

Architectural Issues for Compositional Dialog in Games

Ian Horswill
Northwestern University
ian@northwestern.edu

Abstract
Making a game that supports generative conversation with
NPCs involves a number of technical and design challenges,
ranging from designing new game mechanics to making a
Prolog interpreter run under Unity. I discuss the software
architecture of a game, scheduled for initial release in spring
2015, that attempts to solve some of these problems.

 Introduction
There has been surprisingly little NLP in the character AI
of shipped games. While parser-based interactive fiction
systems (Short, 2011), such as Adventure (Crowther &
Woods, 1976), provide a user-interface based on typed
imperative sentences, they rely entirely on procedural
attachment (i.e. they produce no internal logical form) and
typically have little, if any character AI. Façade had very
sophisticated character AI, but it's natural language system
had no compositional semantics (Mateas & Stern, 2004).
More recent conversation-oriented games such as Versu
(Evans & Short, 2014) and Prom Week (McCoy, et al.,
2011) have abandoned typed input entirely, in favor of
menus of fixed dialog options. This is not to say there
aren't examples of sophisticated NLP in games; many
researchers have developed research prototypes (Reed et
al., 2011) or used games as test beds for NL research
(Endrass, et al., 2014; Koller, et al., 2004). But I have been
unable to find instances of shipped games with gameplay
that involves compositional NLP.
 There are a number of reasons for this. Current game
genres do not provide good opportunities for this kind of
interaction [ANONYMIZED], and so new game
mechanics and genres must be developed to support them.
And complex AI systems do not generally fit well into the
run-time environments of conventional game engines
where 1 millisecond per frame is considered a lot of CPU.

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 In this paper, I discuss the issues in integrating simple
compositional dialog into a tile-based RPG game,
scheduled for initial release in spring 2015. I will talk
briefly about designing game mechanics for this kind of
interaction, and then discuss designing character AI and
NLP that fit cleanly into a contemporary game engine.

Game Design
The game (working title, MKULTRA) is a mystery set in an
alternate history where the CIA’s mind control
experiments of the 50s, 60s, and 70s, have borne fruit. Its
technical goal is to bring composition NL dialog and full
reactive planning to simulationist games such as The Sims
and Versu. Gameplay involves two primary mechanics,
information gathering through dialog with NPCs
(particularly question answering), and mind control, where
players solve problems by injecting false beliefs into the
knowledge bases of NPCs to manipulate their behavior.
Space precludes a more detailed discussion of the design
issues with the game; see [ANONYMIZED] for further
discussion.
 One of the primary design challenges is to make a fluid
user interface for typed NL input. Parser-based games are
prone to “hunt the verb” gameplay where the player flails
trying to find an input the system will understand.
MKULTRA uses a bidirectional grammar, allowing it to
display possible valid completions of a player’s input as
they type. This both reduces typing time and unobtrusively
exposes the player to examples of the system’s grammar
and lexicon.

Architecture
The system is built on Unity3D. AI code uses a custom
Prolog interpreter designed to interoperate well with Unity.

Games and Natural Language Processing: Papers from the AIIDE Workshop

15

Framework architecture
Each character runs as a separate AI system with a separate
knowledgebase; all inherit from a shared, global KB. Each
KB contain both a standard Prolog database, and a separate
eremic logic (Evans, 2010) database used as
blackboard/working memory, and for communication with
Unity components.
 The control architecture can be thought of as a least-
common-denominator reactive planning system (Bonasso
et al., 1997; Mateas & Stern, 2002). Characters are
structured as a set of “concerns” that can record local
state, process event messages, propose and score actions,
and create and destroy subconcerns.

Events
Characters are primarily event-driven. Low level C# code
sends event messages to the AI system, which dispatches
them to the relevant concerns. After all events have been
processed for a given tick, the system selects an action.
Actions are considered a kind of event, so once an action is
executed, it is reported back to the character and other
characters in the area as an event.
 Events are represented as event descriptions (Prolog
terms). While not very expressive – we can’t, for example,
distinguish two separate events that happen to have the
same description – it’s fast and sufficient for our needs.

Construals
Events in the real world don’t have unique descriptions.
“I’d like a gin and tonic” is always an assertion; when
addressed to a bartender, it’s also a request for a drink, but
not when uttered at an Alcoholic’s Anonymous meeting.
 Multiple description is modeled using a two-place
relation, construe(𝐴,𝐵), which states that any event with
description 𝐴 also has description 𝐵. When handling
events, characters compute the set of all construals of the
event and process each construal. This allows a more
modular implementation of the kinds of detailed reasoning
about social norms and their violations seen in Versu. For
example, the Prolog rules:

construe(request(Agent, Patient, _),
 uppity_act(Agent)) :-
 subordinate(Agent, Patient).
construe(uppity_act(Agent),
 norm_violation(Agent)).

State that requests by subordinates to their superiors are
uppity (a gross oversimplification, over course), and that
uppity acts are norm violations.

Action selection and problem solving
Selection of actions to deliver to the game engine is
performed using a variant of the utility-based methods
found in recent AI games like Prom Week and Versu.
Concerns are first polled to propose actions. Then, for
each proposed action, its construals are computed, and
each concern is polled to score each construal. The system
then executes the action with the best overall score:

arg max
!∈actions

score(𝑐,𝑑)
!∈construals !
!∈concerns

 To extend this scheme to handle subgoaling and
planning, we use an on-line problem solver based on
Sibun’s Salix (1992), which was in turn based on
McDermott’s NASL (McDermott, 1978). Given a task 𝑇
to perform, it proposes it for immediate execution if it is an
action. Otherwise, it determines all possible strategies
(decompositions) for T. If there is only one, it executes it.
If there are multiple strategies, it recursively searches for a
metastrategy to resolve the conflict. Custom
metastrategies can be specified for a task domain, such as
Salix’s strategies for discourse planning. In the absence of
a custom metastrategy, it chooses a generic strategy, such
as utility-based scoring, the use of a preference relation, or
random selection.

Natural language processing
The natural language system handles single-clause
utterances, optionally wrapped in one or more modal verbs.
Thus LFs have the form:

𝑄(□(¬ 𝐴! 𝑥! ∧ … ∧ 𝐴! 𝑥! ∧ 𝑃 𝑦!,… , 𝑦!))

Where 𝑄 is a sequence of zero or more quantifiers, □ is
zero or more modal operators, the negation is optional, the
𝐴! are predicates for intersective adjectives, and 𝑃 is the
predicate for the interior clause. Although the grammar
supports quantifiers in the style of Montague’s (1973) PTQ
semantics, I don’t currently have a use case for quantified
NPs in actual game dialog. Anaphora resolution is not yet
implemented, but the restriction to single-clause sentences
should allow the use of relatively simple anaphora
resolution.

Low-level parsing and generation
The parser-generator began as a very heavily modified
version of the definite clause grammar of Pereira and
Shieber (1987), extended to be efficiently bidirectional,
and to support mood, polarity, tense, aspect, person,
number, and gender features, as well as a number of

16

grammatical constructions such as pronouns and PPs that
were not previously supported.
 DCGs offer a number of advantages for games: they’re
relatively easy to make bidirectional; they’re very easy to
implement; and they can also be salted with raw Prolog
code to execute during the parsing process. In addition,
quips (i.e. human authored dialog, Short, 2011) are easily
added as specialized, character-specific productions. They
generalize the slotted string mechanisms used in recent
games and IF systems (Evans & Short, 2014; Montfort,
2007; Nelson, 2006).

Discourse planning
Larger scale generation is based on Sibun’s Salix (1992)
discourse planner. The primary appeal of Salix is its
incrementality, since this allows planning time to be spread
out over many update cycles of the game engine, while still
allowing the character to being speaking as soon as the first
increment has been chosen. However, actually making
Salix run in the polled architecture of a game engine
required a major rewrite using explicit continuations so as
to support interruptibility and durative actions.

Conversation and interaction rituals
Ritualized interactions between characters are usually
implemented as state machines, which can be painful to
code and debug. We use a generalization of DCGs one
might call “event logic grammars.” For example, the rules:

conversation >--> opening, content, closing.
opening >--> [greet(I,R), greet(R,I)].
closing >--> { partner(P) }, [exit_ss(P)].
closing >--> [parting(X, Y), parting(Y, X)].

state that a conversation begins with an opening, which
consists of a greeting from the initiator I to the recipient R,
followed by a reciprocal greeting from R to I. It ends with
a closing, which consists either of an exchange of partings
initiated by either conversational partner, or by one’s
partner exiting one’s social space (i.e. walking away).
 ELGs reduce coordination to a parsing problem. Let
𝐿(𝐺) be the language generated by the event grammar.
Then after a sequence of events 𝑠, the possible next events
are simply the possible events 𝑒 for which 𝑠 + 𝑒 is a prefix
of some string in 𝐿(𝐺), i.e. 𝐸 = 𝑒 ∃𝑠!. (𝑠 + 𝑒 + 𝑠′) ∈
𝐿(𝐺)}. 𝐸, which is easily computed using a variant of
DCG parsing, is the set of relevant events to listen for.
Moreover, the set of possible actions the character can
perform at this point is simply the subset of 𝐸 for which
the character is the agent.

References
Bonasso, P., Firby, R. J., Gat, E., & Kortenkamp, D. (1997).
Experiences with an Architecture for Intelligent Reactive Agents.
Journal of Theoretical and Experimental Artificial Intelligence,
9(2-3).
Crowther, W., & Woods, D. (1976). Colossal Cave Adventure.
Endrass, B., Klimmt, C., Mehlmann, G., Andre, E., & Roth, C.
(2014). Designing User-Character Dialog in Interactive
Narratives: An Exploratory Experiment. IEEE Transactions on
Computational Intelligence and AI in Games, 6(2), 166–173.
Evans, R. (2010). Introducing Exclusion Logic as a Deontic
Logic. In Deontic Logic in Computer Science, Proceedings of the
10th International Conference, DEON 2010, Lecture Notes in
Computer Science Volume 6181 (pp. 179–195). Fiesole, Italy:
Springer.
Evans, R., & Short, E. (2014). Versu - A Simulationist
Storytelling System. IEEE Transactions on Computational
Intelligence and AI in Games, 6(2), 113–130.
Koller, A., Debusmann, R., Gabsdill, M., & Striegnitz, K. (2004).
Put my galakmid coin into the dispenser and kick it:
Computational Linguistics and Theorem Proving in a Computer
Game. Journal of Logic, Language and Information, 13(2), 187–
206.
Mateas, M., & Stern, A. (2002). A Behavior Language for Story-
Based Agents. IEEE Intelligent Systems, 17(4), 39–47.
Mateas, M., & Stern, A. (2004). Natural Language Understanding
in Façade: Surface-text Processing. In Technologies for
Interactive Digital Storytelling and Entertainment (TIDSE).
Darmstadt, Germany.
McCoy, J., Treanor, M., Samuel, B., Wardrip-Fruin, N., &
Mateas, M. (2011). Comme il Faut: A System for Authoring
Playable Social Models. In V. Bulitko & M. O. Riedl (Eds.),
Proceedings of the 7th AI and Interactive Digital Entertainment.
Stanford, CA: AAAI Press.
McDermott, D. (1978). Planning and acting. Cognitive Science,
2(2), 71–100.
Montague, R. (1973). The proper treatment of quantification in
ordinary English. In P. Suppes, J. Moravcsik, & J. Hintikka
(Eds.), Approaches to Natural Language: Proceedings of the
1970 Stanford Workshop on Grammar and Semantics (pp. 221–
242). Dordrect, NL.
Montfort, N. (2007). Generating Narrative Variation in
Interactive Fiction. University of Pennsylvania.
Nelson, G. (2006). Inform 7.
Pereira, F. C. N., & Shieber, S. (1987). Prolog and Natural
Language Analysis. Brookline, MA: Microtome Publishing.
Reed, A. A., Samuel, B., Sullivan, A., Grant, R., Grow, A.,
Lazaro, J., … Wardrip-Fruin, N. (2011). A Step Towards the
Future of Role-Playing Games: The SpyFeet Mobile RPG
Project. In Proceedings of the Seventh Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-11).
Stanford, CA.
Short, E. (2011). NPC Dialog Systems. (K. Jackson-Mead & J. R.
Wheeler, Eds.)IF Theory Reader. Boston, MA: > Transcript On
Press.
Sibun, P. (1992). Locally Organized Text Generation. University
of Massachusetts, Amherst.

17

