

The Future of Procedural Content Generation in Games

Gillian Smith
Northeastern University, Playable Innovative Technologies Group

360 Huntington Ave, 100 ME, Boston MA 02115
gillian@ccs.neu.edu

Abstract
The future of procedural content generation (PCG) lies
beyond the dominant motivations of “replayability” and
creating large environments for players to explore. This
paper explores both the past and potential future for PCG,
identifying five major lenses through which we can view
PCG and its role in a game: data vs. process intensiveness,
the interactive extent of the content, who has control over
the generator, how many players interact with it, and the
aesthetic purpose for PCG being used in the game. Using
these lenses, the paper proposes several new research
directions for PCG that require both deep technical research
and innovative game design.

 Introduction
There is a strong community of both researchers and
practitioners around procedural content generation (PCG),
largely devoted to furthering technical research in how to
create content generators that are controllable and
expressive (Togelius et al. 2011; Hendrikx et al. 2011).
PCG makes many promises to designers—the replayability
that can come from many different potential experiences
for a player, the shifting of design burden from designer
and artist to programmer, the ability to adapt content to
meet player’s desires, and environments larger than
feasible to author by hand for the player to explore.
Though not all of these promises are fulfilled, these
appeals have driven technical research in PCG, resulting in
research that typically focuses on personalization
(Yannakakis and Togelius 2011) and PCG interaction with
designers (Liapis, Yannakakis, and Togelius 2013; G.
Smith, Whitehead, and Mateas 2011). This research tends
to concern itself with trying to improve that which is
already present in games, asking questions such as can
PCG make Mario more fun for players (Shaker et al.
2011)? How can designers create levels more efficiently or

Copyright © 2014, Association for the Advancement of Artificial

more creatively (Liapis, Yannakakis, and Togelius 2013)?
How can quests be adapted to best suit individual players
(Thue, Bulitko, and Spetch 2008)?
 Even the most innovative games typically use PCG in
similar ways and for similar aesthetic goals. The aesthetics
of discovery and challenge are common to most games that
use PCG, and even games that use PCG as a mechanic
(Hastings, Guha, and Stanley 2009; Risi et al. 2012; G.
Smith et al. 2012). Are infinitely explorable environments
and adaptive gameplay the best we have to hope for from
PCG in game design? These are noble goals, to be sure, but
surely not the only ones that should be motivating a
community of researchers and designers.
 This paper envisions new futures for PCG, and its
potential to drive radical innovation in the kinds of games
we can make. It contributes a theory for how PCG has been
used in the past up until today: how has it changed in the
last several decades, and what common themes can we
draw from these changes? Then, we will use these themes
to project forward to imagine potential futures. Identifying
these futures provides more clarity to the current,
somewhat ill-defined motivations of using PCG to imbue
games with replayability and adaptiveness, and also offer
alternatives, as well as offering entirely new motivations
that can drive new research.

PCG’s Past
In order to reason about the future, one must first
understand the past. PCG has been used in digital games
since the early 1980s, when Rogue’s (Toy et al. 1980)
procedurally generated dungeons and Elite’s (Braben and
Bell 1984) procedurally generated galaxies provided
players the ability to explore unexpected and vast spaces. It
has since been used in many other games, from generating
territory to explore in Civilization (Firaxis Games 2005)
and Minecraft (Persson 2011) to platforming challenges in
Robot Unicorn Attack ([adult swim games] 2010) and

Experimental Artificial Intelligence in Games: Papers from the AIIDE Workshop

53

Canabalt (Saltsman 2009). The technical approaches to
PCG have been well-summarized in two major survey
articles (Togelius et al. 2011; Hendrikx et al. 2011), and I
have previously published a play-centric examination of
the role of PCG in games (G. Smith 2014), upon which the
following analysis of PCG’s history is based.
 Over the course of PCG’s history in digital games, there
are five main themes that we can draw out in how it is used
and interacted with, each of which will be explored in
more detail in this section. Each of these themes can be
considered spectra along which individual PCG systems
can be positioned. These spectra are being identified in this
paper by their extremes.

Data Intensive to Process Intensive Systems
Data-intensive PCG uses large building blocks that have
been made by a human designer. It requires heavy
authoring from a human, and often has lightweight
algorithms to piece these building blocks together, as in
endless runner games such as Robot Unicorn Attack ([adult
swim games] 2010). Process-intensive PCG, on the other
hand, places much of the design responsibility on an
algorithm or process. The computer is responsible for
making creative decisions about how to piece together
small building blocks or reason about abstract constraints
on the generative space.
 Note that there is a distinction between a data intensive
PCG system and a data-driven PCG system (though a
system may indeed be both of these). A data-driven system
uses external data to inform the generation of content; for
example, a system to create monopoly boards based on
real-world demographic data (Friberger and Togelius
2012). This content could then be generated using a data-
intensive approach, with data filling in large templates
created by a human, or a process-intensive approach, with
the data being one of many components that informs the
algorithm’s decisions.

Non-Interactive to Interact-able Content
Three major threads of research have formed during PCG’s
history, each related to the nature of the content being
created. Early content generation systems, such as L-
systems and particle systems, were used to create content
that players do not typically interact with heavily in the
game, such as textures, trees, or special effects like smoke
and fire (Ebert 2003). In the 1980s, we saw the beginnings
of PCG being more concerned with interact-able content,
such as quests, levels, and weapons (Hendrikx et al. 2011).
In the late 1990s and 2000s, there has been a rise in
research into systems that can create the rules of a game
itself, and even other content generators (A. M. Smith and
Mateas 2010; Orwant 2000).

Developer Control to Player Control
Most early PCG systems were created by practitioners who
took on the role of both developer and designer. Much of
the control over content created in those systems lay
entirely in the algorithm, with little room for a non-
technical user to interact with it. Elite and other similar
systems, such as those use in demoscenes (.theprodukkt
2004), used PCG to address technical problems such as
low memory. More commonly, systems attempt to act as a
designer and most make some informed decisions about
content at runtime, rather than simply decompressing
content that has been expressed in code rather than stored
in memory.
 Recently, however, there has been a push towards
supporting a player interacting with a content generator,
even to the extent of supporting the player taking on some
of the authoring burden for the game. Spore’s creature
creator (Maxis 2008) is an example of such a system, with
procedural animation and texturing support helping the
player act as a designer; however, this is happening mostly
at the level of non-interactable content.

Single-Player to Multi-Player
PCG began in digital games as a way to create content for
a single player, and the vast majority of PCG systems are
still considering an individual player’s experience in a
single-player game. The few multiplayer games that use
PCG, such as Civilization IV, are typically creating content
that is in a single instance—maps that many players will
interact but are the same for each player. There are very
few games that have multiplayer, multi-instance PCG,
where multiple players are interacting with unique,
realtime generated content that is based on the behavior of
multiple players—Galactic Arms Race comes close, with
weapons tailored for individuals that are born from a pool
that is available to all players (Hastings, Guha, and Stanley
2009)—or that can influence what other players will see in
their own version of the game.

Common Game Aesthetics
Challenge, Discovery, and Fellowship are the three most
common aesthetic properties that arise from the use of
PCG in games (G. Smith 2014). Challenge arises through
the use of PCG to provide tailored and surprising
environments; for example, Rogue (Toy et al. 1980) and
roguelikes typically use PCG to give players new and
unknown environments to test their skills in. PCG supports
Discovery through providing new environments for the
player to explore, or new systems for them to learn about
over time. And finally, Fellowship is an aesthetic that has
come about more recently, through the creation of an
emergent system that encourages player communication
outside of the game, such as in forums for the game

54

Civilization IV, where long discussions about generated
maps (and even how the generator works) are the norm.

PCG’s Present
The current state of PCG, both in industry-created games
and in academia, still sits in one of the categories described
above. Many generators are still quite data-intensive, due
to the desire to place authorial control in the hands of
designers. Very little PCG research looks at how to create
deeply interactable content, let alone entirely new games.
There is research in how to create PCG that can be
controlled by human designers, but little that could
reasonably be used by players—this requires additional
work in understanding how it hooks into a game, can be
made enjoyable, and can be used by truly novice designers.
The majority of PCG research exists to create content for
single players or as single instances. Experimental games
such as Proteus (Key and Kanaga 2013) aim to use content
generation to provoke other aesthetics such as Sensation,
though these are currently in the periphery of the PCG
community.

PCG’s Future
PCG research is currently making forward progress within
the motivations that are laid out above. Innovation can also
happen in the “low” end of the scale in these PCG
trajectories; for example, procedurally generating non-
interact-able content is still a highly active research area.
Though this research can be worthwhile, it is all towards
doing better in an established area and towards an
established set of motivations, rather than pushing the
envelope of PCG’s capabilities and what it can do to drive
innovative game design.
 What are the new and exciting problems in PCG? What
kinds of games could we make with different kinds of PCG
technology? Let’s turn PCG “up to eleven”—what kinds of
games and PCG systems could exist if we moved far
beyond what has already been done?

Deeply Process-Intensive Generation
A deeply process-intensive generator should be able to
create content with minimal input from its creator. Part of
process-intensiveness is tied to the kind of knowledge
representation used, removing design knowledge from the
building blocks used and placing it into the algorithm
being followed. A deeply process-intensive generator is
one that meaningfully follows a design process, and can
rationalize the decisions it makes. It could create or modify
its own concept of the quality of what it generates based on
its prior experiences, and it could draw design inspiration
from an external source.

 Of course, the creation of a truly process-intensive
generator is an AI-complete problem. However, even small
steps in this direction have the potential to create exciting
new games and design tools. Imagine a design tool
incorporating a content generator that is aware of its own
process, and can explain to a player not only what is has
created but why it was created. Or a journaling game where
the player can provide photographs and a description of an
event, and the system can create a video game about that
event.

Creating New Mechanics and Genres
Some of the most delightful moments in games come
where the game delivers surprising content that follows the
theme of what the player has seen previously, such that the
player must learn how it works and build new game
strategies. For example, new level elements such as
platforms where the player controls their movement in New
Super Mario Bros (Nintendo EAD 2006). While there has
been research in procedurally generating level progressions
(Butler et al. 2013), this work uses pre-defined
progressions and game elements. How can we create
systems that can generate their own progressions? This
requires a kind of player modeling that operates at a greater
level of detail than numerical scores for enjoyment and
frustration, combined with a representation for the
mechanics of the game and how game components use
them.
 Another avenue for research in interactive content
generation is the generation of game genres: what is the
generator that can create sets of games that are
meaningfully different from each other, yet share a
common theme?

Power to the Player
User-created content is a popular aspect of many games;
however, it is difficult for players (who typically lack
design experience) to create engaging content for
themselves and others. Spore is a game where user-created
content was highly successful, allowing players to create
professional-quality content using simple tools, imbued
with enough intelligence to empower the player without
overriding their intent. What are the “magic crayons”
(Gingold 2003) of interactable content? Work in creating
PCG-based design tools has largely focused on providing
brainstorming support to designers, creating many variants
that can then be tweaked, but how can we create tools that
help a player realize a vision that they already have, but do
not know how to express?

Multiplayer and Multi-Instance PCG
What does it mean for multiple players to really engage
with generated content, and for a generator to be designed

55

with multiple players in mind? A multiplayer game with
multi-instance PCG could have everyone seeing different
content while inhabiting the same space, with support for
mechanics that allow players to influence each other’s
environments. For example, imagine a collaborative
multiplayer platforming game where each player’s actions
causes new content to be created in another’s, and players
must find ways to communicate about how to achieve
some common goal.
 In the context of design tools, there is the question of
how a tool could learn from previous users’ experiences.
Can it incorporate previously created designs into its own
design suggestions? Or learn common patterns of user
interaction?

Beyond Current Aesthetics
In their paper suggesting the adoption of the MDA
framework, Hunicke et al. identify eight “kinds” of
aesthetics for games (Hunicke, LeBlanc, and Zubek 2004).
Discovery and Challenge are two kinds that have already
been well-explored with PCG and form the major
motivations for using PCG in games, while Fellowship is
an aesthetic that emerges from the use of PCG, though is
not typically a motivating aesthetic. The remaining six
aesthetics of Sensation, Fantasy, Narrative, Expression,
and Submission are all fertile ground for new PCG systems
and PCG-based games.
 For example, what is the game that is built around the
aesthetic of Sensation? This would require imbuing the
generator with an understanding of this aesthetic: what
makes for visually or aurally beautiful games as
experiences, and how can a generator amplify this? This is
an area that is explored more in generative art (Boden and
Edmonds 2009) research, though its implications for game
design are less clear.

The Path to the Future
The future of PCG-based game design requires a
combination of deep research into new algorithms and
systems, as well as innovative game design. We can pay
more attention to both the designer and the design process
when creating systems, rather than relying on design
knowledge to be embedded in building blocks or applied as
an evaluation function on an otherwise design-blind
process. We should consider methods for generating new
games that do not rely on templates of game mechanics.
We need to consider the desires of the player and the game
motivations for user-created content when making PCG-
based design tools. We have the opportunity to create
exciting new PCG systems that can interact with and learn
from multiple users. And, perhaps most importantly, we
should be considering game aesthetic motivations for PCG

beyond Discovery and Challenge. There are also many
lessons to learn from other communities that touch the
PCG community, such as generative art and design;
indeed, others have also argued for the expansion of the
community to encompass these other methods (Compton,
Osborn, and Mateas 2013).
 We’re barely scratching the surface of PCG’s potential.
The existing common motivations of “replayability” and
“adaptability” do not fully capture the power of PCG for
games. There are games that are waiting to be made, if
only we had the AI systems necessary to make them, and
the ability for designers to use those systems.

Acknowledgments
My thanks to Noah Wardrip-Fruin, for fruitful
conversations that led to identifying several of these PCG
trajectories. And to the growing PCG community and to
the reviewers of this paper, whose current activity has
made thinking about the community’s future all the more
exciting.

References
.theprodukkt. 2004. .kkrieger (PC Game).
http://www.theprodukkt.com/kkrieger.
[adult swim games]. 2010. Robot Unicorn Attack (PC Game).
Boden, M.A., and Edmonds, E.A. 2009. “What Is Generative
Art?” Digital Creativity 20 (1-2): 21–46.
Braben, D., and Bell, I. 1984. Elite (BBC Micro). Acornsoft.
Butler, E., Smith, A.M., Liu, Y. and Popovic,Z. 2013. “A Mixed-
Initiative Tool for Designing Level Progressions in Games.” In
Proceedings of the 26th Annual ACM Symposium on User
Interface Software and Technology, 377–86.
Compton, K., Osborn, J.C., Mateas, M. 2013. “Generative
Methods”. In Proceedings of the Fourth Workshop on Procedural
Content Generation in Games, co-located with Foundations of
Digital Games. Chania, Greece, May 15, 2013.
Ebert, D.S. 2003. Texturing & Modeling: A Procedural
Approach. Morgan Kaufmann.
Firaxis Games. 2005. Civilization IV (PC Game). 2K Games.
Friberger, M.G., and Togelius. J. 2012. “Generating Interesting
Monopoly Boards from Open Data.” In 2012 IEEE Conference
on Computational Intelligence and Games (CIG), 288–95.
doi:10.1109/CIG.2012.6374168.
Gingold, C. 2003. “Miniature Gardens and Magic Crayons:
Games, Spaces, & Worlds”. Master of Science in Information,
Design & Technology, Georgia Institute of Technology.
http://levitylab.com/cog/writing/thesis/.
Hastings, E. J., Guha, R.K., and Stanley, K.O.. 2009. “Automatic
Content Generation in the Galactic Arms Race Video Game.”
IEEE Transactions on Computational Intelligence and AI in
Games 1 (4): 245–63.
Hendrikx, M., Meijer, S., Van der Velden, J., and Iosup, A. 2011.
“Procedural Content Generation for Games: A Survey.” ACM

56

Transactions on Multimedia Computing, Communications and
Applications.
Hunicke, R., LeBlanc, M., and Zubek, R. 2004. “MDA: A Formal
Approach to Game Design and Game Research.” In Proceedings
of the 2004 AAAI Workshop on Challenges in Game Artificial
Intelligence. San Jose, California: AAAI Press.
Key, E., and Kanaga, D. 2013. Proteus (PC/Playstation 3). Curve
Studios.
Liapis, A., Yannakakis, G.N., and Togelius, J. 2013. “Sentient
Sketchbook: Computer-Aided Game Level Authoring.” In
Proceedings of ACM Conference on Foundations of Digital
Games. Chania, Greece, June 2013.
Maxis. 2008. Spore (PC Game). Electronic Arts.
Nintendo EAD. 2006. New Super Mario Bros. (Nintendo DS).
Nintendo.
Orwant, J. 2000. “EGGG: Automated Programming for Game
Generation.” IBM Systems Journal 39 (3.4): 782–94.
Persson, M. 2011. Minecraft (PC Game).
http://www.mojang.com/notch/mario/.
Risi, S., Lehman, J., D’Ambrosio, D.B., Hall, R., and Stanley,
K.O. 2012. “Combining Search-Based Procedural Content
Generation and Social Gaming in the Petalz Video Game.” In
Proceedings of the 2012 Conference on Artificial Intelligence and
Interactive Digital Entertainment. Palo Alto, CA.
Saltsman, A. 2009. Canabalt (PC Game). Adam Atomic.
http://www.adamatomic.com/canabalt/.
Shaker, N., Togelius, J., Yannakakis, G.N., Weber, B., Shimizu,
T., Hashiyama, T., Sorenson, N., et al. 2011. “The 2010 Mario AI
Championship: Level Generation Track.” IEEE Transactions on
Computational Intelligence and AI in Games 3 (4): 332–47.
Smith, A. M., and Mateas, M. 2010. “Variations Forever:
Flexibly Generating Rulesets from a Sculptable Design Space of
Mini-Games.” In Proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG), Copenhagen,
Denmark, August 18-21, 2010.
Smith, G. 2014. “Understanding Procedural Content Generation:
A Design-Centric Analysis of the Role of PCG in Games.” In
Proceedings of the 2014 ACM Conference on Computer-Human
Interaction. Toronto, Canada.
Smith, G., Othenin-Girard, A., Whitehead, J., and Wardrip-Fruin.
N. 2012. “PCG-Based Game Design: Creating Endless Web.” In
Proceedings of the International Conference on the Foundations
of Digital Games, 188–95. FDG ’12. Raleigh, NC.
Smith, G., Whitehead, J., and Mateas, M. 2011. “Tanagra:
Reactive Planning and Constraint Solving for Mixed-Initiative
Level Design.” IEEE Transactions on Computational Intelligence
and AI in Games (TCIAIG), Special Issue on Procedural Content
Generation 3 (3).
Thue, D., Bulitko, V., and Spetch. M. 2008. “PaSSAGE: A
Demonstration of Player Modelling in Interactive Storytelling.”
In Proceedings of the Fourth Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE ’08),
227–28. Palo Alto, CA: AAAI Press.
Togelius, J., Yannakakis, G.N., Stanley, G.N., and Browne, C.
2011. “Search-Based Procedural Content Generation: A
Taxonomy and Survey.” Computational Intelligence and AI in
Games, IEEE Transactions on 3 (3): 172 –186.
Toy, M, Wichman, G., Arnold, K., and Lane, J. 1980. Rogue (PC
Game).

Yannakakis, G.N., and Togelius, J. 2011. “Experience-Driven
Procedural Content Generation.” IEEE Transactions on Affective
Computing 2 (3): 147–61.

57

