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Abstract

This paper discusses the development of an audio-visual
composition based on genetic algorithms strategies. The
genetic algorithm’s fitness function dynamically adjusts
the optimisation targets linked to the mechanisms re-
sponsible for the generating of drone soundscapes. The
fitness function continuously changes based on the re-
sults of an analysis of the visual elements of the artwork
thus acting as disturbance factor. In doing so, the audio
material never achieves full optimisation and constantly
shapes itself. The paper offers both a technical and aes-
thetic analysis of the development of the composition.

An algorithm is simply a series of instructions that, when
followed, achieve a specific result (Cipriani and Giri 2013)
(Dodge and Jerse 1997). In this very general sense, all art-
works, as well as many other aspect of our lives, could be
referred to as ‘algorithmic’. In reality, when the topic of al-
gorithmic composition is discussed it is limited to the appli-
cation of repeating instructions and mathematical processes
which create or control a set of sounds in a score (Supper
2001). The tradition of this particular approach has a long
history that goes beyond the advent of computers. While
algorithmic composition today is directly associated with
computer music, composers began using the idea of algo-
rithmic processes in music long before electronic computing
was widely available (Supper 2001)(Edwards 2011).

As computers became more widely available and easier to
use, the study of algorithmic composition was accelerated.
Many processes have been experimented with and applied
to the task of composition and more to the many sub-tasks
involved in the creation of music. Some of the areas that
have been thoroughly, although not exhaustively, explored
are the application of stochastic systems to create randomly
or semi-randomly controlled processes within a composi-
tion, the use of self-similar processes, and chaotic systems.
Often these are distributions weighted in various ways and
mapped to characteristics of the sounds. Maps of chaotic
mathematical systems and l-systems have also been applied
to compositional parameters.

In the late 20th century, algorithms that mimic natural se-
lection processes have been developed. These genetic algo-
rithms were initially proposed as a way to find solutions for
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problems that encompassed very large search spaces. A ge-
netic algorithm tries to create solutions that achieve a tar-
get fitness by evolving through a process of crossing par-
ent solutions that display a high fitness level. Exploration
into the application of genetic algorithms to musical tasks
began in the early to mid nineties. An early example of
genetic algorithms to music was Biles’ creation GenJam
(Biles 1994) which generated jazz solos over an accom-
panying set of chords. Since then, genetic algorithms have
been used to control granular synthesis, generate melodies,
control timbral changes, and compose pieces of music to
match the style of classical composers (Burton and Vladi-
morova 1999)(Fels and Manzolli 2002)(Fujinaga and Van-
tonne 1994)(Moroni et al. 2000).

Most of these efforts at applying genetic algorithms have
focused on achieving a specific result. The effort has been
made to reach maximal optimization which is measured by
achieving a close match to the criteria set forth in the fitness
function of the algorithm.

Genetic Algorithms are well suited for finding solutions
or sets of solutions in problems for which the potential so-
lutions are in a large search space or where there is not one
single optimal solution (Tzimeas and Mangina 2009). The
algorithms mimic the process of evolution by testing for fit-
ness in a population, ‘breeding’ the fittest candidates in a
generation’s population, mutating a small percentage of the
population and creating a new population before repeating
the fitness evaluation (Fujinaga and Vantonne 1994).

The fitness function can be described as using a deter-
ministic approach, a formalistic approach, or a user-defined
approach (Burton and Vladimorova 1999). The determinis-
tic approach describes a method of measuring fitness based
on pattern matching. In this type of system the fitness is de-
termined by how closely the results match a set of samples.
In musical examples the genetic algorithms are attempting
to match the patterns of samples scores which have been en-
tered as targets (Alfonseca, Cebrian, and Ortega 2006).

The formalistic approach attempts to find solutions that
satisfy a set of rules. In this type of algorithm a set of rules
like the rules of counterpoint are entered as mathematical
functions and the fitness is determined by how closely the re-
sults follow these rules. In the user-defined approach, human
feedback is used to determine fitness. This could take the
form of listeners pressing buttons when they hear a phrase



that they have determined to be pleasing.

Most examples of fitness functions are static in the sense
that they are trying to achieve a close match to fixed cri-
teria. A more recent development is to design the fitness
function with dynamic criteria to create a system that never
reaches an ideal state (Fels and Manzolli 2002) (Freitas and
Guimaraes 2011).These dynamic fitness functions may also
use multiple objectives to return new results based on bal-
ancing weighted criteria (Miranda, Kirke, and Zhang 2010).

The approach to the development of the a/v composition
described here is based on the use of an ever changing fit-
ness function. The fitness function is constantly being ‘dis-
rupted’ by data received from a video analysis module. The
video along with the resulting composition, comprise a sin-
gle piece of work to be presented as an installation. The dy-
namic nature of the fitness function should ensure that the
music created is evolving continuously while the video plays
and by linking the sound to the video in this manner a mean-
ingful relationship between visible and audible parts of the
work. The following sections present the technical and aes-
thetic considerations of the piece followed by a method for
implementing the system and producing the desired result.

Description of the Algorithm
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Figure 1: Map of the genetic algorithm.

An initial population is created randomly or semi-
randomly. How random the initial population is can be
weighted with distributions favouring certain characteristics
of the initial genotypes. In the system presented here, the
initial population is randomly generated. This initialisation
phase is not repeated as the genetic algorithm progresses
through its iterations. The population is tested for fitness.
The fitness function measures the characteristics of each in-
dividual in the population and ranks them according to how
closely they match the target parameters.

The fitness function deployed for the composition is for-
malistic and dynamic. A set of rules is entered which maps
the RGB value analysis from the video to sound parameters
which have been shown to affect the spectral and emotional
content of the generated soundscape. These rules can be var-
ied according to the design of the sound generating module
and tailored to the composition that the system is being ap-
plied to. On initialisation, the target value for fitness is set to
a median value (127), and the initial random population is
evaluated in the same process used in subsequent iterations
based on this figure.

The next step is the crossover stage. It is a point in the
process in which parent individuals with a higher fitness
value are selected from the evaluated population, split at a
crossover point, and recombined with each other. The result
is a new population which has a higher average fitness than
the prior generation.

Mutation is a stage, sometimes left out, which randomly
changes a small percentage of the new population. This ran-
dom change helps avoid the problem of a genetic algorithm
settling into a less than ideal solution by reaching a local
maximum. These local maxima act as ‘traps’ in genetic al-
gorithms which can cause false termination of the process
as the algorithm seems to have achieved the highest possi-
ble fitness. In the system presented here, the mutation stage
occurs after the evaluation but prior to crossover which can
be seen in Figure 1. Placing the mutation stage at this point
in the algorithm causes an altered member of the population
to crossover regardless of its own fitness, provided the in-
dividual selected for mutation would have been selected as
a parent initially. The result of placing the mutation at this
point is that mutation will have an affect on the population
rather than dying out immediately due to the sorting process.

The process then repeats. The new population is evalu-
ated for fitness and ranked accordingly. Crossover between
the best candidates is performed, mutation occurs, and the
new population is evaluated. This repetition creates a ‘gen-
erational clock’. Initial versions of the system used a timed
loop but this was eliminated later and the clock is determined
by the length of time it takes to process each iteration. This
process can be terminated when a certain number of itera-
tions have been performed.

However, the parameters that the algorithm described here
is attempting to match are shifting according to the results
offered by the RGB video analysis. Thus, by constantly
‘moving the goalpost’, the process can continue indefinitely
provided it hasn’t been instructed to terminate after a certain
time or number of iterations have passed. This termination
condition is not necessary to the system as presented, but has



been included in order to facilitate presentation of the work
within varying time constraints.

System Design

The system is entirely built in Max/MSP and Jitter. It is di-
vided into conceptual modules which work with each other
and each perform a specific part of the task. The modules are
Sound Synthesis, Video Analysis, and Genetic Algorithm.
These modules and their relationships are depicted in Figure
2.

Video Analysis

Genetic Algorithm

Sound Generation

Figure 2: Modules as they are arranged in the system.

Video analysis

The video analysis is conducted in Jitter, the graphical tool-
box for Max/MSP. Its duty is to return RGB values from a
video created and imported specifically for this composition.
RGB values were chosen for their uniform nature, i.e. - each
value is a range of 0 - 255, as opposed to HSL for example,
which are two values of 0 - 100 percent and one value of 360
degrees. Using uniform values allowed them to reconfigured
as a spectrum as depicted in Figure 3. A mean value across
the whole frame for each colour was used. The RGB values
are mapped to the parameters used in the genetic algorithm
to measure fitness. As the video plays, these values change
which means that the fitness evaluation can never reach an
ideal state. The video analysis has been kept simple in or-
der to retain clarity of purpose. The focus of the work is
on the evolution of the sound as the video plays, not on the
video analysis itself. The video playback itself will also be
kept relatively simple. While the aesthetics of evolution and
genetic techniques are being taken into account, the video
itself will not evolve. It would, of course, be possible to use
the video analysis module to feedback data from the genetic
algorithm to create an evolving visual display, however it
has been determined that this is beyond the scope of this
work. A more sophisticated approach to the development of
the video content would distract from the focus of the work,
which is the evolution of the sound and composition.

32

Green
127

Spectrum

Figure 3: Colour value spectrum.

Audio-visual and genetic algorithm mappings

The first step in the process is to create a ‘vocabulary’ to
translate colour into emotional description and translate that
description into auditory parameters. Emotional content is,
of course, subjective so this vocabulary is, to some extent,
a personal interpretation. This subjectivity should not affect
the results however, as the criteria and parameters are set in
advance which gives a set of rules against which the results
of the process can be measured and quantified.

The emotional descriptions for colour are set as shown
in Figure 3. These descriptions are mapped to parameters
based on the findings discussed in Balkwill and Thomp-
son’s paper on cross cultural emotional cues - anger/tension
created through ‘rougher’ timbres and complexity of tex-
ture, sadness through greater range of harmonics along with
slower changes to the microtonal qualities of the drone, and
joy/happiness through consonance and simplicity (Balkwill
and Thompson 1999).
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Figure 4: Mapping strategies devised.

These mappings of conceptual cues links the video anal-
ysis module to the fitness function of the genetic algorithm.
The genetic algorithm will then have its output mapped to
the a list auditory parameters in the sound synthesis mod-
ule. The parameters being controlled in the synthesis mod-
ule vary the range of partial tones to affect pitch range
and timbre of a complex waveform. The population’s min-
imum, maximum, median, and deviation from target val-
ues are returned from the genetic algorithm. These values
are used to control delay and filtering parameters along
with frequency and granulation parameters to affect spa-
tial and timbral cues. Combining these factors will produce
a drone which has evolving microtonal qualities mapped



to a predetermined set of rules based on the emotional
designations given to the RGB values. Short demonstra-
tions of the resulting a/v composition can be viewed at
https://vimeo.com/album/2961623.

Aesthetic Considerations

The idea of evolution in art has been explored for a relatively
long time. Evolutionary computational techniques have been
applied to visual media and auditory media in many ways.
As correctly pointed out by McCormack (2014), ‘the basis
of all generative art resides in its engagement with process’.
This, however, does not allow for an exhaustive aesthetic
analysis of the artwork per se. Indeed, if the generative pro-
cess is at the core of the artistic intent, the modalities with
which the process is executed and interpreted can probably
provide better means for an aesthetic analysis. These two
elements are ‘intimately intertwined’ (ibidem). In light of
these considerations, it is useful to justify the choices that led
to the implementation of the genetic algorithm and its spe-
cific modalities of deployment alongside other artistic prac-
tises it touches upon.

A musical analysis of the presented artwork provides a
first element of discussion. The concept at the heart of the
proposed compositional work explores the timelessness of
change just as evolution is infinite and constantly chang-
ing. One of the primary features of the resulting acoustic
output is an ever changing drone-like soundscape. By us-
ing a single sound over an extended period of time, the
sound becomes a container for subtle variations, a canvas
for small timbral changes to be heard against. The sound
becomes a backdrop to its own details. The duration of the
sound forces its audience to listen differently, to notice the
smaller variations that wouldn’t normally be apparent. This
extended duration can test the limits of concentration and
can suspend the perception of time (Demers 2010) (Voegelin
2010). In this composition, the concept of evolutionary time
is explored through this extended duration. In the words of
Joanna Demers, drone music becomes a ‘maximal sound ob-
jects’ that avoids development ‘according to the standards
of non electronic western music’ and soundscape practices.
Yet, through an aesthetic of excess that materialises over
long stretches of time testing our listening concentration and
perceiving of time, the composition develops via the ‘tension
between stasis and action’ (ibidem). The proposed algorithm
becomes then the technical means to the achievement of this
aesthetic goal.

The everlasting feature is provided by the combination of
the seeming unpredictability of the genetic algorithm and the
dynamic character of the fitness function which avoids the
reaching of a prefixed target. The video source is the element
enabling for the dynamic attribute of the fitness function. In
that regard, the video artwork and the musical output are not
necessarily linked by any predetermined idea. The system
was indeed tested with several video sources, from abstract
to real footage. This approach, however, depicts an aesthetic
which aims at providing a link, if even speculative, between
visual content and sonic output. This link, if supported by a
knowledge of the algorithm in place, is therefore exclusively
subjective and created in the mind of the observer. However,
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provided the aesthetic of utopian excess, extended duration,
perception of time and phenomenology, the authors have ex-
perimented with randomly generated colour pixel noise. It is
believed, however, that a post-modern psychedelic approach
to the development of the video material, such as kaleido-
scopic fractals, is also a valid approach that will be investi-
gated in the near future.

Conclusions

This paper has presented and discussed the idea for a geneti-
cally generated a/v drone composition in which the analysis
of the video source influenced the fitness function causing it
to change endlessly.

The combination of video art with sound art is not a new
one, but is a tradition that has often been revisited as new
avenues of study and research become available. The pa-
per offered both a technical and aesthetic discussion on the
premises of the presented work. As the appropriation of the
work predominantly comes via a refined aesthetic approach,
future works will aim towards a more clear definition of the
modalities in which the artwork (or a series of the pieces
in which the same system is deployed) can be presented.
Currently, these may include digital format distribution over
the internet, public multimedia installations, a/v concert per-
formances. From a technical perspective, future work may
include creating a closed loop in which the video not only
drives the sound but the sound feeds back into the system
affecting the video output. Additionally, the use of colour-
spaces which more accurately reflect human visual percep-
tion and video analysis using shape or edge detection are
being explored.
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