of
the various method calls, parameters and output of the map
sketch generation webservice. Allowing more customiza-
tion to the user of the webservice increases the extent of the
documentation, often exponentially; a fine balance must be

47

found between letting users of the webservice the freedom
to generate the type of content they need and overwhelming
them with required webservice input and with a documenta-
tion as extensive as that of the underlying codebase.

An obvious limitation of using a webservice is the need
for network access; the map sketch generator can not run
offline. Intermittent or limited connectivity can also pose
a problem, as the webservice may be unresponsive and the
calling software must include a failsafe for such cases. The
online nature of the webservice also comes with possible
latency issues, either due to a slow connection or due to
increased load on the cloud computing service (e.g. when
many method calls are being processed). This can pose a
problem for real-time level generation; that said, evolution-
ary algorithms are not ideal for such in the first place.

The webservice-based map sketch generator is expressive
and customizable, with the examples in this paper showcas-
ing how levels of several different genres can be evolved
or evaluated. However, a limitation of the generator is that
it works best with low-resolution abstract levels with few
tile types and small map sizes. Moreover, while the numer-
ous integrated playability constraints and fitness functions
account for some of the core design patterns of levels, their
expressiveness is bounded as the webservice does not allow
minute edits at the code level. For instance, the current gen-
erator operates on grid-based, top-down views of game lev-
els and the pathfinding algorithm does not handle hex-based
maps or side-scrolling game levels. Moreover, the current
constraints and fitnesses do not consider the rules or goals of
a specific game. For instance, the generated MiniDungeons
levels do not consider whether a hero can bypass a monster
and collect the treasure behind it; this would require a simu-
lated playthrough by an agent adapted for the game at hand
(Liapis et al. 2015). The lack of specificity and the small
map size conform to the notion of a map sketch which pro-
vides only the minimal details needed to communicate its
purpose (Buxton 2007); these rough sketches can be further
refined either by a human designer or by a generator able to
use such sketches as input (Liapis and Yannakakis 2015).

Conclusion

This paper motivated the integration of a search-based pro-
cedural content generator into a webservice, allowing users
to both generate new map sketches and evaluate existing
ones — be they generated or hand-crafted. The webser-
vice allows most parameters of the generator to be tailored
in the input of the method calls, including the components
of the map sketches, their playability constraints and evalu-
ation functions and the parameters of the evolutionary algo-
rithm. Example method calls in the paper showcase how
map sketches for 4X strategy games, shooter games, and
rogue-like games can be generated from scratch, generated
from an initial seed, and evaluated. The self-contained and
self-describing nature of this webservice makes it accessible
to more users who do not have to be understand (or compile)
the underlying code which evolves and evaluates levels, thus
reducing the expertise requirements for using the generator.

References
Barros, G., and Togelius, J. 2015. Balanced civilization map
generation based on open data. In Proceedings of the IEEE
Congress on Evolutionary Computation.
Björk, S., and Holopainen, J. 2004. Patterns in Game Design.
Charles River Media.
Buxton, B. 2007. Sketching User Experiences: Getting the
Design Right and the Right Design. Morgan Kaufmann.
De Jong, K. A. 2006. Evolutionary computation - a unified
approach. MIT Press.
Dormans, J., and Bakkes, S. 2011. Generating missions and
spaces for adaptable play experiences. IEEE Transactions on
Computational Intelligence and Games (3):216–228.
Holmgård, C.; Liapis, A.; Togelius, J.; and Yannakakis, G. N.
2014. Generative agents for player decision modeling in
games. In Poster Proceedings of the 9th Conference on the
Foundations of Digital Games.
Kimbrough, S. O.; Koehler, G. J.; Lu, M.; and Wood, D. H.
2008. On a feasible-infeasible two-population (fi-2pop) ge-
netic algorithm for constrained optimization: Distance tracing
and no free lunch. European Journal of Operational Research
190(2):310–327.
Liapis, A., and Yannakakis, G. N. 2015. Refining the
paradigm of sketching in ai-based level design. In Proceed-
ings of the AAAI Artificial Intelligence for Interactive Digital
Entertainment Conference.
Liapis, A.; Holmgård, C.; Yannakakis, G. N.; and Togelius, J.
2015. Procedural personas as critics for dungeon generation.
In Applications of Evolutionary Computation, volume 9028,
LNCS. Springer.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013a. Sen-
tient sketchbook: Computer-aided game level authoring. In
Proceedings of the 8th Conference on the Foundations of Dig-
ital Games, 213–220.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013b. To-
wards a generic method of evaluating game levels. In Proceed-
ings of the AAAI Artificial Intelligence for Interactive Digital
Entertainment Conference.
Lim, C.-U., and Harrell, D. F. 2014. An approach to gen-
eral videogame evaluation and automatic generation using a
description language. In Proceedings of the IEEE Conference
on Computational Intelligence and Games (CIG).
Schoenauer, M., and Michalewicz, Z. 1996. Evolutionary
computation at the edge of feasibility. In Proceedings of the
4th Parallel Problem Solving from Nature, 245–254.
Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.; Hagelbäck,
J.; and Yannakakis, G. N. 2010. Multiobjective exploration of
the starcraft map space. In Proceedings of the IEEE Confer-
ence on Computational Intelligence and Games.
Togelius, J.; Shaker, N.; Karakovskiy, S.; and Yannakakis,
G. N. 2013. The mario ai championship 2009-2012.
World Wide Web Consortium. 2004. Web services architec-
ture: W3C working group note 11 february 2004. Accessed
from http://www.w3.org/TR/ws-arch/ on July 1st, 2015.
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Proceedings of the 9th Con-
ference on the Foundations of Digital Games.

48

