
Learning Micro-Management Skills
in RTS Games by Imitating Experts

Jay Young and Nick Hawes

Abstract

We investigate the problem of learning the control of small
groups of units in combat situations in Real Time Strategy
(RTS) games. AI systems may acquire such skills by observ-
ing and learning from expert players, or other AI systems per-
forming those tasks. However, access to training data may be
limited, and representations based on metric information –
position, velocity, orientation etc. – may be brittle, difficult
for learning mechanisms to work with, and generalise poorly
to new situations. In this work we apply qualitative spatial re-
lations to compress such continuous, metric state-spaces into
symbolic states, and show that this makes the learning prob-
lem easier, and allows for more general models of behaviour.
Models learnt from this representation are used to control
situated agents, and imitate the observed behaviour of both
synthetic (pre-programmed) agents, as well as the behaviour
of human-controlled agents on a number of canonical micro-
management tasks. We show how a Monte-Carlo method can
be used to decompress qualitative data back in to quantitative
data for practical use in our control system. We present our
work applied to the popular RTS game Starcraft.

Introduction
In Real-Time Strategy games, the overall skill of a player
is typically thought of as being based on their compe-
tency in two broad areas: micro-management and macro-
management. Macro-management concerns training units,
building structures, selecting upgrades, scouting and other
high-level issues relating to a strategy. Micro-management
on the other hand concerns the task of managing single units,
or groups of units, and issuing tactical commands during
combat – unit movement, targeting commands, use of spe-
cial abilities etc. and requires continuous input. It is essential
that a player (either AI or human) has strong skills in both ar-
eas in order to be successful. Good micro-management skills
are those which best exploit the characteristics of the units
available to the player, as well as the environment, in order
to overcome an opponent in combat situations.

One common approach to implementing micro-
management in AI systems is to apply distributed reactive
control mechanisms. Co-operation between units is then
achieved through the emergent properties of a set of rules

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

followed by each unit, rather than being explicitly planned
or pre-scripted, which can result in complex behaviour
(an example of one of our own systems can be seen at:
https://vimeo.com/45580695). Human players also utilise
similar reactive approaches when micro-managing units in
combat, due to the need for continuous input to deal with
highly dynamic, ever-changing conditions.

In our work, we are interested in how an AI player can
learn to play Real-Time Strategy games by observing either
humans or other AI systems play. In this paper, we focus
on the problem of learning unit micro-management tactics
by observation of experts. We are interested in doing this us-
ing qualitative spatial representations – abstraction methods
which we introduce shortly, allowing us to address several
problems associated with the learning task.

We make the following contributions:

• A novel integration of qualitative spatial representations
for learning by observation in Starcraft.

• Construction of benchmark agents which perform well on
tasks characteristic of the micromanagement domain, for
which we make full source code available for future re-
searchers.

• A study of the problem of learning by observation from
both the above synthetic controllers and human con-
trollers on three micro-management tasks.

Starcraft
Starcraft is a Real-Time Strategy game released by Bliz-
zard Entertainment in 19981. The game requires a human
player to engage in goal-directed planning, reasoning un-
der uncertainty, creative adaptation, and other tasks (specif-
ically our micro-management) requiring continuous input.
This must be accomplished in real-time, which exasperates
many of the already difficult AI challenges present. In recent
years the game has become the focus of interest from the AI
community, supported by the release of the Brood-War API
(BWAPI2), a software API which allows for the injection of
code into the Starcraft game engine, and facilitates the pro-
duction of third-party AI players.

1http://us.blizzard.com/en-us/games/sc/
2http://code.google.com/p/bwapi/

Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

195



Learning by observation
Engineering AI systems is a non-trivial task, which is why
much research focuses on building systems that can learn
solutions to problems. Learning-by-doing techniques (e.g.
reinforcement learning) can be risky however, due to the
need for trial-and-error, which can be dangerous and ex-
pensive in certain domains, such as Robotics (Argall et al.
2009), and often presume the existence of some global ob-
jective function which can be consulted an unlimited num-
ber of times. If expert agents already exist for the target do-
main, then an alternative approach is for a system to learn
by observation (Montana and Gonzalez 2011), by observing
and mimicing those expert agents. An expert agent can be
considered to be an agent skilled enough to behave compe-
tently at the given task, though with no guarantees made as
to whether the agent behaves optimally or not in reference
to a particular task.

We adopt the following learning by observation formal-
ism of Montana and Gonzalez (2011). Let BC be the be-
haviour of an expert agent C, and let E be an environment.
A behaviour may be a controller, policy or algorithm that the
expert uses in order to determine which actions to execute.
During operation, this behaviour is expressed as a Behaviour
Trace BT representing the actions the expert performs over
a period of operation. The behaviour trace of an expert is
then:

BTC = [(t1, x1), ..., (tn, xn)]

where t is a time index, and x is an action. The change in the
environment E over time is represented by an input trace:

IT = [(t1, y1), ..., (tn, yn)]

The combination of a behaviour trace and an input trace pro-
duces a Learning Trace LT :

LT = [(t1, x1, y1), ...(tn, xn, yn)]

Consisting of, at any one time, the state of the environment
E and the action the expert agent performs in that state. The
learning by observation task is to learn a behaviour B which
behaves the same way as the expert agents in the environ-
ment E, given the same inputs LT1, ..., LTn

This formalism applies to many scenarios in which learn-
ing by observation may be used over other methods, e.g.
a sports robot that learns the behaviour of opponents by
watching replays of past games, or a disaster relief robot in
an ad-hoc team which requires training in the field. Learning
by observation can be extremely challenging, particularly if
the behaviour of a given expert agent is non-deterministic. A
key challenge is to find the correct knowledge representation
in which the environmental observations are delivered.

Related Work
Qualitative representations (QRs) have been used previously
in learning tasks across of a variety of domains. For ex-
ample, for learning and recognition of events in an aircraft
loading domain (Sridhar and Cohn 2010) and desktop activ-
ities (Behera, Cohn, and Hogg 2012), and for reinforcement-
learning for robot navigation (Frommberger 2008). The

problem of behaviour modelling in RoboCup Soccer, an-
other simulated domain, has been tackled in a number of
ways including reinforcement learning (Vieira, Adeodato,
and Gon 2010; Jung and Polani 2012; Shimada, Taka-
hashi, and Asada 2010; Molineaux, Aha, and Sukthankar
2008), and case-based reasoning (Ros, Llu, and Mantaras ;
Floyd, Esfandiari, and Lam 2008). However in general, lit-
tle work investigates the application of qualitative, relational
representations to the problem of learning by observation.
In Starcraft, recent work by (Parra and Garrido 2013) makes
use of Bayesian networks to model the decision process of
humans engaged in micro-management tasks. As part of the
evaluation of our work, we repeat their experiment and pro-
vide a direct comparison with the work.

Qualitative State Generation
Our system operates on qualitative states, each describing
the state of the environment at a discrete time step. Below
we describe the qualitative spatial relations which comprise
the state. These relations are calculated exhaustively pair-
wise for all entities in the game, and so for each pair of
entities we add one feature per calculi described below to
the state representation, indicating the state of the particu-
lar relations between those entities. Our general system is
capable of representing motion information using the Qual-
itative Trajectory Calculus (Van de Weghe et al. 2006), as
shown in Figure 1, but we omit this for our Starcraft study,
and consider only the calculi described below.

Region Connection Calculus
The Region Connection Calculus (RCC) (Randell, Cui, and
Cohn 1992) provides a set of binary relations which describe
the degree of connectedness between spatial regions. In Star-
craft, we utilise RCC to represent just two spatial regions on
the map – passable and impassable regions. We apply the
RCC5 subset of RCC to provide the following relations:

• Equal (EQ) - Regions share all points in common.

• Disconnected (DC) - No points are shared between re-
gions.

• Overlapping (O) - Some points are shared, however there
also exist points that are not shared.

• Proper Part (PP) - One region entirely encloses the other.

• Proper Part Inverse (PPi) - One region is entirely enclosed
by the other.

While our use of this calculi is limited to two spatial re-
gions, we will see later that this is important for ensuring the
agent makes valid moves during model implementation.

Star Calculus
The Star Calculus (SC) provide binary relations for describ-
ing the qualitative direction between points in space with
respect to one-another (Renz and Mitra 2004). SC employs
angular zoning based on either the parameter m (yielding
zones of size 360/m), or through the specification of an ar-
bitrary sequence of angles. The result is a set of circle sectors
emanating from a point, extending into infinity, discretising

196



Figure 1: System Overview

Figure 2: Left: A set of four angular zones. Right: A homo-
geneous distance system with four relations.

over a range of angles, with each composing a single binary
relation. Between two points the current SC relation is de-
termined by taking the angle between them and determining
which discrete zone the result falls in to.

Qualitative Distance
We employ the measure of qualitative distance proposed by
(Clementini 1997) whereby the distance between two ob-
jects A and B is expressed in terms of the presence of B
in one of a set of distinct, non-overlapping distance inter-
vals relative to A. We centre uniformly-sized intervals at A,
yielding doughnut-like spatial regions, as illustrated on the
right in Figure 2. These relations are calculated and added
to the state representation similarly to the Star relations de-
scribed previously.

Learning
Recall that our learning by observation task is based on
Learning Traces incorporating time T , states X and actions
Y .

LT = [(t1, x1, y1), ...(tn, xn, yn)]

The function of our system is to take in such learning
traces, and build a model which makes predictions about ac-
tions based on observations made about the current state of
the world. The following sections describe the format of our
state and action representations, before discussing the learn-
ing mechanisms we have evaluated and employed in order
achieve our goal. We recall that a learning trace is given as

a time series, where at each time step the state of the world
is given, along with a labelled action. By default, states are
described in terms of the metric positions of all observable
entities. Our state representation is generated from taking
this metric information, and producing a Boolean vector rep-
resenting the qualitative spatial relations between each ob-
servable entity given by the calculi described previously.

Action Representation using QSRs
In Starcraft, each agent is capable of selecting from a finite
set of discrete actions – attack, move, stop, patrol, as well
as special abilities. In a movement command, an agent will
move to a point in space. The set of possible points an agent
can be commanded to move to may be large (410 in the worst
case). We would prefer not to represent movement actions in
terms of absolute global co-ordinates, since this is brittle, es-
pecially when we consider differing map dimensions – some
points that exist on 128x128 tile map (with potentially 49

possible movement points, in the worst case) may not exist
on a 64x64 tile map (48 potential points). Describing points
in relative terms is an improvement, though still movement
actions such as move(0,−10) and move(0,−12) may be
identical qualitatively, perhaps with either being selected by
the agent in the same state. This is particularly prevalent
with traces of human players – the lack of pixel-perfect ac-
curacy in selecting movement points means that a human
player may select points that are qualitatively identical, but
are represented quantitatively as many separate and distinct
points. To capture this, rather than representing movement
points quantitatively, we represent points in terms of the rel-
ative qualitative spatial relations between the point and the
agent.

In Figure 3, we give a trivial example of how this is ac-
complished. If we consider the red dots as the relative metric
positions of points the agent has been commanded to move
to, we can see that (under this particular configuration) they
can be expressed in terms of their QSRs with the agent –
(star(0), ring(2)) by the same representation as in Fig. 2.

197



Figure 3: Compression of points.

Task 1 Task 2 Task 3
0

20

40

60

80

100

%
A
cc
u
ra
cy

BayesNet
kStar
C4.5

1

Figure 4: Per-task performance of classifiers, evaluated on
data gathered from synthetic agents over 150 episodes per
task.

Learning Mechanisms
We approach the problem as one of classification – given
some training set of examples of expert behaviour, consist-
ing of states and actions taken in those states, we wish to
build a classifier to predict which action should be taken in a
given state. To use the raw metric data that comes from Star-
craft presents significant problems for this approach how-
ever. We take as an example a single learning trace for the
Vulture kiting scenario, consisting of 8607 frames of data,
7072 of which are unique. This metric representation is brit-
tle and exhibits little repetition that can be harnessed by
learners to make reliable predictions, and does not gener-
alise well. Another problem faced is that the data inherently
features a class imbalance. For instance, the agent selects the
attack action 4080 times, in comparison to the move action
which it selects 4528 times, but with 1116 unique parametri-
sations of that action. While a binary classifier may be con-
structed to determine whether the agent moves or attacks,
building a classifier to select between the 1116 different
types of move action is a much more difficult task. We har-
ness the compressive properties of the QSRs described in the
previous sections in order ease the difficulty of this problem.
After being processed by our system, this particular learning
trace contains just 116 unique states and 24 unique move
actions. The problem of class imbalance remains, though is
eased. To take into account the imbalance between classes
in the data, we make use of the Matthews Correlation Co-
efficient (Matthews 1975) as the performance metric of the
classifiers we evaluate.

The learning part of our system is implemented using the

Weka data mining software (Hall et al. 2009). In the learning
phase, an abstraction layer allows us to plug in any learn-
ing algorithm, or selection of learning algorithms we de-
sire. This allows us to evaluate numerous techniques with
very little effort. We report in Figure 4 the predictive ac-
curacy of the three best classifiers discovered by our sys-
tem, on each task, after a ten-fold cross validation proce-
dure. It may be the case that improved performance can be
gained through the application of meta-classifiers, feature
selection or dimensionality reduction techniques. However,
optimising classifier output is not the focus of this work, and
as we will see the results we obtain are good enough for
our practical purposes of building agents capable of imita-
tion. We found the three best learning algorithms to be the
C4.5 Decision Tree Classifier (Quinlan 1993), K-Star – an
instance-based learner using an entropic distance measure
(Cleary and Trigg 1995), and a Bayesian Network (Neapoli-
tan 1990). In general we found the C4.5 decision tree classi-
fier to be the best of these three, as shown in Figure 4.

Self-Configuration
QSRs may have several parameters associated with them
that can be configured – for instance, in the Star calculus
the division of angular zones can be varied – this can re-
sults in more coarsely or finely grained representations, as
desired. Configuring these parameters by hand would be a
tedious process, and so our system determines automatically
the level of granularity it requires. The performance of learn-
ing mechanisms can be improved by hyper-parameter opti-
misation (Bergstra and Bengio 2012) – searching through
the space of parameters that govern a learning mechanism
is a standard approach. We include this configuration step in
our system, but we also include the parameters that control
the granularity of QSRs. Using a grid search, we explore
this space of possible representation configurations to find
those that provide the best classifier performance, using L2

regularisation in order to prefer conservative representations
(Moseley 1988). The output of our hyper-parameter optimi-
sation step is then a 3-tuple < R,P, c > where R is a vector
of values describing a particular configuration of the avail-
able QSRs, P is a vector of values describing the configu-
ration of a particular classifier, and c is the classifier itself.
This is applied to the state representation, but not the qual-
itative representation of actions, which is fixed with 8 Star
relation and 3 distance relations.

Model Implementation
Recall that a learned model provides a mapping between a
state expressed in terms of QSRs and a discrete action, such
as attack, patrol, move, and special abilities. Movement ac-
tions are given in terms of QSRs, however actions in the
game world are given as metric positions, and so we need to
translate the QSR specification in the learned model back in
to metric positions in the game world in order to command
units. The problem is to find metric points that match the
QSRs specified in the action representations. Given a move
action specified qualitatively, we wish to locate a point in
metric space that best matches that description. As discussed

198



previously, the number of points an agent can move to on a
map may be very large, and so calculating the QSRs of every
point to find those that best match would be expensive, and
consider many superfluous points.

We employ a Monte Carlo sampling-based approach
(Amar 2006). We randomly generate a set of points around
the agent, then calculate the QSRs of these points, and rank
them based on their distance from the target QSRs. The no-
tion of distance in QSR space is given by conceptual neigh-
bourhoods which act as transition matrices for QSRs (Goo-
day and Cohn 1994), an aggregation of the number of tran-
sitions between an origin and target set of QSRs can be em-
ployed as a distance measure. A threshold k over this dis-
tance measure is used to vary how closely the QSRs of can-
didate points must match our target QSRs, with k == 0
being an exact match. We envision in complex application
domains there may exist a trade-off of generating more can-
didate points vs. relaxing the closeness of matches, and
so we leave these as parameters that may be tweaked. In
our work with Starcraft, we are able to utilise k == 0,
and recover the set of points X that match exactly our tar-
get QSRs. We then define a set of functions for selecting
a point xi ∈ X , these include closest(X), furthest(X),
max x(X), max y(X) among others. For all of our experi-
ments we utilise closest(X) which returns the closest point
to the agent that best matches the desired QSRs. Our use
of the Region Connection Calculus ensures that points must
fall into regions the agent can legally move through.

Experimental Evaluation
We select three benchmark scenarios for our evaluation –
a kiting task, a 3vs2 micro-management task, and a final,
more difficult task involving a series of combat scenarios of
increasing difficulty and opponent make-up. We make these
scenarios available alongside the source code of our agents.
These scenarios were selected from an online repository of
micromanagement training tasks 3 considered challenging
enough to justify the creation of training maps for human
players to improve their skills. We make no claims as to
the optimality of our solutions, the only claim we make is
that our agents are capable of reasonable performance on
the given tasks. The full source code to these systems is pro-
vided4 so as to allow future work to compare against our
results and approaches directly.

Vulture Kiting
In real-time strategy games, kiting is a tactic whereby a unit
will quickly attack a pursuing target before immediately re-
treating, taking advantage of differences in movement speed
or attack range to stay out of danger. In the scenario we study
– named vultureDrive – a single Vulture (a ranged, mechan-
ical unit) is faced with constantly spawning waves of Zer-
glings (fast-moving melee units) and must kite increasingly
large groups while killing as many as possible. Success is
based on the ability of the controller to keep the number
of Zerglings under control, while continuously moving out

3http://wiki.teamliquid.net/starcraft/Micro Training Maps
4https://github.com/jayyoung/BenchmarkStarcraftAgents

of danger, as attacking will cause the unit to momentarily
stop, allowing the enemies to gain ground. In our synthetic
agent we address the problem with an algorithm that, should
there be more than one enemy within a specified range of the
agent, causes the agent to move to the nearest point on the
map that has the fewest enemies close to it – we call this the
move to safety routine. Otherwise, the agent will attack the
nearest enemy. A video of our agent performing this task is
available at 5 and the full source code to the agent is avail-
able in our GitHub repository.

3vs2 Scenario
In our second task, we repeat the experiment of (Parra and
Garrido 2013). In this task, the player is given control of
two Dragoons from the Protoss race – large, ranged ground
units – and is tasked with defeating a squad of three Hy-
dralisks from the Zerg race – medium sized ranged units.
The player is not only at a disadvantage in terms of force
sizes, but certain game mechanics make the problem more
difficult. In Starcraft, units deal less damage to targets that
are smaller than them. The Hydralisks deal 100% damage to
the Dragoons, whereas the Dragoons only deal 75% damage
to the Hydralisks. While the Dragoons do more base damage
per hit than the Hydralisks (20 vs. 10) the Hydralisks attack
twice as fast as the Dragoons. Our synthetic agent imple-
ments a controller based on the work of (Young et al. 2012)
and employs a tactic very similar to the previous Vulture kit-
ing agent. Here, our Dragoon controllers similarly attempt
to minimise the number of enemies they are within range
of, preferring to flee to areas which have fewer enemy units
and more friendly units, attacking only when they are able
to overwhelm a target.

The Falls of the Empire
In the final scenario, we consider a more difficult task – a
scenario named The Falls of the Empire. Initially a player
is given access to four Dragoon units, and must progress
around a series of gauntlets, defeating groups of enemies
from each of the races along the way. The player is occasion-
ally afforded reinforcements, and faces many different types
of enemies in this scenario – ranged, melee, spellcasters –
and must adjust their tactics accordingly. The map is split
into four stages, each featuring combat scenarios of increas-
ing difficulty. We use synthetic controllers similar to those
from the previous task, and also employ a high-level reac-
tive planner that moves the agent’s units to the next combat
scenario after each one is completed. Once there, the usual
behaviour controllers take over.

Human Controllers
To study our ability to reproduce observed human behaviour,
we gathered five human subjects who possessed minor prior
familiarity with the Starcraft domain, in terms of the gen-
eral concepts and mechanisms of the game, and with some
hands-on experience. No information on the tasks was given
beyond the instructions included with the training scenarios.
For each subject we gathered 30 episodes of data per task,

5https://vimeo.com/103123818

199



System Avg. Score
Benchmark Agents 20 ± 3.14
Learned (From Benchmark) 17 ± 3.88
Human Controller 16 ± 4.43
Learned (From Humans) 11 ± 4.51

Figure 5: System Results for Vulture Kiting Task, given in
terms of average number of kills.

System Avg. Win Rate
Benchmark Agents 96%
Learned (From Benchmark) 92%
Human Controller 67%
Learned (From Humans) 58%
Parra and Garrido 44%
Built-in AI 0%

Figure 6: System Results for 3vs2 task, given in terms of
average win rate.

for a total of 150 episodes of data per task. In our training of
the synthetic agents we also provided 150 episodes of data
per task.

Discussion
In each experiment we provided the learning agents with
full data sets (150 episodes per task), and evaluated them
for 100 episodes. Figure 5 shows our results for the Vulture
kiting scenario, giving the average score of each system in
terms of number of kills, which is the performance metric
provided by the scenario. There is a slightly larger drop in
performance when the system is trained on the human data
than synthetic (16 to 11 vs. 20 to 17). This deficit can be
explained by the fact that the human controllers were users
who had previously limited experience with Starcraft prior
to the study. As such, while the synthetic agents achieved a
roughly consistent level of performance across all episodes,
some human data included initial episodes where the human
controllers got to grips with the task, and performed rela-
tively poorly during those episodes. This allowed mistakes
and errors introduced by the expert to propagate to the learn-
ing agent. While we can easily identify where this learn-
ing curve starts and finishes, simply discarding the data may
not be the best option – we suspect it could be harnessed
to provide an agent with a more thorough understanding of
the task domain, by observing directly the process of an ex-
pert attempting to accomplish some goal and improving its
performance iteratively, rather than having to engage in that
process itself. Though this, we may be able to discover re-
ward functions that can be used for later improvement. For
now, we leave further exploration of this for future study. In
the 3vs2 scenario, Parra and Garrido observed that the de-
fault, built-in AI of Starcraft is unable to achieve victory at
all, whereas their Bayesian Network-based system trained
on the observation of human micromanagement achieved
victory in 44% of cases. These results, along with our own,
are displayed in Figure 6. The results show that our bench-
mark agents perform well on the task, as do agents that have

System Avg. Score
Benchmark Agents 42 ± 10.33
Learned (From Benchmark) 32 ± 6.73
Human Controller 19 ± 8.11
Learned (From Humans) 16 ± ± 6.24

Figure 7: System Results for The Falls of the Empire, given
in terms of average number of kills.

learned to imitate them. Human controllers however achieve
a much lower level of success, as do the imitating agents.
Parra and Garrido do not report the baseline level of perfor-
mance of their human subjects, only the imitating system, so
we cannot make a direct comparison. The Falls of the Em-
pire task proved very difficult for the human players, with
very few progressing past the first stage of the map, which
features five separate combat encounters of increasing diffi-
culty, against 24 total enemies. The benchmark agents typi-
cally progressed in to the second stage of the map, but rarely
further than this.

Our results show that our approach is successful in learn-
ing low-level tactical skills, and achieving a level of per-
formance approaching that of the original expert controller.
However we have considered a limited set of static bench-
mark scenarios – one major dynamic of the Real-Time Strat-
egy domain is that it is typically open world, and the combat
scenarios a player encounters will vary widely during full-
game play. It may be the case that the C4.5 classifier we
utilised does not scale to this scenario, due to the poor flex-
ibility of decision trees in this regard. We also see that there
is a clear coupling between the performance of an expert
and the agent which imitates it, including the replication of
mistakes. Agents need not always repeat the errors of their
teachers, however. For instance, learned models may be used
in the future as a starting point for reinforcement learning
approaches (such as Q-learning) in order to cut out the need
to engage in (often expensive and costly) state-space explo-
ration, meaning agents could improve their models to levels
of performance beyond what they have observed.

Conclusion
We presented an approach to Learning by Observation in
the real-time strategy domain, evaluated in the game of Star-
craft. Our system employed a qualitative-relational com-
pression of spatial information in order to ease the difficulty
of the learning task, before using a Monte-Carlo method to
aid in decompressing the data in real-time. This allowed our
system to control an agent to act in the chosen tasks, imi-
tating the performance of observed experts, both human and
synthetic. The synthetic controllers were of our own design,
for which we make full source-code available to allow for
future work in this area to build on our own. The research
leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement No 600623 and the EPSRC grant EP/K014293/1.

References
Amar, J. 2006. The Monte Carlo method in science and engineer-
ing. Computing in Science & Engineering 8(2).

200



Argall, B. D.; Chernova, S.; Veloso, M.; and Browning, B. 2009.
A survey of robot learning from demonstration. Robotics and Au-
tonomous Systems 57(5):469–483.
Behera, A.; Cohn, A.; and Hogg, D. 2012. Workflow activity moni-
toring using dynamics of pair-wise qualitative spatial relations. Ad-
vances in Multimedia Modeling.
Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. The Journal of Machine Learning Re-
search 13:281–305.
Cleary, J., and Trigg, L. 1995. Kˆ*: An Instance-based Learner
Using an Entropic Distance Measure. ICML 5:1–14.
Clementini, E. 1997. Qualitative representation of positional infor-
mation. Artificial Intelligence 95:317–356.
Floyd, M.; Esfandiari, B.; and Lam, K. 2008. A case-based rea-
soning approach to imitating RoboCup players. 21st International
Florida Artificial Intelligence Research Society Conference.
Frommberger, L. 2008. Learning To Behave in Space: a Qualitative
Spatial Representation for Robot Navigation With Reinforcement
Learning. International Journal on Artificial Intelligence Tools
17(03):465–482.
Gooday, J., and Cohn, A. 1994. Conceptual neighbourhoods in
temporal and spatial reasoning. Spatial and Temporal Reasoning,
ECAI.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; and
Witten, I. H. 2009. The WEKA data mining software: an update.
SIGKDD Explorations 11(1):10–18.
Jung, T., and Polani, D. 2012. Learning RoboCup-Keepaway with
Kernels. JMLR: Workshop and Conference Proceedings 1:33–57.
Matthews, B. W. 1975. Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochimica et biophys-
ica acta 405(2):442–451.
Molineaux, M.; Aha, D. W.; and Sukthankar, G. 2008. Beating the
Defense : Using Plan Recognition to Inform Learning Agents.
Montana, J., and Gonzalez, A. 2011. Towards a unified framework
for learning from observation. IJCAI Workshop on Agents Learning
Interactively from Human Teachers.
Moseley, L. 1988. Introduction to machine learning.
Neapolitan, R. E. 1990. Probabilistic reasoning in expert systems:
theory and algorithms. John Wiley & Sons, Inc.
Parra, R., and Garrido, L. 2013. Bayesian networks for microman-
agement decision imitation in the RTS game starcraft. Advances in
Computational Intelligence.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning, vol-
ume 1.
Randell, D.; Cui, Z.; and Cohn, A. 1992. A spatial logic based on
regions and connection. 3rd International Conference on Knowl-
edge Representation and Reasoning.
Renz, J., and Mitra, D. 2004. Qualitative direction calculi with
arbitrary granularity. Lecture notes in computer science.
Ros, R.; Llu, J.; and Mantaras, R. L. D. A Case-Based Approach for
Coordinated Action Selection in Robot Soccer. (February 2009):1–
50.
Shimada, K.; Takahashi, Y.; and Asada, M. 2010. Efficient Behav-
ior Learning by Utilizing Estimated State Value of Self and Team-
mates. Robot Soccer World Cup XIII 1–11.
Sridhar, M., and Cohn, A. 2010. Unsupervised learning of event
classes from video. AAAI 1631–1638.
Van de Weghe, N.; Cohn, A.; De Tre, G.; and De Maeyer, P. 2006.
A qualitative trajectory calculus as a basis for representing moving

objects in geographical information systems. Control and Cyber-
netics 35(1):97.
Vieira, D. C. D. L.; Adeodato, P. J. L.; and Gon, P. M. 2010. Im-
proving Reinforcement Learning Algorithms by the Use of Data
Mining Techniques for Feature and Action Selection. IEEE Inter-
national Conference on Systems Man and Cybernetics 1863–1870.
Young, J.; Smith, F.; Atkinson, C.; Poyner, K.; and Chothia, T.
2012. SCAIL: An integrated Starcraft AI system. IEEE Computa-
tional Intelligence and Games.

201




