
Gameplay as On-Line Mediation Search

Justus Robertson and R. Michael Young
Liquid Narrative Group

Department of Computer Science
North Carolina State University

Raleigh, NC 27695
jjrobert@ncsu.edu, young@csc.ncsu.edu

Abstract
Mediation is a plan-based interactive narrative genera-
tion algorithm that creates a cascading policy of plans.
This policy represents a branching story and can be used
by an execution manager in a game to control the se-
ries of events that unfold. With a few modifications we
show that mediation’s search space can embed all pos-
sible traversals through a game world. This shift allows
gameplay to be modeled as an on-line mediation search
where the game’s interface is a representation of the un-
derlying graph traversal. In this paper we outline these
modifications and present a text-based implementation.

Introduction
One popular way of generating interactive narratives is
planning (Porteous, Cavazza, and Charles 2010). Media-
tion (Riedl, Saretto, and Young 2003) is a plan-based in-
teractive narrative generation algorithm that was first cre-
ated for the Mimesis system (Young et al. 2004). Media-
tion has since been modified to use more intelligent search
strategies (Riedl et al. 2008), change its story in response
to a plan-recognition module (Harris and Young 2009), re-
spond to player actions based on a model of player pref-
erence (Ramirez, Bulitko, and Spetch 2013), and modify
past events outside the player’s knowledge (Robertson and
Young 2013). One thing these systems share is their under-
lying representation of branching story as a mediation tree.

A mediation tree (Riedl and Young 2006) (Figure 1) is a
cascading policy for controlling interaction in a game world.
The nodes of a mediation tree are narrative plans and its
edges are exceptional actions. An exceptional action is any
action a player can take during gameplay that breaks the ex-
ecution flow of the current plan. When this happens con-
trol transitions down the edge that corresponds to the excep-
tional action and is given to the plan at the tail of the edge.
This new plan is generated by a re-planning process called
accommodation to incorporate the player’s action and still
reach the interactive story author’s desired goal state.

In this paper we transition away from the mediation tree
representation to that of a game tree. This shift in represen-
tation allows all possible sequences of actions to be directly
encoded in mediation’s search space.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A mediation tree.

Narrative Trajectories
Riedl and Bulitko (2013) visualize experience management
as leading a player through one of a set of narrative trajec-
tories that an intelligent author deems favorable. The auto-
mated experience manager guides the player by allowing her
to take action and responds with non-player character (NPC)
actions and direct world modifications that lead her down a
favorable path. This concept of desired narrative trajectories
through a space of states influenced by player actions forms
the basis of our representation.

Game Tree Representation
We recast mediation’s search space as a game tree (Fig-
ure 2) with two participants: the player and the mediator.
The nodes of the game tree are world states and its edges
are enabled actions. The game tree alternates between lay-
ers of nodes that belong to the player and layers that belong
to the mediator. The outgoing edges of a player-layer node
correspond to the set of player actions enabled by the current
node’s world state. Each of these edges lead to a node that
corresponds to the world state after the action is performed.
Each of these resulting nodes belong to a mediator-layer.

A mediator-layer node has a single outgoing edge that is
the system response to the player’s last action. This system

Experimental Artificial Intelligence in Games: Papers from the AIIDE Workshop

42



(a) Two layers of a game tree. (b) Game tree space.

Figure 2: Game tree visualizations.

response can include an action for each NPC to take and
direct alterations of the world state outside of NPC actions.
Each of these edges lead to a new player-layer node.

It is the experience manager’s job to ensure that the pro-
gression of events in this space result in the best possible
story given the actions the player chooses to take.

Figure 3: Player-layer node and narrative trajectory.

Figure 4: Player-layer action classifications.

System Response Oracle
Game tree space is built from actions available to the player,
NPC responses, and modifications of the game world. We
imagine that for every series of actions the player could take
there is an optimal series of system responses. Together the
set of all possible player action sequences and their optimal
responses form the optimal branching story structure. When
building the game tree, mediation needs an oracle that pre-
scribes the best possible system response. This oracle is cur-
rently implemented with narrative plans.

Narrative plans are given to mediation from some linear
story generation process and are used as desired narrative
trajectories to guide search through the game tree.

Trajectories as System Responses
Every player-layer node in the game tree is associated with
a desired narrative trajectory (Figure 3). A narrative trajec-
tory is a series of events that mediation desires to take place
in the story world from the current state. Every narrative
trajectory corresponds to the most desired traversal of the
game tree from the current node. Trajectories are supplied
by a linear narrative generation module, which is currently
a planner. For every player-layer node in the tree mediation
classifies the enabled player actions according to how they
interact with the current trajectory. Player actions are classi-
fied as consistent, constituent, or exceptional (Figure 4).

Together, action classification and narrative trajectories
satisfy mediation’s system response oracle and allow it to
generate mediation-layers in response to player actions.

Consistent Actions
Consistent actions are player actions that are not in the nar-
rative trajectory but do not prevent it from executing. The
system responds to consistent actions by first updating the
world state to reflect the player’s action. It then examines
the narrative trajectory to determine if any NPC actions can

43



Figure 5: Consistent action update.

be taken at the current point in the plan. If so it allows each
NPC character to take one available action from the plan,
updates the world state for each action taken, and returns
control to the player by creating the next player-layer node.

In Figure 5 the step removed from the story trajectory in
the mediation-layer is performed by an NPC. No player ac-
tion is removed from the trajectory. This new plan becomes
the trajectory at the next player-layer node.

Constituent Actions
Constituent actions are player actions that are prescribed
by the narrative trajectory and desired by mediation. The
constituent action update is very similar to the process per-
formed for consistent actions. The difference between the
two is that for a constituent action the player has performed
an action included in the trajectory plan. So before the sys-
tem checks for possible NPC actions it removes the player’s
performed action from the trajectory.

Figure 6: Constituent action update.

In Figure 6 both a player-performed and NPC-performed
action are removed from the narrative trajectory during the
mediator-layer update.

Exceptional Actions
Exceptional actions are player actions that break the execu-
tion flow of the narrative trajectory by reversing world con-
ditions needed for future actions to execute. Exceptional ac-
tions are handled with accommodation, the process of gen-
erating a new narrative trajectory. This new trajectory should
be the optimal series of events from the current state given
the player’s action.

The system is allowed to update its trajectory and take
NPC actions in the same layer. Figure 7 shows a new trajec-
tory created by a mediator-layer after an exceptional action
is taken.

Game Trees vs. Mediation Trees
Viewing mediation as a game tree search process is sim-
ilar to viewing it as a mediation tree search process, but
the two differ in several important ways. First, game trees
model consistent, constituent, and exceptional player actions
in their search space, whereas a mediation tree only explic-
itly models constituent and exceptional actions. Secondly,
game trees model how the narrative trajectory changes in
response to consistent, constituent, and exceptional player
actions, whereas a mediation tree only models updates after
exceptional actions. Finally, because of the first two differ-
ences the game tree models every possible series of player
actions, system actions, and world states that could occur in
a game world, whereas a mediation tree models only desired
trajectories through an unspecified set of possible states.

Explicitly modeling consistent actions, trajectory updates,
and world states makes game tree space larger than me-
diation tree space, but it affords interesting new possibili-
ties. One such possibility is viewing gameplay as an on-line
search through game tree space carried out as a discourse
between the player and mediator.

Figure 7: Exceptional action update.

44



Figure 8: Graph to visualization pipeline.

Gameplay as Game Tree Search
Since a fully expanded game tree contains all possible se-
ries of events that could play out in the game world it can be
used to drive game experiences. Mediation begins with two
inputs: a domain file that specifies actions available to agents
and a problem file that describes the initial and goal states of
the game world. If given an interface that maps domain ac-
tions and world state literals to textual, 2D, or 3D represen-
tations, mediation can drive interaction as an on-line search
through its game tree.

Every game tree node has an associated world state that
consists of logical predicates. Using a mapping function the
system can generate a graphical representation of the world
state for the player. At every state the player can choose from
one of their enabled actions. Once it receives player feed-
back mediation moves along the edge associated with the
player’s action in its game tree, makes its mediator-layer up-
date, conveys the NPC actions to the player, and presents the
world state associated with the new player-layer node to the
player through its visualization system.

With this method the underlying mechanics of the game
world are simulated by mediation and depend on the input
domain and problem files. These mechanics are then con-
veyed to the player through a general mapping and display
interface that can be used with any domain and problem. So
a new experiences can be created with only a new domain,
problem, and mapping.

The General Mediation Engine
The General Mediation Engine (GME) is an implementa-
tion of a game tree mediator. One aim of GME is to divorce
the linear story generation process from the branching story
generation process. Because of this GME is not tied to any
one story generation component but supports any that are
driven by PDDL (McDermott et al. 1998). GME takes as in-
put a domain file, a problem file, and a story oracle. With
these it is able to build and search the game tree space that
corresponds to the three inputs.

Domain
The domain file consists of PDDL representations of actions
that can be performed in the environment. Each action has a
list of predicates that must be true in a world state in order
for the action to be enabled and a list of predicates that the
action makes true once it’s executed.

Problem
The problem file consists of PDDL representations of the
initial world state and the goal state. It specifies all objects
that exist in the world and defines the start and end-points of
the narrative trajectory the oracle forms.

Story Oracle
The story oracle is any process that takes as input a PDDL
domain and problem file and returns a series of actions that
transforms the initial world state specified in the problem file
into its goal state. The story oracle exists outside the GME
system and is communicated with through PDDL files. As a
proof of concept we use the Fast Downward (Helmert 2006)
planner as the current story oracle.

Interface
GME is currently outfitted with a text-based interface that
formats and displays the current world state, allows the
player to issue commands that correspond to their enabled
PDDL actions, and notifies the player of observed actions
taken by NPC characters.

Example
As one possible example domain and problem we have mod-
eled The Evil Dead. The domain has 12 actions with at most
4 parameters. The problem file contains 13 world objects,
an initial state of 35 predicates, and a goal of 3 predicates
not including the closed world assumption. A subset of the
predicates in the initial state is shown in Figure 8.

Figure 9 shows GME’s current text-based interface. The
system accepts commands from the player and navigates the
underlying game tree according to input. In Figure 9 the

45



Figure 9: Initial state of Evil Dead domain.

player has issued a command to look around them. The inter-
face holds observation axioms that can compute the subset
of any state that the player can observe. The system runs the
current state predicates through these observation axioms,
filters away unobservable aspects of the world, formats the
remaining axioms into a natural language sentence, and dis-
plays the result.

The system is in debug mode so it also displays the current
narrative trajectory and the time elapsed between the player
issuing a command and the system displaying the results.
The trajectory from the initial state is a 12 step plan where
Ash unleashes an evil spirit by reading the Necronomicon,
the spirit turns Linda into a zombie, Linda injures Ash, and
Ash finishes Linda with an axe.

As pictured in Figure 10 the dialog between the mediator
and the player is a traversal through the mediator’s game tree
representation that plays out through the text interface.

Figure 11 shows the system response to the exceptional
player action of Ash moving to the bedroom instead of
the cellar. The system updates its world state based on the
player’s action, filters the new state predicates through its
observation axioms, formats the remaining predicates, and
displays them in natural language. Since the player took an
exceptional action the system is forced to create a new nar-
rative trajectory. The trajectory from the new player-layer
node is an 11 step plan where Linda reads the Necronomi-
con, is turned into a zombie, Ash takes the key he finds in
the bedroom, unlocks the gun cabinet, and uses the Boom-
stick instead of the axe. The first action of this plan, where
Linda moves to the cellar from the living room, has already
been taken during the mediator-layer update.

On an Intel Core i7 3.5GHz system with 8GB RAM it
takes about 250ms to query Fast Downward and create a
game tree node. The elapsed time here between command

and display is 2ms because the system expands and caches
the graph frontier in downtime between player actions.

Limitations and Future Work
There are two types of advances that must be made to the
system. First, more work must be done to determine how
properties of the underlying game tree structure relate to
player feelings like enjoyment or agency. Second, the system
must be engineered to produce interesting game tree struc-
tures and present them to players in a satisfying manner.

Game Tree Structure
Game trees are built from player choices, NPC actions, and
direct manipulations of the game world. There are several
methods for selectively constructing game trees from these

Figure 10: Player traversal through game tree.

46



Figure 11: State after exceptional move action is taken.

elements that are not utilized by the current system. These
methods can be divided into more intelligently selecting user
choices and selecting system responses:

User Choices The current system assumes that whatever
action in the current domain file that is enabled in the cur-
rent state should be available for the user to perform. It may
be possible to intelligently limit or expand the action tem-
plates available to the system at any state in order to create
a better game tree. For example, Yu and Riedl (2013) se-
lectively present choice options to players based on learned
preferences to influence player choices.

System Responses The system currently responds to ex-
ceptional user actions by creating a new narrative trajectory
with accommodation. Most other mediation systems em-
ploy a second response called intervention that prevents new
branches from being created after players take exceptional
actions. Proactive intervention (Harris and Young 2009) al-
lows mediation to intervene before exceptional actions are
taken and rearrange the world so they cannot occur. These
system responses could be incorporated into GME, allowing
it to expand the mediator layer of game trees in new ways.

On-Line Search Strategies
Similar to expanding the game tree’s frontier as the player
takes action, there may be other on-line game tree search and
expansion strategies that allow the system to more quickly
and intelligently build its branching story space. For ex-
ample, proactive intervention strategies were originally de-
signed for a mediation tree and a plan recognition module. In
a game tree all possible user actions sequences are modeled
in the search space, so a probabilistic player model could
inform the mediator as it builds the tree about what route it
expects the player to take.

Continuous Events
The system currently assumes that all events are discrete
and of the same length. This assumption works well in a
text-based game, but may be more challenging in 2D or
3D environments. A more robust visualization layer will be
needed for environments that allow continuous mechanics to
translate between the game and its underlying discrete rep-
resentation. For example, a visualization layer may be built
to allow the player to move through continuous space but
only update the mediation representation when they move
between discretized sections, like rooms in a dungeon.

Conclusion
Transitioning from a mediation tree to game tree represen-
tation for plan-based experience management allows medi-
ation to be used directly as a game world simulator. Paired
with a visualization system that maps states and actions to
human-readable output, mediation can create a new branch-
ing story experience with each pair of PDDL domain and
problem documents. This method opens new possibilities
for the branching story generation process.

References
Harris, J., and Young, R. M. 2009. Proactive Mediation in
Plan-Based Narrative Environments. IEEE Transactions on
Computational Intelligence and AI in Games 1(3):233–244.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language.
Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
Planning to Interactive Storytelling: Narrative Control Using

47



State Constraints. ACM Transactions on Intelligent Systems
and Technology 1(2):10.
Ramirez, A.; Bulitko, V.; and Spetch, M. 2013. Evaluating
Planning-Based Experience Managers for Agency and Fun
in Text-Based Interactive Narrative. In Artificial Intelligence
and Interactive Digital Entertainment, 65–71.
Riedl, M., and Bulitko, V. 2013. Interactive Narrative: An
Intelligent Systems Approach. AI Magazine 34(1).
Riedl, M. O., and Young, R. M. 2006. From Linear Story
Generation to Branching Story Graphs. Computer Graphics
and Applications 26(3):23–31.
Riedl, M. O.; Stern, A.; Dini, D. M.; and Alderman, J. M.
2008. Dynamic Experience Management in Virtual Worlds
for Entertainment, Education, and Training. International
Transactions on Systems Science and Applications 4(2):23–
42.
Riedl, M.; Saretto, C. J.; and Young, R. M. 2003. Manag-
ing Interaction Between Users and Agents in a Multi-Agent
Storytelling Environment. In Autonomous Agents and Mul-
tiagent Systems, 741–748.
Robertson, J., and Young, R. M. 2013. Modelling Charac-
ter Knowledge in Plan-Based Interactive Narrative to Extend
Accomodative Mediation. In Intelligent Narrative Technolo-
gies 6, 93–96.
Young, R. M.; Riedl, M. O.; Branly, M.; Jhala, A.; Martin,
R. J.; and Saretto, C. J. 2004. An Architecture for Integrat-
ing Plan-Based Behavior Generation with Interactive Game
Environments. Journal of Game Development 1(1):51–70.
Yu, H., and Riedl, M. O. 2013. Data-Driven Personalized
Drama Management. In Proceedings of the 9th AAAI Con-
ference on Artificial Intelligence for Interactive Digital En-
tertainment (AIIDE).

48




