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Abstract

Existing work on player modeling often assumes that the play
style of players is static. However, our recent work shows evi-
dence that players regularly change their play style over time.
In this paper we propose a novel player modeling framework
to capture this change by using episodic information and se-
quential machine learning techniques. In particular, we ex-
periment with different trace segmentation strategies for play
style prediction. We evaluate this new framework on game-
play data gathered from a game-based interactive learning en-
vironment. Our results show that sequential machine learning
techniques that incorporate predictions from previous seg-
ments outperform non-sequential techniques. Our results also
show that too fine (minute-by-minute) or too coarse (whole
trace) segmentation of traces decreases performance.

Introduction

The field of game analytics has received a lot of attention in
recent years from both industry and academic research. An-
alyzing game data is nowadays a common practice widely
used to validate level design or improve customer conver-
sion rates. In general, the goal is to extract knowledge from
the player’s behavior in order to improve their experience.
In order to achieve this goal, Artificial Intelligence (AI)
techniques can be used to make interactive systems more
adaptive, responsive and intelligent. Player modeling is a
crucial component of adaptive computer games in the do-
mains of digital entertainment (Togelius, De Nardi, and Lu-
cas 2006; Yannakakis and Maragoudakis 2005) and educa-
tion (Magerko, Heeter, and Medler 2010). Adaptive com-
puter games can use a model of the players’ skill or prefer-
ences to adapt the game in order to maximize player engage-
ment and satisfaction (Riedl et al. 2008; Thue et al. 2007).
Currently, most research on player modeling assumes that
the player property being modeled remains the same dur-
ing gameplay. For instance, in learning sciences and educa-
tional games, researchers have traditionally relied on self-
reported data to determine learner’s characteristics, such as
motivation (Magerko, Heeter, and Medler 2010). The data
collected once is typically assumed to describe the learner
over time. In research where actual gameplay behavior data
are used for player modeling, the same assumption holds.
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For instance, procedural content generation systems such
as those by Pedersen, Togelius, and Yannakakis (2009) or
Togelius, De Nardi, and Lucas (2006) observe play style
to build a model of players’ preferences and generate lev-
els to satisfy them, assuming players’ preferences will not
change within the play session. Similarly, interactive nar-
rative systems such as Passage (Thue et al. 2007) and C-
Dragger (Sharma et al. 2010), maintain a player model of
play style used to select content to present to the player. Al-
though models are updated on certain events they do not ex-
plicitly model the transitions between play styles over time.

However, in our recent study of how learners interact in an
educational game (Valls-Vargas et al. 2015), evidence sug-
gests that only 25% of our participants (n=55) adopted the
same play style throughout a play session. In contrast, the
majority of the players shifted between different play styles
(such as exploring, goal-seeking or being uninterested) (as
illustrated in Figure 1). If we cannot safely assume that the
players will play a game with a consistent play style, there
is a need for more flexible player modeling approaches that
can capture the temporal change in players’ behavior.

In this paper, we propose a novel player modeling frame-
work that relaxes the assumption of a fixed style for each
player and addresses the problem of predicting a dynamic
play style. Our framework captures changes in a player’s
behavior by using episodic information and time interval
models in a sequential machine learning approach that learns
multiple models over time. In particular, we present our find-
ings on the key problem of how to segment gameplay data
for play style prediction — what is the appropriate level of
granularity to build the dynamic player model. Our results
show that best performance in predicting dynamic play style
is obtained segmenting the trace at an intermediate granular-
ity. If the trace segmentation is too fine-grained (minute-by-
minute windows), then not enough information is present
in each segment to make meaningful predictions. If the
trace segmentation is too coarse-grained (whole game), then
the dynamics of shifting play style are not captured prop-
erly. Additionally, we show that sequential machine learning
techniques that incorporate predictions from previous seg-
ments outperform non-sequential techniques.

Our data is captured from a relatively small-scale edu-
cational game called Solving the Incognitum where players
are required to complete a series of quests to win the game.
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Figure 1: Illustration of the play style shifts observed among players in the user study (n=55). Each vertical block represents a
segment (quest or episode) of the game and is divided into 4 play styles with their size proportional to the number of participants.
The flow between blocks represent shifts on the observed play style over time.

The player property we model is their play style, derived
from motivational research in education such as Achieve-
ment Goal Theory (Elliot and McGregor 2001). In particu-
lar, we use the play style classification of goal seeker, who
primarily performs actions to win the game, and explorer,
who primarily performs actions to explore their own goals in
the game, not necessarily concerned about winning the game
(Foster 2011; Heeter 2009). We believe that our framework
for modeling dynamic play style can be generalized to other
domains where the player property of interest may change.

In the rest of the paper, we first present our frame-
work and describe how we extend the game analytics
pipeline (Canossa 2013) to support a sequential machine
learning approach to better capture dynamic play styles. Af-
ter briefly describing the game Solving the Incognitum as our
domain, we present our experiments on different strategies
to segment gameplay data and report our findings.

Background

Player modeling is an active research topic in the field
of digital entertainment. In a game environment, a player
model is an abstracted description of a player capturing
certain properties of interest such as preferences, strate-
gies, strengths or skills (Van Der Werf et al. 2003). There
has been numerous research on modeling player prefer-
ences in order to maximize engagement (Riedl et al. 2008;
Thue et al. 2007), or provide better non-player-character Al
(Weber and Mateas 2009). Player modeling has also been
used to provide insights of player behavior patterns to game
designers (Tychsen and Canossa 2008). For an overview
on player modeling, the reader is referred to recent sur-
veys of the area (Smith et al. 2011; Machado, Fantini, and
Chaimowicz 2011).

Many approaches to player modeling build upon the game
analytics pipeline (Canossa 2013). Within this framework,
there is abundant published research regarding variable and
feature selection but, to the best of our knowledge, there
is little work studying segmentation strategies for game
telemetry. The most common approach for segmentation
strategies are time windows. For example, Bifet and Gavalda
(2007) studied the use of window sizes of varying length
for segmenting changing time-series. Another approach is
to perform episodic segments. Gow et al. (2012) experi-
mented segmenting gameplay traces using enemy encoun-
ters in an unsupervised framework for play style clustering.
In our work, we will explore the use of episodic segments
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with known bounds to segment game telemetry, and we will
also compare against time window-based strategies.

Modeling Dynamic Play Style Over Time

In our prior research (Valls-Vargas et al. 2015), we recorded
gameplay data of 75 participants playing the educational
game Solving the Incognitum (details in next section), both
in the forms of screen recording and automatically logging
gameplay traces. Two researchers independently annotated
the video recordings with observed play style labels. Then
they discussed their annotations to resolve disagreements in
the play style. The guidelines used for annotation were de-
veloped from pilot gameplay data by an expert on the field.

A key observation emerged from the study: a single play
style label is not sufficient to capture how most players in-
teracted with the game. Over the average play time of 21
minutes, we observed many players exhibited different play
styles. Thus, we divided the gameplay video based on four
episodes (consistent with four quests in the game) and an-
notated them individually. From the 75 participants, we dis-
carded 19 data points due to missing data (video recording
or game logs) and 1 due to annotator disagreement. Fig-
ure 1 summarizes the annotation of the participants’ play
style (n=55) between the four quests and illustrates how they
switch between the different play styles. In the data, only
25% of our participants exhibited a consistend play style
throughout the play session.

To automatically construct a player model that can pre-
dict the play style of the majority of players at a given mo-
ment, we thus need to lift the assumption that they exhibit a
static play style. Our proposed framework is based on two
key ideas: episodic segmentation and sequential episodic
prediction. Intuitively, our approach splits gameplay traces
into segments representing self-contained parts of a game
(such as quests), which we call episodes, and performs play
style predictions at episode granularity. Episodes segment
the entire game at a granularity that is not too coarse (entire
game), as for not capturing shifting play styles, and not too
fine (minute-by-minute), as for not having enough data to do
accurate predictions. Then, our sequential machine learning
prediction scheme employs the play style prediction from
the previous episode to inform the prediction of the current
episode. Thus, our proposed framework consists of three
main steps: 1) Data acquisition, 2) Episodic segmentation
of gameplay traces, 3) Sequential episodic prediction. We
describe each of the steps in the following subsections.



Data acquisition. Since play style is time-dependent, we
require that temporal information (e.g., time stamps) is
recorded during game play. We will use the term gameplay
trace T to refer to the data collected for one individual
player u during one gameplay session.

Episodic segmentation of gameplay traces. The game-
play trace is then segmented into different pieces. We exper-
imented with three different segmentation approaches:

o Time windows: each gameplay trace T is split into a col-
lection of non-overlapping segments using a given gran-
ularity (e.g., time windows of 1 minute). The result is a
sequence W, ..., W of time windows.

o Cumulative windows: given a time granularity (e.g., 1
minute), this strategy generates a series of segments
Ct,...,C¢, where C}' = W' 4 ... + W}, i.e., the game-
play trace from the beginning and up to time .

e Episodes: this strategy splits the trace into self-contained
episodes. The concept of a self-contained episode might
vary from domain to domain. For example, episodes may
correspond to dramatic beats (Mateas and Stern 2005),
enemy encounters (Gow et al. 2012), puzzles (Sharma
et al. 2010), quests (Valls-Vargas et al. 2015) or lev-
els (Drachen, Canossa, and Yannakakis 2009). In our
game, players need to complete a tutorial, and then four
quests, which naturally yields a split into six episodes
EY, ..., B¢ (tutorial, four quests, plus all the optional
game time players spent after completing the last quest),
although our experiments only employ the episodes cor-
responding to the four quests.

Each resulting segment is converted into an abstract rep-
resentation used for learning and applying the player model.
In our experiments, we use feature vectors as our data repre-
sentation. In the rest of this paper, “train a model to predict
label L from episode E” refers to using a supervised ma-
chine learning algorithm (such as a Decision Tree or a Sup-
port Vector Machine) to predict L from the features in the
feature vectors computed from E.

Since our framework employs supervised machine learn-
ing to create player models, gameplay traces need to be an-
notated with play style labels. In our work, we only require
the episodes to be annotated (not the time windows, nor the
cumulative windows). Thus, each episode £} is labeled with
the observed play style L (goal seeker, explorer, etc.) by
hand, as we describe later. We also assigned a global play
style label L* to each gameplay trace, containing the play
style that most adequately describes the player overall.

Sequential episodic prediction. Based on the segmen-
tation strategies described above, we experimented with a
number of play style prediction strategies:

o Cumulative Prediction (Single-Label): this is a baseline
approach that does not take into account the fact that play
styles change over time.

Training: a model is trained to predict the global label L*
from feature vectors computed from the whole trace 7.

Prediction: at run time, a prediction is cast using a fea-
ture vector computed from the current trace from the be-
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ginning of the game and up to the current point in time in
a similar fashion as the cumulative windows C* work.

Cumulative Prediction (Episodic-Labels): this approach
employs the episodic play style labels L' and trains dif-
ferent models (one per episode), in order to take into ac-
count that different episodes of the game might exhibit
different distributions of play style.

Training: for each episode ¢ (quest 1, quest 2, etc.) a
model C'M; is trained to predict the episode label L}’ from
feature vectors computed from a time window from the
beginning to the end of episode i.

Prediction: at run time, a prediction is cast using a feature
vector computed from the current trace from the begin-
ning of the game and up to the current point in time (as in
C}), and then giving it to the model C'M; corresponding
to the current episode i.

Episodic Prediction: inspired by work on learning from
demonstration (Ross and Bagnell 2010), we treat each
episode separately and learn a different model to predict
play style based only on information in the episode.

Training: for each episode ¢, a model EM; is trained to
predict label L} based on a feature vector computed from
just episode E*.

Prediction: at run time, each time an episode ¢ is com-
plete, a feature vector is generated with information from
only this episode and used to predict a new play style label
with model E'M;. We experimented with this strategy us-
ing episodic, time window and cumulative segmentations.

Sequential Prediction: this approach combines two main
ideas: 1) use of the play style prediction from the pre-
vious episode as input to the prediction for the current
episode, and 2) combination of models trained at episode
granularity with models trained at more fine-grained time
windows for accurate prediction.

Training: two types of models are trained in this ap-
proach. First, for each episode ¢, a model S E M; is trained
to predict label L} based on episode E;' and on the previ-
ous label E* ; (for the first episode, a special empty label
is provided). Second, for each time window j, a model
ST M; is trained to predict the play style based on time
window W3 and the label E}* |, where i is the episode
where time window j falls.

Prediction: at run time, each time the player completes an
episode 4, an internal episodic play style prediction EL;'
is generated using model S EM; and the play style predic-
tion from episode ¢ — 1 (i.e., the prediction from the pre-
vious episode is one of the features that is given as input
to predict the next play style label). The final play style
prediction is generated using the time window models.
Assuming that the current episode the player is playing
is ¢, the time window models are used to generate a play
style prediction at regular intervals (same time granular-
ity as the time windows). Using the data form the current
time window j and EL;' ;, model ST M; is used to pre-
dict the play style of the player WL}‘ for the current time
window. This is illustrated in Figure 2. For this approach,
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Figure 2: Illustration of the sequential prediction approach.
Thick blue lines represent episodes, thick red lines repre-
sent time windows. Thin arrows indicate information used
to generate a prediction.

Figure 3: Screenshot of Solving the Incognitum where the
player can interact with exhibits related to earth sciences.

we report experiments using both time windows and cu-
mulative windows.

Solving the Incognitum

Solving the Incognitum is a game-based interactive learning
environment for teaching the relationships between geologi-
cal time and the fossil record inspired in the historic Charles
W. Peale’s Museum of Art and Science. The environment
and game mechanics have been designed to support differ-
ent learning and play styles based on Achievement Goal
Theory (AGT) (Foster 2011; Elliot and McGregor 2001).
In the game, the player can interact with museum exhibits
including fossils, minerals, strata deposits, and portraits of
renowned historical figures related to the exhibits. A screen-
shot of the game is shown in Figure 3.

The game is designed to provide different gameplay op-
tions. After a brief tutorial, Solving the Incognitum provides
goal-seekers with four main quests required to win the game.
To complete each quest, the player needs to visit a certain
set of exhibits, read the information cards associated with
them, and apply the knowledge they learn to answer related
questions. For explorers, the game contains different types
of optional exhibits, grouped based on their types and asso-
ciations to one another. The players can explore them based
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on their own interest and answer questions about certain ex-
hibits. Although they do not contribute to winning the game,
visiting optional exhibits can earn the player reward badges.

The design of the environment and the placement of the
exhibits in the game are intended to highlight different play
styles. For example, while explorers may spend time in
a specific location of their interest, goal-seekers are more
likely to move around tracking the necessary exhibits to
complete the main quest. More details of the game can be
found in our previous work (Valls-Vargas et al. 2015).

The game tracks and records a gameplay data. For ex-
ample, we purposefully require the player to hover over ex-
hibits to get related information, the game tracks the player’s
mouse location as an indicator for what she is paying atten-
tion to at the moment. The telemetry data captures move-
ment and interaction variables and can be used to recreate
the play session. There are 24 different events recorded dur-
ing a play session which are converted to 60 features'.

Experimental Evaluation

In this section we demonstrate the use of our proposed
framework for predicting play styles from gameplay data
from Solving the Incognitum. Here we describe our data col-
lection, and experimental results with different segmentation
and prediction approaches.

Data Acquisition

The data used in this paper was collected in a user study con-
ducted on 75 college freshmen. The participants were asked
to play the game individually for up to 60 minutes. We in-
tentionally did not tell them they had to complete the game
within this period of time. We used video capture software
to record their screens while the game recorded telemetry
data. From the initial 75 participants, we had to discard 20
data points. The experiments reported in this paper use the
remaining 55 gameplay traces.

The gameplay is divided into 6 episodes: A tutorial, the
4 quests required for completing the main objective and, fi-
nally, after completion of the main goal, the players are al-
lowed to continue the exploration of the game environment.
For our experiments we use only the 4 quest (episodes). Ad-
ditionally, the experiments are cropped after 20 minutes of
gameplay once they complete the tutorial. Figure 4 illus-
trates the time spent by each player to complete each quest.

After the study, two researchers used the screen capture
data to independently annotate play style for each of the
4 quests. The annotations consist of one of the following
class labels: explorer play style, goal-seeker play style, un-
interested or other. The latter two classes emerged from our
observations. Our guidelines involve looking for behaviors
regarding navigation, use of the quest tracking tools, items
visited, order of actions completed and time spent reading
and answering questions. For goal-seekers, the annotators
looked for a strategy for completing the main goal. For ex-
plorers, the annotators looked at how participants interacted
with different items based on their own interests neglecting

"More information:
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Figure 4: Distribution of the time spent in each of the 6
episodes. Each horizontal bar represents one player. The 55
gameplay traces range from 9 to 54 minutes of gameplay
(mean=21.42 min., std=8.01 min.).

the main goals of the game. Participants who were not inter-
ested in the game (did not read the material or did not make
an effort to answer the questions) were annotated as unin-
terested. An additional other label was used for confused
players or when the annotators were uncertain.

There are 87 episodes labeled as goal-seeker, 65 as ex-
plorer, 44 as uninterested and 24 as other. According to the
annotations, only 14 people exhibited a consistent play style
(i.e., had the same play style throughout the four quests), the
rest of the participants all made at least one shift. Figure 1
illustrates the observed play style shifts. For instance, par-
ticipants labeled as goal-seekers rarely switched to another
play style. Notice that these trends could be captured by our
proposed sequential prediction approach.

Results

Following the approach proposed by Mahlmann et al. (2010)
we compared algorithms from the different families avail-
able in the WEKA machine learning environment (Hall et
al. 2009). Although very simple, the algorithm that exhibited
the best performance on our dataset was OneR (a method
that employs only a single feature for prediction). It out-
performed more complex algorithms: J48 decision trees,
SVM, BayesNet and IBk (similar results have already been
reported (Holte 1993)). All the experiments use a 5-fold
cross-validation strategy and report the average accuracy in
play style prediction. All results indicated as significant were
tested for significance using the McNemar’s test (McNemar
1947) on label predictions with p < 0.01.

Episodic Trace Labeling. Our first experiment was de-
signed to validate the hypothesis that labeling play style
episode by episode provides better information than just la-
belling whole traces with a single, static, play style. For this
purpose, we compared the Cumulative Prediction (Single-
Label) and Cumulative Prediction (Episodic-Labels) models
described before.

As Figure 5 shows, the Episodic-Labels model signifi-
cantly outperformed the Single-Label model at the begin-
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Figure 5: Prediction accuracy over time or Cumulative Pre-
diction models.

ning and end of the game, and performed similarly in the
middle stages. In average, the prediction accuracies achieved
by the models are 42.36% for Single-Label, and 55.45% for
Episodic-Labels, resulting in a significant difference, which
supports our hypothesis.

Episodic Prediction. We tested the episodic prediction
model described before with several segmentation strate-
gies: episodic segmentation (based on quests), time win-
dow segmentation (using 1 minute, 2 minute and 5 minute
granularities), and cumulative windows (using 1 minute
granularity). Notice that episodic prediction with cumula-
tive segmentation is equivalent to the Cumulative Prediction
(Episodic-Labels) model described before.

Figure 6 shows the prediction accuracy achieved over
time for each segmentation strategy. Considering episodic
granularity, the accuracies for predicting play style for each
of the episodes were 52.73%, 39.99%, 60.00% and 65.45%
(in the figure, we can see that the first episode is the longest,
and the last episode only appears in minute 20). Two draw-
backs of this approach are that predictions are only com-
puted at the end of each episode (no intermediate prediction)
and that the length of the episode is not know a priori.

The cumulative approach exhibits significant improve-
ment on the classification accuracy (50.45% overall) over
the 1 minute time windows (42.76%) and slightly underper-
forms when compared to the 2 minute window (51.31%)
and 5 minute windows (52.49%). These experiments show
that episodic prediction does not significantly improve per-
formance with respect to Cumulative Prediction (Episodic-
Labels), and when time windows are small (e.g. 1 minute)
performance is lower.

Sequential Prediction. Finally, we evaluated the perfor-
mance of the sequential prediction approach. As Figure 7
shows, results are significantly better than both cumulative
models and episodic models. The average accuracy for 1
minute time window is 59.65% (compared to 42.76% for
the episodic model), 61.06% for the 2 minute window (up
from 51.31% for the episodic model), and 58.97 for the 5
minute window (up from 52.49% for the episodic model).
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Figure 6: Prediction accuracy over time for the episodic
prediction approach with different segmentation strategies.
Quest is an episodic segmentation using the quests required
to complete the game, 1, 2 and 5 minute time windows, and,
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Figure 7: Prediction accuracy for the sequential approach
with different segmentation strategies (time windows and
cumulative). Quest is shown only for reference, to compare
results with those from the episodic models from Figure 6.

The accuracy with cumulative windows was 59.85% (com-
pared to 50.45% for the episodic model). Notice that these
differences are significant, and show evidence that taking
into account both the fact that player style changes over time,
and the fact that the play style of a player in a given episode
depends on her play style in the previous episodes are rele-
vant contributions in our approach.

Discussion

Our results confirm that to model and predict dynamic play
styles, performing an informed segmentation of a gameplay
trace is necessary. By using an episodic segmentation for
assigning play style annotations and for learning different
models over time, we were able to better capture behavioral
trends over the course of the play session.

The results also shows that our sequential prediction ap-
proach, which feeds forward information from episodic pre-
dictions as prior information for subsequent episodic or time
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interval predictions, substantially improves the accuracy of
predictions for play style. The performance improvement
can be attributed to the fact that feeding forward episodic
information to subsequent episodes encodes conditional de-
pendencies in play style tendencies (as seen in Figure 1).

The plots in the previous section illustrate two interesting
phenomena related to our methodology and our dataset. We
observed poor performance during the first few minutes of
game play when there is not enough feature information in
the time windows nor prior play style information. Thus, the
predictive models basically cast predictions biased toward
the explorer play style (exhibited by 54.54% of the play-
ers in the first episode). After the first few minutes, as more
information becomes available, the prediction accuracy in-
creases significantly and then, once predictions for previous
episodes become available, the accuracy performance is sus-
tained over 60%. The second phenomenon observed toward
the end of the play session (after minute 15) is a drop in per-
formance and unstable behavior, specially in the time mod-
els that do not use prior information. This is attributed to the
fact that, as participants finish the game, less information
is available for training and evaluating the models (39/55
traces at minute 15, 25/55 traces at minute 20).

Conclusions and Future Work

This paper presented an approach to dynamic play style pre-
diction based on episodic segmentation of gameplay traces
and sequential machine learning. Our approach is based
on existing evidence showing that players shift play styles
within a play session. This dynamic nature of play style un-
dermines player modeling approaches that assume a static
play style. The proposed sequential machine learning ap-
proach trains multiple models that include play style predic-
tions from previous time intervals in order to consider how
players change play style over time. We compared our pro-
posed approach to a collection of other approaches assuming
static play style or assuming changing play style but without
taking into account previous play style predictions.

The results of our experimental evaluation show that fine-
grained time windows do not provide enough information
for casting meaningful predictions, and that casting predic-
tions at the whole-trace level does not properly capture the
dynamic nature of play style. Thus, we proposed an inter-
mediate granularity episodic segmentation approach, which
provides a good balance and results in better performance.
Also, our experiments show that a sequential machine learn-
ing approach outperforms non-sequential, techniques.

As part of our future work we plan on incorporating this
player modeling approach into an experience manager. We
would like to continue our research on episodic segmen-
tation and explore methodologies that automatically deter-
mine optimal segmentation. We are interested in issues re-
lated to change point detection that enable the identification
of the exact moment when play style change happens.
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