
Capturing the Essence:
Towards the Automated Generation of Transparent Behavior Models

Patrick Schwab and Helmut Hlavacs
Research Group Entertainment Computing, Faculty of Computer Science

University of Vienna, Vienna, Austria
a0927193@unet.univie.ac.at, helmut.hlavacs@univie.ac.at

Abstract

Hand-coded finite-state machines and behavior trees are
the go-to techniques for artificial intelligence (AI) de-
velopers that want full control over their character’s
bearing. However, manually crafting behaviors for
computer-controlled agents is a tedious and parameter-
dependent task. From a high-level view, the process of
designing agent AI by hand usually starts with the deter-
mination of a suitable set of action sequences. Once the
AI developer has identified these sequences he merges
them into a complete behavior by specifying appropri-
ate transitions between them. Automated techniques,
such as learning, tree search and planning, are on the
other end of the AI toolset’s spectrum. They do not
require the manual definition of action sequences and
adapt to parameter changes automatically. Yet AI de-
velopers are reluctant to incorporate them in games be-
cause of their performance footprint and lack of imme-
diate designer control. We propose a method that, given
the symbolic definition of a problem domain, can au-
tomatically extract a transparent behavior model from
Goal-Oriented Action Planning (GOAP). The method
first observes the behavior exhibited by GOAP in a
Monte-Carlo simulation and then evolves a suitable be-
havior tree using a genetic algorithm. The generated
behavior trees are comprehensible, refinable and as per-
formant as hand-crafted ones.

Introduction
Despite the advent of computationally efficient, automated
AI algorithms from the areas of planning, tree search and
learning (Orkin 2006; Browne et al. 2012; Champandard
2003), manual authoring remains the predominant way of
specifying agent behaviors in the gaming industry. The main
behavior authoring techniques for AI designers are finite-
state machines (FSMs) and behavior trees (BTs).

Still, hand-coding behaviors has several drawbacks over
using automated processes of generating action sequences.
The main drawback is the significant authoring effort that
an AI designer has to invest in building behaviors. An-
other drawback is that hand-made state transitions depend
on game-specific parameters. Any change in these parame-
ters, for example due to a change in the game’s mechanics,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

possibly requires remodelling of the created behavior and
thus further time investment.

The slow adoption of automated approaches can in part
be attributed to their high complexity compared to FSMs
and BTs. However, another part of the reason why the in-
dustry is unwilling to incorporate these techniques into their
games is that they have to surrender creative control over the
produced behaviors to an algorithm. We acknowledge that
designers are reluctant to give up creative control because it
raises unwanted issues with reproducibility and quality con-
trol (Millington and Funge 2009).

This is precisely the problem we address with our ap-
proach. We propose a hybrid solution between automated
and manual authoring that uses automation, not to replace
manual authoring, but to enhance it. Instead of using opaque
AI techniques to produce finalised behaviors at runtime, we
use them offline to generate transparent behavior models in
form of behavior trees. By doing so we retain the creative
control as all generated behaviors are fully transparent, ed-
itable and deterministic. In essence, our approach extracts
a static, compressed version of the behavior exhibited when
using a dynamic, automated method, such as Goal-Oriented
Action Planning (GOAP). As a welcome side effect the gen-
erated models are as performant as hand-crafted behaviors.

Our approach builds on the principle of identifying char-
acteristic sequences. In the context of this paper, a sequence
of actions is characteristic for an agent solving a given prob-
lem when it is one of the most likely (sub-)sequences that
lead to the agent’s goal. To find those sequences we ob-
serve the automated decision-making algorithm’s behavior
in a Monte-Carlo simulation. We then employ a genetic al-
gorithm to evolve a behavior tree that outputs similar action
sequences to those produced in simulation by the automated
decision-making algorithm.

This work presents our first steps towards the ultimate
goal of being able to apply this approach to every decision-
making algorithm. In this paper we show that GOAP can be
used to generate suitable simulation data for our approach.
The motivation behind this work is to facilitate the adoption
and understanding of automated, opaque AI algorithms by
translating them to comprehensible behavior models.

Proceedings, The Eleventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15)

184

The Problem
We first present a simple example to gain an understanding
of the problem we have to solve to find a transparent repre-
sentation of an opaque algorithm. We use this example to
then formulate an abstract definition of the general case in
the next section of this paper.

Consider the following (grossly simplified) scenario: We
design the behavior of an agent that has just three courses
of action at her disposal. Her first option is that she can
throw paint balls at other agents until she holds no more
paint balls. However, she may only throw paint balls at other
agents when they are in her limited throwing range. To be
able to keep throwing paint balls she also has the option of
restocking paint balls up to the maximum amount of two
paint balls. Furthermore, we assume that the stock of avail-
able paint balls is infinite and thus the agent may restock
them unconditionally. Finally, the last action at her disposal
is that she may simply do nothing and idle for one second.
Furthermore, we define that success in our scenario means
having hit as many agents as possible with paint balls.

We now put ourselves in an AI developer’s shoes: How
do we find an intelligent behavior model for this agent? The
agent can not simply constantly throw paint balls, because
her paint ball stock would deplete after two shots. Simi-
larly, it makes no sense for her to throw paint balls when no
other agents are in throwing range. Additionally, she cer-
tainly does not want to be idling when there are agents in
range. These are the undesirable behaviors that we do not
want our agent to exhibit.

The next step is to determine the behavior sequences we
want to see instead. A straightforward approach to find these
sequences is to consider how the situation would play out
under different conditions and memorising only those that
we deem successful. This constitutes a classic trial-and-
error strategy.

We notice that our agent should shoot if an agent is close
when considering the cases where the agent knows that there
are opponents in range after coming up with just a few sce-
narios. Similarly, she should restock when her paint balls
are depleted. In any other cases she can simply stay idle.
Via this simple analysis we naturally discovered the most
characteristic sequences of this scenario. Granted, due to
the low number of actions it was not hard to come up with
sufficiently many cases, but the process remains the same
even for larger state spaces. We can now build an intelligent
behavior for our agent by prioritising and combining each
identified sequence considering its associated preconditions,
effects and total cost.

We manually created solution sequences to better demon-
strate the underlying thought process in this example. In
principle, this is the same process our approach has to
go through in order to automatically create behavior mod-
els. However, our goal is to have a computer use opaque
decision-making algorithms to automatically compute solu-
tion sequences for us. The importance of providing auto-
mated support for this task becomes clear if we recall that
the number of cases an AI designer has to consider grows
exponentially with the number of actions of the agent.

Generalisation
In the general case, we can formalise our problem as fol-
lows: Firstly, we have a set of possible actions A at an
agent’s disposal. Secondly, we have a problem domain that
we describe in terms of the set of distinct start states S and
a designated goal state sg . And, thirdly, we have a func-
tion f(s) representing a decision-making algorithm that, for
a start state s, returns an action sequence leading to the goal
state. Lastly, we are looking for the characteristic action
sequences that best capture the essence of algorithm f(s)
considering the whole set of start states S.

It follows that our problem θ can be formally modelled as:
θ = (A,S, sg, f(s))

where
A = {a1, ..., an}, with n ... number of actions
S = {s1, ..., sm}, with m ... number of distinct start states
sg ... goal state
ai ... action i
si ... start state i
f(s) ... function returning an action sequence to reach g

Furthermore, we characterise actions themselves as having
a set of preconditions P , effects E and a cost function c(s).
Preconditions pi describe the conditions imposed on the cur-
rent agent state for an action to be applicable. Effects ei de-
scribe the change to the current agent state when an action
is applied. The cost function c(s) computes the abstract cost
associated with applying an action to a state. It follows that
we can formalise an action a as:

a = (P,E, c(s))

where
P = {p1, ..., pu}, with u ... number of preconditions
E = {e1, ..., ev}, with v ... number of effects
pi ... precondition i
ei ... effect i
c(s) ... function returning the cost of applying a to s

We define a precondition p as the requirement that a named
key k in a given state is equal to value v. To keep things
simple, equality is the only logical operation we consider in
this paper. Therefore, we can express a precondition as:

p = (k, v)

where
k ... named key
v ... expected value of k

Finally, we describe an effect e as a pair itself consisting of a
set of preconditionsP , defining in which cases e is triggered,
and a ramification r. Put in abstract terms this means:

e = (P, r)

where
r ... ramification; the change to the state when e is applied

185

s1

sg

a2

a2

a4

Figure 1: An illustration of the state graph spanning from
start state s1 to the goal state sg . The bold lines indicate the
action sequence {a2, a2, a4} returned by f(s1).

Exploring the State Graph
We can visualise every distinct combination of a start state
si with the goal state sg of a problem θ, as described in the
previous section, as a state graph. In this graph, nodes rep-
resent world states, and directed edges denote actions. We
can therefore picture an action sequence leading to the goal
state sg as a path on the state graph. Figure 1 shows an ex-
ample of such a graph for the start state s1. The bold arrows
highlight the solution {a2, a2, a4} computed by evaluating
the decision-making algorithm f for s1.

The number of start states si that lead to distinct solutions
when applying f has an upper limit under the constraint that
the algorithm f and the actions’ cost functions c do not de-
pend on any parameters other than the ones present in the
model. In this case, we can derive all possible start states
directly from our problem’s model, since we know which
properties, identified by their named key k, of the state can
influence the pre- and postconditions of actions. It follows
that we have fully captured the behavior of f(s) when ap-
plied to a problem θ if we store all the solutions returned for
each start state si.

Now, two issues arise when we try to capture the complete
behavior exhibited by f in this manner. Firstly, since the
number of start states rises exponentially with the number of
preconditions, computing every possible solution sequence
is time-intensive and only feasible for small problems. Sec-
ondly, it is not a good idea to simply take all solutions and
recombine them into a FSM or BT. Due to the sheer size of
the resulting behavior, editing or understanding it would be
almost impossible.

Thus, in order to avoid the latter issue, we try to find the
sequences that are most likely part of a solution produced
by f . Those are the sequences that f emits the most if we
assume that each start state is equally likely to happen. We
call those sequences characteristic for our problem θ.

Monte-Carlo Simulation

N-Gram Model

Merging Stage

solutions

characteristic sequences

behavior model

problem model θ

Figure 2: An overview of the presented approach. The boxes
represent its three main stages. The text in between the
stages denotes their inputs and outputs.

Monte-Carlo Simulation
Our approach is a multistage process and figure 2 depicts
an overview of the process. The first stage is about observ-
ing the behavior of a decision-making algorithm f . We em-
ploy the Monte-Carlo method to choose simulation scenar-
ios for observation. At every simulation step we randomly
pick one of the distinct start states si of the problem θ and
record the solution sequence produced by f . The reason for
incorporating Monte-Carlo simulation into the approach is
that it allows us to generate behavior models even for large
state spaces due to being parametrisable in the number of
performed simulations. Adjusting the number of generated
solutions allows us to control the execution time of our ap-
proach. However, doing so also incurs an accuracy-time
tradeoff that we further explore in the latter sections of this
paper. However, it is not strictly necessary that you use the
Monte-Carlo method. For problems with a low amount of
distinct solutions it is possible to explore the whole solution
space in acceptable time. A full search can be viable in those
cases depending on the throughput of the applied algorithm
f . Monte-Carlo simulation is the first stage of our approach
and its output is a set of solutions produced by the algorithm
f for different world states si of θ.

N-Gram Model
Next, we identify the most characteristic sequences in the
generated solution set. We do so by building an n-gram
model using the data obtained from the Monte-Carlo simu-
lation stage. To generate the model we count every observed
n-gram in the generated solution strings and return only
those we encounter the most in our simulation data. This
stage of the approach is parameterised as well: You choose
which lengths of n-grams and how many of the most com-
mon ones you want to include in your n-gram model. How-
ever, we have not yet thoroughly analysed how this choice
affects the outcome of the approach and what parameters

186

Algorithm 1 Extraction of characteristic n-grams
Input:

θ ... problem
k ... the number of simulations,
n ... the n-grams’ length,
l ... the number of returned top n-grams,
all counts must be initialised to 0.

Output:
The extracted l most common action n-grams
of length k.

Ω← All preconditions P from actions and effects in θ
for i← 1 to k do

sstart← next random permutation(Ω)
Φ← f(sstart)
for each subsequence φ of length n in Φ do

countφ← countφ + 1
end for

end for
return the n-grams φ with the l highest values in count

produce the best results. Algorithm 1 shows the process of
simulating scenarios and extracting n-grams of a fixed length
in detail. Building the n-gram model is the second stage of
our approach. The model captures the probability distribu-
tion of sequences that are part of generated solutions. Thus,
the n-grams with the highest amount of observations repre-
sent the characteristic sequences of our problem θ.

Merging Stage
The third, and last, stage of our approach is the merging
stage. The merging stage combines the identified character-
istic n-grams into a behavior tree. Conceptually, this stage
focuses on when we want to see the characteristic behav-
iors exhibited, as opposed to the previous stage, that was
about finding which behaviors are characteristic. Therefore,
the question we face at this stage is: How do we determine
suitable priorities and transitions between characteristic se-
quences in a way that is applicable to any problem θ?

Evolutionary Approach
There are no trivial general rules to merge the given char-
acteristic sequences into a behavior tree, since the optimal
tree structure depends on both the applied algorithm f and
the problem structure of θ. Thus, we need an optimisation
strategy that can automatically adapt to these parameters.

We chose to employ a genetic algorithm (Mitchell 1998)
to generate behavior models from characteristic action se-
quences. An advantage of using evolutionary optimisation
is that we can readily apply it to trees (Palmer and Kershen-
baum 1994). Additionally, genetic algorithms are oblivious
to the problem domain they are applied to. We only need to
define a measurement of the fitness of a particular behavior
tree and the genetic operations of crossover and mutation.

The fitness function in a genetic algorithm measures the
performance of a single solution. It is used to direct the pop-

ulation towards better solutions. If we recall that we are try-
ing to capture the essence of the decision-making algorithm
a better solution is one that better resembles the behavior
of the decision-making algorithm. Thus, we need a metric
that describes how closely a behavior tree follows the behav-
ior exhibited by the decision-making algorithm. For such a
metric, however, we first need to be able to determine the
similarity of two action sequences.

For the purpose of comparison we see two action se-
quences as strings where every symbol represents a distinct
action. When comparing those action strings we want to pe-
nalise missing, superfluous and transposed actions equally.
Thus, the Damerau-Levenshtein distance (Damerau 1964;
Levenshtein 1966) is an apt choice of metric to compare the
similarity of two action strings.

Now, we compare the behavior exhibited by a behavior
tree with that of our decision-making algorithm by compar-
ing their produced solutions for the same start states si. A
higher dissimilarity on average means that the behavior tree
has a worse coverage of the decision-making algorithm’s be-
havior. The other details of the employed genetic algorithm
are:

Greedy initialisation: To start off, we greedily initialise
the population with behavior trees formed by randomly
combining characteristic sequences. The greedy initialisa-
tion jump-starts the evolutionary process as it incorporates
the information of our n-gram model into the construction
of the initial population. The root node of every initial be-
havior tree is a selector.

Crossover: Our crossover operator picks a node in the
first behavior tree at random and replaces it with a subtree
from the second behavior tree.

Mutation: Our mutation operator performs two different
types of changes: Firstly, by chance it mutates a random
node in the behavior tree. If the random node is a compos-
ite node the mutation changes its type, e.g. from sequence
to selector. If it is an action the mutation replaces it with
another random action. If it is a conditional node the mu-
tation either adds or removes a random precondition from
the conditional node. Secondly, the mutation operator adds
or removes conditional nodes from the behavior tree. We
initialise conditional nodes that are added in this way with
a random combination of preconditions from the problem
model.

Elitism: The algorithm preserves a number of top behav-
ior trees of a population for the next generation. We employ
elitism to ensure the behavior trees always improve over
generations.

Example
We use a refined version of our previously mentioned exam-
ple to showcase the application of our approach. Our refined
example involves the same agent we described previously.
This time, however, we put her in a different environment:
The environment is a typical Capture the Flag scenario con-
sisting of two bases on opposing sides of a playing field.
Each base holds a flag that agents strive to capture and carry
to their respective home bases. A score point is awarded ev-

187

Selector

Sequence1 Selector

opponent baseshoot

enemy in range?

Sequence2

shoot base

Sequence3

shootreload opponent base

opponent base

Figure 3: A sample behavior tree generated in 10 genera-
tions using 5 characteristic bigrams for the problem θctf .
Its average Damerau-Levenshtein distance from the solution
strings generated by GOAP is 1.25.

ery time an agent carries the other team’s flag to her own
team’s base.

Our agent has the ability to perform multiple different
actions: Firstly, our agent can still shoot other agents with
paint as long as she has the required ammunition. She also
still has the option of restocking. Her new ability is that she
can now move. However, to limit the size of the problem
space the agent may only move to the enemy flag or her own
base. We measure the success of an agent in the Capture
the Flag scenario by scored points. Thus, our agent’s new
main goal is to capture the enemy flag. Furthermore, Goal-
Oriented Action Planning (GOAP) is the algorithm f whose
behavior we wish to capture in a transparent model.

Formal Model
Following our generalised model, we can formally express
the problem from the previous section as:

θctf = (A,S, sg, f(s))

where

A = {a1, a2, a3, a4}, with
a1 .. shoot,
a2 .. restock,
a3 .. move to base,
a4 .. move to opponent base
sg ... state with points scored by our agent
f(s) ... Goal-Oriented Action Planning

The preconditions of the shoot action a1 are that an enemy
is in range and that the agent has ammunition. Its first effect
is that the agent’s ammunition is spent. Its second effect is
that the agent hits the enemy in range with paint. Agents
that are hit with paint are removed from the playing field for
a small amount of time. Thus, after the shoot action the shot
enemy is not in throwing range anymore.

The restock action a2 has no precondition. Its effect is
that the agent restores her ammunition.

The movement actions a3 and a4 have no preconditions.
Their effects are that the agent’s position is changed to either
the agent’s own base (for a3) or the opponent’s base (for a4).

Number of Simulations

M
ea

n
Sq

ua
re

d
Er

ro
r

0 102 205 307 410 512 614 717 819 922 1024

0
0.

25
0.

5
0.

75
1

Figure 4: A graph showing the mean squared error (MSE)
of bigram probabilities of a problem with 1024 distinct start
states si for different numbers of simulations. The dotted
trend line indicates the approximate time-accuracy tradeoff.
We use the actual distribution to calculate the MSE.

The cost function returns a constant value corresponding
to the time spent reloading and shooting for a1 and a2, re-
spectively. For the movement actions a3 and a4 we use a dy-
namic cost function that increases the cost proportionately
with the distance of the movement target from the agent’s
current position. However, the cost of moving the agent in-
creases dramatically if the current state indicates that there is
an opponent in her throwing range, because she is in danger
of getting shot.

Qualitative Evaluation
To evaluate our approach qualitatively we implemented it
in the PALAIS testbed environment (Schwab and Hlavacs
2015). Figure 3 shows a sample behavior tree that our ap-
proach generated for the problem θctf using 5 characteristic
bigrams. Note that we omit the conditional nodes preced-
ing each action for brevity and that our agent reevaluates the
root node indefinitely if it exits.

Our approach successfully identified and preserved the
most obvious, characteristic sequences in this sample behav-
ior tree. Namely those sequences are (restock, shoot) and
(base, opponent base). An interesting point to note is that
our approach output Sequence3 (in the rightmost subtree) in
the order reload first, then shoot, instead of the more natural
order shoot first, then reload. This makes sense, however,
if we consider that reloading first is more general because it
also captures the states where the agent has no ammunition.

To our detriment, our approach also produced a superflu-
ous conditional node above Sequence2. The condition is un-
necessary since performing the first action of the sequence
is not possible if there is no enemy in range. The problem
of superfluous elements in output behavior trees could be
addressed by adding a post-processing stage to the approach
or by penalising superfluous elements in the fitness function.

Quantitative Evaluation
To evaluate our approach quantitatively we generated a dif-
ficult problem with 10 distinct actions. On average each of
these actions has 3.8 effects, 1.7 postconditions and 6.7 de-
pendent variables. In total there are 10 unique preconditions

188

Number of Characteristic Bigrams

C
um

ul
ta

tiv
e

D
is

tri
bu

tio
n

(in
 %

)

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53

0
0.

25
0.

5
0.

75
1

Figure 5: A graph showing the relative cumulative distri-
bution of the top bigrams in all of the solutions generated
during our simulation of a problem containing 1024 distinct
start states s1. The dashed line marks the top 14 bigrams
at which point more than 75% of the solutions could theo-
retically be reproduced with optimal transitions between bi-
grams. The bigrams are sorted from most to least common.

in actions and effects, which results in 210 = 1024 distinct
start states si. We use the top 25 bigrams to model the char-
acteristic sequences of this problem. Moreover, we config-
ured our genetic algorithm to use a population size of 300
behavior trees with a mutation rate of 15%, a crossover rate
of 50% and 2% of the top behavior trees being preserved
every generation as elitists. Additionally, 35% of the per-
formed mutations add or remove conditional nodes. This
section answers a question related to the performance of
each stage of our approach:
• How does the number of Monte-Carlo simulations affect

the accuracy of our generated n-gram model?
• How well does the the n-gram model capture the whole

set of solutions generated by f?
• How does our merging stage perform with regards to the

worst-case scenario?
Figure 4 shows the results of our analysis of the time-

accuracy tradeoff incurred by increasing the number of sim-
ulations performed in the Monte-Carlo simulation. The rais-
ing MSE at 922 simulations can be attributed to the error
introduced by sampling a single solution multiple times, be-
cause at this point the number of samples amounts to around
90% of the solution space’s size. The graph indicates that
the estimated bigram probabilities converge quickly towards
the actual probabilities.

Figure 5 shows the, theoretically possible, optimal per-
formance of our n-gram model using the most commonly
observed bigrams. The graph tells us that we can produce
very similar results to GOAP with just a small set of charac-
teristic sequences, if we can deduce the optimal transitions.

Figure 6 shows how our merging stage performs with an
increasing number of generations and 200 simulated solu-
tions to work with. We include the dotted line on top, indi-
cating the fitness of random action selection as a worst-case
scenario, for reference. The graph shows a steady increase in
the average fitness of the generated behavior trees. However,
the performance gain slows down significantly after about 7

Number of Generations

Av
g.

 D
am

er
au

−L
ev

en
sh

te
in

D
is

ta
nc

e
0

1
2

3
4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 6: A graph illustrating the change in the average fit-
ness of the best behavior trees of 30 runs when adjusting
the number of generations. The two dashed lines show the
minimum and maximum observed values. The dotted line
indicates the average distance of a randomly generated set
of solutions which represents the worst possible output.

generations. Furthermore, the average fitness of around 3
at generation 0, before any evolutionary optimisation, indi-
cates that our greedy initialisation step already constitutes a
substantial improvement over the worst-case scenario.

Related Work
Evolutionary approaches have been applied to build decision
trees in the context of classification (Barros et al. 2012). By
nature, the induction of decision trees for classification is
similar to the problem we present in this paper. However, the
evolution of a behavior tree is more complicated because we
evaluate their performance in dependant sequences as op-
posed to singular independent decisions. (Lim, Baumgarten,
and Colton 2010; Perez et al. 2011) used evolutionary algo-
rithms to evolve game-specific behavior trees with the goal
of producing optimal behaviors. In contrast, our approach
focuses on the extraction of comprehensible, transparent be-
havior trees from a decision-making algorithm.

Conclusion and Future Work
We presented a novel approach that extracts comprehensi-
ble behavior models from decision-making algorithms. We
showed that GOAP is a decision-making algorithm that can
be used with our approach. Furthermore, the evaluation of
our approach demonstrated that it is able to deduce behavior
trees that result in action sequences that are, to a good de-
gree, similar to the ones exhibited GOAP. However, the data
suggests that further improvement of our approach is possi-
ble. Future work will include the expansion of our approach
to make it applicable to other decision-making algorithms.

References
Barros, R. C.; Basgalupp, M. P.; De Carvalho, A.; and Fre-
itas, A. A. 2012. A survey of evolutionary algorithms
for decision-tree induction. Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews, IEEE Transactions
on 42(3):291–312.

189

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte
Carlo tree search methods. Computational Intelligence and
AI in Games, IEEE Transactions on 4(1):1–43.
Champandard, A. J. 2003. AI game development: Synthetic
creatures with learning and reactive behaviors. New Riders.
Damerau, F. J. 1964. A technique for computer detection
and correction of spelling errors. Commun. ACM 7(3):171–
176.
Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics dok-
lady, volume 10, 707–710.
Lim, C.-U.; Baumgarten, R.; and Colton, S. 2010. Evolving
behaviour trees for the commercial game defcon. In Appli-
cations of evolutionary computation. Springer. 100–110.
Millington, I., and Funge, J. 2009. Artificial intelligence for
games. CRC Press.
Mitchell, M. 1998. An introduction to genetic algorithms.
MIT press.
Orkin, J. 2006. Three states and a plan: the AI of FEAR. In
Game Developers Conference, volume 2006, 4.
Palmer, C. C., and Kershenbaum, A. 1994. Represent-
ing trees in genetic algorithms. In Evolutionary Compu-
tation, 1994. IEEE World Congress on Computational In-
telligence., Proceedings of the First IEEE Conference on,
379–384. IEEE.
Perez, D.; Nicolau, M.; ONeill, M.; and Brabazon, A. 2011.
Evolving behaviour trees for the mario ai competition us-
ing grammatical evolution. In Applications of Evolutionary
Computation. Springer. 123–132.
Schwab, P., and Hlavacs, H. 2015. Palais: A 3d simulation
environment for artificial intelligence in games. In Proceed-
ings of the AISB Convention 2015.

190

