
Using Lanchester Attrition Laws for Combat Prediction in StarCraft

Marius Stanescu, Nicolas Barriga, and Michael Buro
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8
{astanesc|barriga|mburo}@ualberta.ca

Abstract

Smart decision making at the tactical level is important for
Artificial Intelligence (AI) agents to perform well in the do-
main of real-time strategy (RTS) games. Winning battles is
crucial in RTS games, and while humans can decide when
and how to attack based on their experience, it is challenging
for AI agents to estimate combat outcomes accurately.
A few existing models address this problem in the game of
StarCraft but present many restrictions, such as not modeling
injured units, supporting only a small number of unit types, or
being able to predict the winner of a fight but not the remain-
ing army. Prediction using simulations is a popular method,
but generally slow and requires extensive coding to model the
game engine accurately.
This paper introduces a model based on Lanchester’s attri-
tion laws which addresses the mentioned limitations while
being faster than running simulations. Unit strength values
are learned using maximum likelihood estimation from past
recorded battles. We present experiments that use a StarCraft
simulator for generating battles for both training and testing,
and show that the model is capable of making accurate pre-
dictions. Furthermore, we implemented our method in a Star-
Craft bot that uses either this or traditional simulations to
decide when to attack or to retreat. We present tournament
results (against top bots from 2014 AIIDE competition) com-
paring the performances of the two versions, and show in-
creased winning percentages for our method.

Introduction
A Real-Time Strategy (RTS) game is a video game in which
players gather resources and build structures from which dif-
ferent types of units can be trained or upgraded in order to
recruit armies and command them into battle against oppos-
ing armies. RTS games are an interesting domain for Artifi-
cial Intelligence (AI) research because they represent well-
defined complex adversarial environments and can be di-
vided into many interesting sub-problems (Buro 2004). Cur-
rent state of the art AI systems for RTS games are still not
a match for good human players, but the research commu-
nity is hopeful that by focusing on RTS agents to compete
against other RTS agents we will soon reach the goal of de-
feating professional players (Ontanón et al. 2013)

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For the purpose of experimentation, the RTS game Star-
Craft 1 is currently the most common platform used by the
research community, as the game is considered well bal-
anced, has a large online community of players, and features
an open-source programming interface (BWAPI 2).

RTS games contain different elements aspiring players
need to master. Possibly the most important such component
is combat in which each player controls an army (consisting
of different types of units) and is trying to defeat the oppo-
nent’s army while minimizing its own losses. Winning such
battles has a big impact on the outcome of the match, and as
such, combat is a crucial part of playing RTS games profi-
ciently. However, while human players can decide when and
how to attack based on their experience, it is challenging for
current AI systems to estimate combat outcomes.

(Churchill and Buro 2012) estimate the combat outcome
of two armies for node evaluation in their alpha-beta search
which selects combat orders for their own troops. Similarly,
(Stanescu, Barriga, and Buro 2014b; 2014a) require esti-
mates of combat outcomes for state evaluation in their hi-
erarchical search framework and use a simulator for this
purpose. Even if deterministic scripted policies (e.g., “at-
tack closest unit”) are used for generating unit actions within
the simulator (Churchill, Saffidine, and Buro 2012), this pro-
cess is still time intensive, especially as the number of units
grows.

(Stanescu et al. 2013) recognize the need for a fast pre-
diction method for combat outcomes and propose a prob-
abilistic graphical model that, after being trained on simu-
lated battles, can accurately predict winners. While being a
promising approach, there are several limitations that still
need be addressed:
• the model is linear in the unit features, i.e. the offensive

score for a group of 10 marines is ten times the score for
1 marine. While this could be accurate for close-ranged
(melee) fights, it severely underestimates being able to fo-
cus fire in ranged fights (this will be discussed in depth
later)

• their model deals with only 4 unit types so far, and scaling
it up to all StarCraft units might induce training problems
such as overfitting and/or accuracy reduction

1http://en.wikipedia.org/wiki/StarCraft
2http://code.google.com/p/bwapi/

Proceedings, The Eleventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15)

86

• it only predicts the winner but not the remaining army size

• all units are treated as having maximum hit points, which
does not happen often in practice; there is no support for
partial hit points

• all experiments are done on simulated data, and

• correlations between different unit types are not modeled.

In this paper we introduce a model that addresses the first
five limitations listed above, and we propose an extension
(future work) to tackle the last one. Such extensions are
needed for the model to be useful in practice, e.g. for speed-
ing up hierarchical search and adjusting to different oppo-
nents by learning unit strength values from past battles.

We proceed by first discussing current combat game state
evaluation techniques and Lanchester’s battle attrition laws.
We then show how they can be extended to RTS games and
how the new models perform experimentally in actual Star-
Craft game play. We finish with ideas on future work in this
area.

Background
As mentioned in the previous section, the need for a fast pre-
diction method for combat outcomes has already been rec-
ognized (Stanescu et al. 2013). The authors propose a proba-
bilistic graphical model that, after being trained on simulated
battles, can accurately predict the winner in new battles. Us-
ing graphical models also enables their framework to output
unit combinations that will have a good chance of defeating
some other specified army (i.e., given one army, what other
army of a specific size is most likely to defeat it?).

We will only address the first problem here: single battle
prediction. We plan to use our model for state evaluation in
a hierarchical search framework similar to those described
in (Stanescu, Barriga, and Buro 2014a) and (Uriarte and
Ontañón 2014). Consequently, we focus on speed and ac-
curacy of predicting the remaining army instead of only the
winner. Generating army combinations for particular pur-
poses is not a priority, as the search framework will itself
produce different army combinations which we only need to
evaluate against the opposition.

Similarly to (Stanescu et al. 2013), our model will learn
unit feature weights from past battles, and will be able to
adjust to different opponents accordingly. We choose maxi-
mum likelihood estimation over a Bayesian framework for
speed and simplicity. Incorporating Lanchester equations
in a graphical model would be challenging, and any com-
plex equation change would require the model to be re-
designed. The disadvantages are that potentially more bat-
tles will be needed to reach similar prediction accuracies and
batch training must be used instead of incrementally updat-
ing the model after every battle.

There are several existing limitations our model will ad-
dress:

• better representation of ranged weapons by unit group val-
ues depending exponentially on the number of units in-
stead of linearly,

• including all StarCraft unit types,

• adding support for partial hit points for all units involved
in the battle, and

• predicting the remaining army of the winner.

Lanchester Models
The seminal contribution of Lanchester to operations re-
search is contained in his book “Aircraft in Warfare: The
Dawn of the Fourth Arm” (Lanchester 1916). He starts by
justifying the need for such models with an example: con-
sider two identical forces of 1000 men each; the Red force
is divided into two units of 500 men each which serially en-
gage the single (1000 man) Blue force. According to the
Quadratic Lanchester model (introduced below), the Blue
force completely destroys the Red force with only moderate
loss (e.g., 30%) to itself, supporting the “concentration of
power” axiom of war that states that forces are not to be di-
vided. The possibility of equal or nearly equal armies fight-
ing and resulting in relatively large winning forces are one
of the interesting aspects of war simulation based games.

Lanchester equations represent simplified combat mod-
els: each side has identical soldiers, and each side has a
fixed strength (no reinforcements) which governs the pro-
portion of enemy soldiers killed. Range, terrain, movement,
and all other factors that might influence the fight are either
abstracted within the parameters or ignored entirely. Fights
continues until the complete destruction of one force (which
Lanchester calls a “conclusion”). The equations are valid un-
til one of the army sizes is reduced to 0.

Lanchester’s Linear Law is given by the following dif-
ferential equations:

dA

dt
= −βAB and

dB

dt
= −αBA ,

where t denotes time and A,B are the force strengths (num-
ber of units) of the two armies assumed to be functions of
time. Parameters α and β are attrition rate coefficients rep-
resenting how fast a soldier in one army can kill a soldier in
the other. The equation is easier to understand if one thinks
of β as the relative strength of soldiers in army B; it influ-
ences how fast army A is reduced. The pair of differential
equations above may be combined into one equation by re-
moving time as a variable:

α(A−A0) = β(B −B0) ,

where A0 and B0 represent the initial forces. This is called
a state solution to Lanchester’s differential equation system
that does not explicitly depend on time). The origin of the
term linear law is now apparent because the last equation
describes a straight line.

Lanchester’s Linear Law applies when one soldier can
only fight one other soldier at a time. If one side has more
soldiers some of them won’t always be fighting as they wait
for an opportunity to attack. In this setting, the casualties
suffered by both sides are proportional to the number actu-
ally fighting and the attrition rates. If α = β, then the above
example of splitting a force into two and fighting the enemy
sequentially will have the same outcome as without splitting:

87

a draw. This was originally called Lanchester’s Law of An-
cient Warfare, because it is a good model for battles fought
with edge weapons.

Lanchester’s Square Law is given by:
dA

dt
= −βB and

dB

dt
= −αA .

In this case, the state solution is

α(A2 −A0
2) = β(B2 −B0

2) .

Increases in force strength are more important than for the
linear law, as we can see from the concentration of power ex-
ample. The squared law is also known as Lanchester’s Law
of Modern Warfare and is intended to apply to ranged com-
bat, as it quantifies the value of the relative advantage of
having a larger army. However, the squared law has nothing
to do with range – what is really important is the rate of ac-
quiring new targets. Having ranged weapons generally lets
your soldiers engage targets as fast as they can shoot, but
with a sword or a pike to which the Linear Law applies one
would have to first locate a target and then move to engage
it.

The general form of the attrition differential equations is:
dA

dt
= −βA2−nB and

dB

dt
= −αB2−nA ,

where n is called the attrition order. We have seen previ-
ously that for n = 1, the resulting attrition differential equa-
tions give rise to what we know as Lanchester’s Linear Law,
and to the Lanchester’s Square Law for n = 2. As expected,
the state solution is

α(An −A0
n) = β(Bn −B0

n) .

The exponent which is called attrition order represents the
advantage of a higher rate of target acquisition and applies
to the size of the forces involved in combat, but not to the
fighting effectiveness of the forces which is modeled by at-
trition coefficients α and β. The higher the attrition order,
the faster any advantage an army might have in combat ef-
fectiveness is overcome by numeric superiority. This is the
equation we use in our model, as our experiments suggest
that for StarCraft battles an attrition order of ≈ 1.56 works
best on average, if we had to choose a fixed order for all
possible encounters.

The Lanchester Laws we just discussed have several lim-
itations we need to overcome to apply them to RTS combat,
and some extensions (presented in more detail in the follow-
ing section) are required:
• we must account for the fact that armies are comprised of

different RTS game unit types and
• currently soldiers are considered either dead or alive,

while we need to take into account that RTS game units
can enter the battle with any fraction of their maximum
hit points.

Lanchester Model Extensions for RTS Games
The state solution for the Lanchester general law can be
rewritten as

αAn − βBn = αA0
n − βB0

n = k .

The constant k depends only on the initial army sizes A0

and B0. Hence, for prediction purposes, if αA0
n > βB0

n

then PA wins the battle. If we noteAf andBf to be the final
army sizes, then Bf = 0 and αA0

n − βB0
n = αAf

n − 0
and we can predict the remaining victorious army size Af .

To use the Lanchester laws in RTS games, a few exten-
sions have to be implemented. Firstly, it is rarely the case
that both armies are composed of a single unit type. We
therefore need to be able to model heterogeneous army com-
positions. To this extent, we replace army effectiveness α
with an average value αavg . Assuming that army A is com-
posed of N types of units, then

αavg =

∑N
i=1 aiαi

A
=

∑A
j=1 αj

A
,

where A is the total number of units, ai is the number of
units of type i and αi is their combat effectiveness. Alter-
natively, we can sum over all individual units directly, αj

corresponding to unit j.
Consequently, predicting battle outcomes will require a

combat effectiveness (we can also call it unit strength for
simplicity) for each unit type involved. We start with a de-
fault value

αi = dmg(i)HP(i) ,

where dmg(i) is the unit’s damage per frame value and
HP(i) its maximum number of hit points. Later, we aim to
learn ααα = {α1, α2, . . .} by training on recorded battles.

The other necessary extension is including support for in-
jured units. Let us consider the following example: army A
consists of one marine with full health, while army B con-
sists of two marines with half the hit points remaining. Both
the model introduced by (Stanescu et al. 2013) and the life-
time damage (LTD) evaluation function proposed by (Ko-
varsky and Buro 2005)

LTD2 =
∑
u∈UA

HP(u)dmg(u)−
∑

u∈UB

HP(u)dmg(u)

would mistakenly predict the result as a draw. The authors
also designed the life-time damage-2 (LTD2) function which
departs from linearity by replacing HP(u) with

√
HP(u) and

will work better in this case.
In the time a marine deals damage equal to half its health,

army B will kill one of army A’s marines, but would also
lose his own unit, leaving army A with one of the two initial
marines intact, still at half health. The advantage of focus-
ing fire becomes even more apparent if we generalize to n
marines starting with 1/n health versus one healthy marine.
Army A will only lose one of its n marines, assuming all
marines can shoot at army B’s single marine at the start of
the combat. This lopsided result is in stark contrast to the
predicted draw.

Let’s model this case using Lanchester type equations.
Denoting the attrition order with o, the combat effectiveness
of a full health marine with m and that of a marine with 1/n
health as mn, we have:

nomn − 1om = (n− 1)omn =⇒ mn =
m

no − (n− 1)o

88

If we choose an attrition order between the linear (o = 1)
and the square (o = 2) laws, o = 1.65 for example, then
m2 = m/2.1383, m3 = m/2.9887 and m4 = m/3.7221.
Intuitively picking the strength of an injured marine to be
proportional with its current health mn = m/n is close
to these values, and would lead to extending the previous
strength formula for an individual unit like so:

αi = dmg(i)HP(i) · currentHP(i)
HP(i)

= dmg(i)currentHP(i).

Learning Combat Effectiveness
For predicting the outcome of combat C between armies A
and B we first compute the estimated army remainder score
µC using the generalized Lanchester equation:

µC = αCA
o − βCBo

From army A’s perspectives µ is a positive value if army A
wins, 0 in case of a draw, and negative otherwise. As pre-
viously mentioned, experiments using simulated data sug-
gest that o = 1.56 yields the best accuracy, if we had to
choose a fixed order for all possible encounters. Fighting the
same combat multiple times might lead to different results
depending on how players control their units, and we choose
a Gaussian distribution to model the uncertainty of the army
remainder score r:

PC(r) = N(r;µC , σ
2) ,

where σ is a constant chosen by running experiments. Just
deciding which player survives in a small scale fight where
units can’t even move is PSPACE-hard in general (Furtak
and Buro 2010). Hence, real-time solutions require approx-
imations and/or abstractions. Choosing a Gaussian distribu-
tion for modeling army remainder score is a reasonable can-
didate which will keep computations light.

Let us now assume that we possess data in the form of
remaining armies Af and Bf (either or both can be zero)
from a number of combats CCC = {C1, C2, . . . , Cn}. A data-
point Ci consists of starting army values Ai, Bi and final
values Aif , Bif . We compute the remainder army score Ri

using the Lanchester equation:

Ri = αCi
Ao

if − βCi
Bo

if

This enables us to use combat results for training even if no
side is dead by the end of the fight.

Our goal is to estimate the effectiveness values αi and
βi for all encountered unit types and players. The distinc-
tion needs to be made, even if abilities of a marine are the
same for both players. If the player in charge of army A is
more proficient at controlling marines then αmarine should
be higher than βmarine.

The likelihood of {ααα,βββ} given CCC and RRR =
{R1, R2, . . . , Rn} is used for approximating the com-
bat effectiveness; the maximum likelihood value can then
be chosen as an estimate. The computation time is usually
quite low using conjugate gradients, for example, and can
potentially be done once after several games or even at the
end of a game.

If we assume that the outcomes of all battles are indepen-
dent of each other and the probability of the data given the
combat effectiveness values is

P (RRR|CCC, {ααα,βββ}) =
∏
i

N(Ri;µCi
, σ2) ,

then we can express the log likelihood

L({ααα,βββ}) =
∑
i

logN(Ri;µCi
, σ2) .

The maximum likelihood value can be approximated by
starting with some default parameters, and optimizing itera-
tively until we are satisfied with the results. We use a gradi-
ent ascent method, and update with the derivatives of the log
likelihood with respect to the combat effectiveness values.
Using a Gaussian distributions helps us to keep the compu-
tations manageable.

To avoid overfitting we modify the error function we are
minimizing by using a regularization term:

Err = −L({ααα,βββ}) + γReg({ααα,βββ})
If we want to avoid large effectiveness values for example,
we can pick Reg =

∑
i α

2
i +

∑
i β

2
i . We chose

Reg =
∑
i

(αi − di)2 +
∑
i

(βi − di)2 ,

where di are the default values computed in the previous
subsection using basic unit statistics. In the experiments sec-
tion we show that these estimates already provide good re-
sults. The γ parameter controls how close the trained effec-
tiveness values will be to these default values.

Experiments and Results
To test the effectiveness of our models in an actual RTS
game (StarCraft) we had to simplify actual RTS game bat-
tles. Lanchester models do not take into account terrain fea-
tures that can influence battle outcomes. In addition, up-
grades of individual units or unit types are not yet consid-
ered, but could later be included using new, virtual units
(e.g., a dragoon with range upgrade is a different unit than a
regular dragoon). However, that would not work for regular
weapon/armor upgrades, as the number of units would in-
crease beyond control. For example, the Protoss faction has
3 levels of weapon upgrades, 3 of shields and 3 of armor, so
considering all combinations would add 27 versions for the
same unit type.

Battles are considered to be independent events that are
allowed to continue no longer than 800 frames (around 30
seconds game time), or until one side is left with no remain-
ing units, or until reinforcements join either side. Usually
StarCraft battles do not take longer than that, except if there
is a constant stream of reinforcements or one of the players
keeps retreating, which is difficult to model.

Experiments Using Simulator Generated Data
We start by testing the model with simulator generated data,
similarly to (Stanescu et al. 2013). The authors use four dif-
ferent unit types (marines and firebats from the Terran fac-
tion, zealots and dragoons from the Protoss faction), and in-
dividual army sizes of up to population size 50 (e.g., marines

89

count 1 towards the population count, and zealots and dra-
goons count 2, etc.). For our experiments, we add three more
unit types (vultures, tanks and goliaths) and we increase the
population size from 50 to 100.

The model input consists of two such armies, where all
units start with full health. The output is the predicted re-
maining army score of the winner, as the loser is assumed to
fight to death. We compare against the true remaining army
score, obtained after running the simulation.

For training and testing at this stage, we generated battles
using a StarCraft battle simulator (SparCraft, developed by
David Churchill, UAlberta3). The simulator allows battles
to be set up and carried out according to deterministic play-
out scripts, or by search-based agents. We chose the simple
yet effective attack closest script, which moves units that are
out of attack range towards the closest unit, and attacks units
with the highest damage-per-second to hit point ratio. This
policy, which was also used in (Stanescu et al. 2013), was
chosen based on its success as an evaluation policy in search
algorithms (Churchill, Saffidine, and Buro 2012). Using de-
terministic play-out scripts eliminates noise caused by hav-
ing players of different skill or playing style commanding
units.

We randomly chose 10, 20, 50, 100, 200, and 500 differ-
ent battles for training, and a test set of 500 other battles to
predict outcomes. The accuracy is determined by how many
outcomes the model is able to predict correctly. We show
the results in Table 1, where we also include corresponding
results of the Bayesian model from (Stanescu et al. 2013)
for comparison. The datasets are not exactly the same, and
by increasing the population limit to 100 and the number of
unit types we increase the problem difficulty.

The results are very encouraging: our model outperforms
the Bayesian predictor on a more challenging dataset. As
expected, the more training data, the better the model per-
forms. Switching from 10 battles to 500 battles for training
only increases the accuracy by 3.3%, while in the Bayesian
model it accounts for a 8.2% increase. Moreover, for train-
ing size 10 the Lanchester model is 6.8% more accurate, but
just 2% better for training size 500. Our model performs bet-
ter than the Bayesian model on small training sizes because
we start with already good approximations for the unit bat-
tle strengths, and the regularization prevents large deviations
from these values.

3https://code.google.com/p/sparcraft/

Table 1: Accuracy of Lanchester and Bayesian models, for
different training sets sizes. Testing was done by predicting
outcomes of 500 battles in all cases. Values are winning per-
cent averages over 20 experiments.

Number of battles in training set

Model 10 20 50 100 200 500

Lanchester 89.8 91.0 91.7 92.2 93.0 93.2

Bayesian 83.0 86.9 88.5 89.4 90.3 91.2

Increasing the training set size would likely improve the
results of the Bayesian model from 91.2% up to around 92%,
based on Figure 4 from (Stanescu et al. 2013). However, it
is likely the Lanchester model will still be 1% to 2% better,
due to the less accurate linear assumptions of the Bayesian
model. Because the ultimate testing environment is the Star-
Craft AI competition (in which bots play fewer than 100
games per match-up), we chose not to extend the training
set sizes.

Experiments in Tournament Environment
Testing on simulated data validated our model, but ulti-
mately we need to assess its performance in the actual envi-
ronment it was designed for. For this purpose, we integrated
the model into UAlbertaBot, one of the top bots in recent
AIIDE StarCraft AI competitions 4. UAlbertaBot is an open
source project for which detailed documentation is available
online5. The bot uses simulations to decide if it should attack
the opponent with the currently available units — if a win is
predicted — or retreat otherwise. We replaced the simulation
call in this decision procedure by our model’s prediction.

UAlbertaBot’s strategy is very simple: it only builds
zealots, a basic Protoss melee unit, and tries to rush the op-
ponent and then keeps the pressure up. This is why we do
not expect large improvements from using Lanchester mod-
els, as they only help to decide to attack or to retreat. More
often than not this translates into waiting for an extra zealot
or attacking with one zealot less. This might make all the dif-
ference in some games, but using our model to decide what
units to build, for example, could lead to bigger improve-
ments. In future work we plan to integrate this method into a
search framework and a build order planner such as (Köstler
and Gmeiner 2013).

When there is no information on the opponent, the model
uses the default unit strength values for prediction. Six top
bots from the last AIIDE competition6 take part in our
experiments: IceBot (1st), LetaBot (3rd), Aiur (4th), Xel-
naga (6th), original UAlbertaBot (7th), and MooseBot (9th).
Ximp (2nd) was left out because we do not win any games
against it in either case. It defends its base with photon can-
nons (static defense), then follows up with powerful air units
which we cannot defeat with only zealots. Skynet (5th) was
also left out because against it UAlbertaBot uses a hard-
coded strategy which bypasses the attack/retreat decision
and results in a 90% win rate.

Three tournaments were run: 1) our bot using simulations
for combat prediction, 2) using the Lanchester model with
default strength values, and 3) using a new set of values for
each opponent obtained by training on 500 battles for that
particular match-up. In each tournament, our bot plays 200
matches against every other bot.

To train model parameters, battles were extracted from
the previous matches played using the default weights. A
battle is considered to start when any of our units attacks or
is attacked by an enemy unit. Both friendly and opposing

4http://webdocs.cs.ualberta.ca/∼cdavid/starcraftaicomp/
5https://github.com/davechurchill/ualbertabot/wiki
6http://webdocs.cs.ualberta.ca/∼scbw/2014/

90

Table 2: Tournament results against 6 top bots from AI-
IDE 2014 competition. Three tournaments are played, with
different options for the attack/retreat decision. In the first
our bot uses simulations, and in the second the Lanchester
model with default strength values. In the third we use bat-
tles from the second tournament for training and estimat-
ing new strength values. Winning percentages are computed
from 200 games per match-up, 20 each on 10 different maps.

UAB Xelnaga Aiur MooseBot IceBot LetaBot Avg.
UAB 50.0 80.5 27.0 53.5 7.5 31.5 41.6
Sim. 60.0 79.0 84.0 65.5 19.5 57.0 60.8
Def. 64.5 81.0 80.5 69.0 22.0 66.5 63.9
Train 69.5 78.0 86.0 93.0 23.5 68.0 69.7

units close to the attacked unit are logged with their current
health as the starting state of the battle. Their health (0 if
dead) is recorded again at the end of the battle — when any
of the following events occurs:
• one side is left with no remaining units,
• new units reinforce either side, or
• 800 frames have passed since the start of the battle.

There are some instances in which only a few shots are
fired and then one of the players keeps retreating. We do not
consider such cases as proper battles. For training we require
battles in which both players keep fighting for a sustained
period of time. Thus, we removed all fights in which the
total damage was less than 80 hit points (a zealot has 160 for
reference) and both sides lost less than 20% of their starting
total army hit points. We obtained anywhere from 5 to 30
battles per game, and only need 500 for training.

Results are shown in Table 2. Our UAlbertaBot version
wins 60% of the matches against the original UAlbertaBot
because we have updated the new version with various fixes
that mainly reduce the number of timeouts and crashes, es-
pecially in the late game. For reference, we also included the
results of the original UAlbertaBot (first line in the table).

On average, the Lanchester model with learned weights
wins 6% more games than the same model with default
strength values, which is still 3% better than using simula-
tions. It is interesting to note that the least (or no) improve-
ment occurs in our best match-ups, where we already win
close to 80% of the games. Most of such games are lopsided,
and one or two extra zealots do not make any difference to
the outcome. However, there are bigger improvements for
the more difficult match-ups, which is an encouraging re-
sult.

The only exception is IceBot, which is our worst enemy
among the six bots we tested against. IceBot uses bunkers to
defend which by themselves do not attack but can load up
to four infantry units which receive protection and a range
bonus. We do not know how many and what infantry units
are inside, and the only way to estimate this is by com-
paring how much damage our own units take when attack-
ing it. These estimates are not always accurate, and further-

more, IceBot also sends workers to repair the bunkers. Con-
sequently, it is very difficult to estimate strength values for
bunkers, because it depends on what and how many units
are inside, and if there are workers close by which can (and
will) repair them. Because UAlbertaBot only builds zealots
and constantly attacks, if IceBot keeps the bunkers alive and
meanwhile builds other, more advanced units, winning be-
comes impossible. The only way is to destroy the bunkers
early enough in the game. We chose to adapt our model by
having five different combat values, one for empty bunker
(close to zero), and four others for bunker with one, two,
three or four marines inside. We still depend on good dam-
age estimations for the loaded units and we do not take into
account that bunkers become stronger when repaired, which
is a problem we would like to address in future work.

Conclusions and Future Work
In this paper we have introduced and tested generalizations
of the original Lanchester models to adapt them to making
predictions about the outcome of RTS game combat situa-
tions. We also showed how model parameters can be learned
from past combat encounters, allowing us to effectively
model opponents’ combat strengths and weaknesses. Pitted
against some of the best entries from a recent StarCraft AI
competition, UAlbertaBot with its simulation based attack-
retreat code replaced by our Lanchester equation based pre-
diction, showed encouraging performance gains.

Because even abstract simulations in RTS games can be
very time consuming, we speculate that finding accurate and
fast predictors for outcomes of sub-games – such as choos-
ing build orders, combat, and establishing expansions – will
play an important role in creating human-strength RTS game
bots when combined with look-ahead search. Following this
idea, we are currently exploring several model extensions
which we briefly discuss in the following paragraphs.

A common technique used by good human players is to
snipe off crucial or expensive enemy units and then retreat,
to generate profit. This is related to the problem of choosing
which unit type to target first from a diverse enemy army, a
challenge not addressed much in current research. Extend-
ing the current Lanchester model from compounding the
strength of all units into an average strength to using a ma-
trix which contains strength values for each own unit versus
each opponent unit might be a good starting point. This ex-
tension would enable bots to kill one type of unit and then
retreat, or to deal with a unit type which is a danger to some
of its other units. For instance, in some cases ranged units
are the only counter unit type to air units and should try to
destroy all fliers before attacking ground units.

A limitation of the current model is assuming that units
have independent contributions to the battle outcome. This
may hold for a few unit types, but is particularly wrong when
considering units that promote interactions with other units,
such as medics which can heal other infantry, or workers that
can repair bunkers. We could take some of these correlations
into account by considering groups of units as a new, virtual
unit and trying to estimate its strength.

Another limitation of our prediction model is that it com-
pletely ignores unit positions, and only takes into account

91

intrinsic unit properties. An avenue for further research is to
expand the model to take into account spatial information,
possibly by including it into the combat effectiveness val-
ues. Lastly, by comparing the expected outcome and the real
result of a battle, we could possibly identify mistakes either
we or the opponent made. AI matches tend to be repetitive,
featuring many similar battles. Learning to adjust target pri-
orities or to change the combat scripts to avoid losing an
early battle would make a big difference.

References
Buro, M. 2004. Call for AI research in RTS games. In Pro-
ceedings of the AAAI-04 Workshop on Challenges in Game
AI, 139–142.
Churchill, D., and Buro, M. 2012. Incorporating search
algorithms into RTS game agents. In AIIDE Workshop on
Artificial Intelligence in Adversarial Real-Time Games.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In AI and Inter-
active Digital Entertainment Conference, AIIDE (AAAI).
Furtak, T., and Buro, M. 2010. On the complexity of two-
player attrition games played on graphs. In Youngblood,
G. M., and Bulitko, V., eds., Proceedings of the Sixth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2010.
Köstler, H., and Gmeiner, B. 2013. A multi-objective ge-
netic algorithm for build order optimization in StarCraft II.
KI-Künstliche Intelligenz 27(3):221–233.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. Advances in Artificial Intelligence
66–78.
Lanchester, F. W. 1916. Aircraft in warfare: The dawn of
the fourth arm. Constable limited.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
TCIAIG 5(4):293–311.
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014a. Hierar-
chical adversarial search applied to real-time strategy games.
In Tenth Annual AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE).
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014b. Introduc-
ing hierarchical adversarial search, a scalable search proce-
dure for real-time strategy games. In European conference
on Artificial Intelligence.
Stanescu, M.; Hernandez, S. P.; Erickson, G.; Greiner, R.;
and Buro, M. 2013. Predicting army combat outcomes
in StarCraft. In Ninth Artificial Intelligence and Interactive
Digital Entertainment Conference.
Uriarte, A., and Ontañón, S. 2014. Game-tree search over
high-level game states in RTS games. In Tenth Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence.

92

