Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

Finding Schrodinger’s Gun

Justus Robertson and R. Michael Young
Liquid Narrative Group
Department of Computer Science
North Carolina State University
Raleigh, NC 27695
jjrobert@ncsu.edu, young @csc.ncsu.edu

Abstract

Interactive narratives are branching stories with events
that change based on feedback from participants. One
method of generating interactive narratives is a plan-
based process called mediation. A sub-process within
mediation called accommodation creates new story con-
tent when a participant deviates from the main storyline.
We show that a model of character knowledge allows
accommodation to find a novel class of branching sto-
ries previously inaccessible by the algorithm.

Introduction

Interactive narratives are available in many mediums such
as tabletop role playing games, gamebooks, interactive fic-
tion, and video games. One drawback of authoring interac-
tive narratives is that a branching storyline requires a large
amount of story content. If branching narrative is viewed as
a story graph whose vertices are story content and edges
are user actions, unique user choices are edges that transi-
tion to unique vertices. A branching narrative that offers a
large number of unique choices will have an equally large
number of vertices which creates a high authorial burden or
combinatorial explosion of story content (Bruckman 1990).
Luckily, Al algorithms can automate the creation of branch-
ing story graphs.

Planning is one system capable of generating interac-
tive narratives (Porteous, Cavazza, and Charles 2010). Re-
cent research has modeled interesting properties of narra-
tive within the context of planning such as character inten-
tion (Riedl and Young 2010) and conflict (Ware and Young
2011). These linear planners can be paired with an algorithm
called mediation (Riedl, Saretto, and Young 2003) to man-
age human interaction as a character within the story. Me-
diation accomplishes this by building a mediation tree data
structure. The mediation tree is a representation equivalent
to story graphs (Riedl and Young 2006).

Howeyver, there is a class of interactive stories that media-
tion cannot currently generate. This class corresponds to the
phenomenon popularly termed Schrodinger’s Gun. In this
paper we incorporate a model of character knowledge into
mediation to generate this novel class of interactive stories.

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

153

Related Work

Mediation is a plan-based interactive narrative generation al-
gorithm first created for the Mimesis system (Young et al.
2004). Mediation generates a branching story, represented
by a mediation tree, by applying accommodation and inter-
vention to a linear story plan. Accommodation is the pro-
cess of expanding a mediation tree while intervention prunes
away possible branches. There have been several modifica-
tions of mediation (Riedl et al. 2008; Harris and Young
2009; Ramirez, Bulitko, and Spetch 2013) but unlike previ-
ous work we expand the number of branches mediation can
create while building its tree. We accomplish this by identi-
fying a new type of interactive story during accommodation.

Our process is a form of alibi generation (Sunshine-Hill
and Badler 2010; Li et al. 2014), a method that dynami-
cally creates backstories for non-player characters (NPCs).
Sunshine-Hill and Badler use alibi generation to reduce the
cost of simulating large crowds by transitioning NPC be-
havior from a random distribution to an intelligent pattern
when observed by a player. Li et al. show that socially be-
lievable alibis can be learned from exemplar graphs obtained
through crowdsourcing. In this paper we present a mediation
system with a model of character knowledge that can replan
past events during accommodation, rewriting NPC alibis in
response to player actions so they further an author’s goals
while building a branching story.

Mediation Algorithm

In this paper we present descriptions and definitions that
span three layered algorithms: planning, mediation, and
Schrddinger accommodation. This section briefly describes
the planning and mediation machinery on which our work is
built as a foundation for later sections.

Planning

A planner is an automated reasoner that devises an ordered
set of actions which accomplish a desired goal. The process
begins with a planning problem which consists of an initial
and goal state description and a set of operator schemata that
define how the world can be transformed. Planners conduct a
search to produce a plan, a solution to the planning problem
that defines a series of actions which transform the planning
problem’s initial state into its goal state.

Initial

-

Stepl

S

.

Step2

-

Step3

Goal

Figure 1: POCL plan representation of five steps, a partial
ordering between Stepl and Step2, and five causal links.

POCL Planning

Partial Order Causal Link (POCL) planning is the specific
type of planner on which our system is built. POCL plans
are comprised of partially ordered steps, which in our case
represent actions taken by characters in a story. Actions are
defined by a set of general action templates, called operators.

Definition 1 (Operator). A planning operator is a template
for actions that can be added to a plan. Planning operators
are represented <p,e,n>where p, the set of preconditions,
is a set of predicates that must hold true for the action to
be performed, ¢, the set of effects, is a set of predicates that
become true after the action, and n is the operator name.

When an operator is added to a plan it is called a step.

Definition 2 (Step). A step is an instantiation of an operator
in a plan. Steps are represented by the triple <p,e,i>, where
p and € are preconditions and effects from the corresponding
operator, and ¢ is some unique identifier.

The POCL planning process begins with a plan that con-
sists of two steps. One specifies the initial state of the world
and the other specifies a state the system wishes to achieve.

Definition 3 (Planning Problem). A planning problem de-
scribes an initial and desired state and a set of operators. A
problem is represented <A,I,I">, where A is the set of oper-
ators, I is a set of effects that represent the initial state, and
T is a set of preconditions that represent a goal state.

The planning process is driven by unification.

Definition 4 (Unification). Given two propositions, p and ¢,
unification returns a substitution for free variables in p and
q, if one exists, such that p and q are logically equivalent.

Steps are added to and arranged in a POCL plan using
causal links, ordering constraints, and binding constraints.

Definition 5 (Causal Link). A causal link tracks how pre-
conditions are fulfilled and is represented <s;,e,r,s;>, or
S; Bl s;, where 7 is a precondition of s, e is an effect of
s;, and e unifies with 7. s; establishes precondition r for s;.

Definition 6 (Ordering Constraint). An ordering con-
straint is a temporal relationship among steps. An order-
ing constraint states that one step, s;, within a plan’s set

154

of steps, S, is to be ordered before a second step s;, or
{Si < Sj|3¢,$j S S}

Definition 7 (Binding Constraint). A binding constraint
is a pair of free variables or constants, (u, v), that must co-
designate or a pair, =(u, v), that must not co-designate.

Together, a set of steps, binding constraints, ordering con-
straints, and causal links represent a POCL plan.

Definition 8 (Plan). A plan is a solution to some planning
problem, represented <.5,B,0,L>, where S is a set of steps,
B is a set of binding constraints on free variables in S, O is
a set of ordering constraints, and L is a set of causal links.

Mediation builds a tree of plans to control interaction.

Mediation

Mediation is (in our case) an offline process that takes a nar-
rative plan as input and generates a contingency for every ac-
tion a user could take that breaks plan execution at runtime.
An offline planner is one that does not run concurrently with
plan execution, does not have access to the current state of
the world, and must plan for possible contingencies before
they arise. Mediation plans for user activity offline by iden-
tifying and responding to possible exceptional user actions.

Definition 9 (Exceptional Action). An exceptional action
is any possible user-performed step s,, instantiated from A
somewhere in the span {s; < s, < s;} of a causal link [,

s =5 s;, where s, has some effect ¢ such that ¢ unifies
with —r.

Exceptional actions are steps that can be performed by a
user at runtime that reverse some world condition needed for
the plan to execute. At plantime, mediation identifies every
exceptional action the user could perform and devises a con-
tingency using intervention or accommodation. This paper
extends the accommodation process.

Accommodation Given a narrative plan P=<S,B,0,L>,

an exceptional action s,,, and the causal link /, s; 20 55,
threatened by s,, accommodation produces a new plan P’
that incorporates s,, and is a solution to the planning prob-
lem that produced P. The process begins by removing s;
and all steps causally dependent on s; from S.

Definition 10 (Causal Dependence). Given two steps in a
plan, s; and s;, s; is causally dependent on s; if there is
a causal link that establishes a precondition of s; with an
effect of s;. This definition is recursive, all steps sj, that are
causally dependent on s; are also causally dependent on s;.

The process removes the broken causal link s;—s; from
L, adds the exceptional step s,, to S, and adds the ordering
{8; < 84} to O. Accommodation sends the modified story
to its planner which returns a new plan P’ if one exists. This
new plan is a revised story that incorporates the user’s excep-
tional action and accomplishes the planning problem’s goal
state. All new steps added to P’ by the planner are ordered
after the exceptional action s,, which serves as the current
time index. Once generated, P’ is added as an accommoda-
tion to the policy table for P under exceptional action s,,.

§ PI1ExStepl

=

) PI2ExStepl

PI2ExStep2

=

Figure 2: A mediation tree.

Mediation is recursively invoked to find all exceptional
actions in P’ that happen after s, or for all causal links
s;—s; where {s; < s,} ¢ O. When this recursive pro-
cess is complete, either an accommodation plan or failure
mode intervention is assigned to every possible exceptional
action in P as well as every nested plan generated by accom-
modation. The graph of a cascading mediation policy whose
vertices are narrative plans and edges are exceptional actions
is called a mediation tree. An example mediation tree is pic-
tured in Figure ??. Mediation trees are at least as powerful a
representation as the acyclic branching story graphs used in
many interactive narrative systems (Riedl and Young 2006).

However, accommodation is not guaranteed to find a new
plan P’ that incorporates s,,. When this is the case it prevents
the mediation tree from expanding. One way to allow medi-
ation to accommodate more actions is to broaden its search
for valid plans. In the next section we present a new type
of interactive story and show how it can be identified during
accommodation with a model of character knowledge.

Schrodinger’s Gun

This system widens the search space of accommodation by
identifying a new class of plans. These plans alter plot events
ordered before a user’s exceptional action and correspond
to the narrative trope Schrodinger’s Gun, the idea that a
fictional universe is constrained only by what is revealed
to the audience. The trope is named after Schrodinger’s
Cat, a thought experiment that interprets unobserved aspects
of the world as existing in multiple simultaneous states,
and Chekhov’s Gun, a dramatic principle that requires ev-
ery element introduced in a narrative to serve some role
in the story. This trope allows important story events, the
Chekhov’s Guns, to exist and not exist until observed, like
Schrodinger’s Cat. A variety of human-authored interactive
stories take advantage of this trope to decide unseen plot
events after receiving feedback from participants.

Story Examples

Drood is a musical based on the unfinished Charles Dickins
novel The Mystery of Edwin Drood whose plot focuses on

155

the murder of the title character. Since the novel is unfin-
ished the musical gives the audience an opportunity to vote
on who kills Drood before the play begins. All performances
of the musical proceed uniformly until the final scene where
the murderer is revealed. At this point the full plot changes
based on what character was voted by the audience to be the
killer. This choice retroactively affects the events of the story
but no choice conflicts with what is shown to the audience up
to the finale. The film Clue, based on the board game of the
same name, has a similar branching reveal scene as Drood.
Three endings to the movie were filmed with different mur-
derers and explanations of the story’s events.

The Choose Your Own Adventure series of books makes
use of this principle to provide varied plotlines. The reader
is often presented with a decision under incomplete knowl-
edge of the problem they face and the reality of the situa-
tion changes after the decision. For example, in Space and
Beyond the reader must choose to investigate a mysterious
illness by following diplomats from another planet or re-
searching pollution levels. If the reader chooses to investi-
gate the diplomats, she discovers that the illness originated
on another planet. If the reader researches pollution levels,
she finds that the illness is a byproduct of pollution.

Many video games take advantage of this property of fic-
tional worlds to guide players into making decisions that the
author desires. The game inFAMOUS asks its player to save
one of two towers, one of which contains the protagonist’s
loved one. No matter what tower the player chooses to save,
the story is written so that it was the wrong choice. The
Hitchhiker’s Guide to the Galaxy text adventure has an infa-
mous puzzle that relies on Schrédinger’s Gun. In the game,
the player is forced to locate ten tools and is told that one
will be important at the end of the game. If the player does
not collect all ten tools the story is rewritten such that the
tool the player needs will always be one she left behind.

Algorithm

The contributions of this system are twofold. First, we add
a general mechanism to model how story characters observe
and know their world in the mediation process. This gen-
eral mechanism is a collection of axioms that can be hand-
tailored for specific story domains. Second, we incorporate
reasoning about the newly added character knowledge in-
formation into the mediation process at both the policy gen-
eration and planning layers. The policy generator uses this
information to remove unobserved steps from an initial plan
and the planner identifies new story plans that do not con-
tradict the user’s experience. As a result of these modifi-
cations the algorithm’s search space is enlarged to include
plans with revised events ordered before exceptional ac-
tions. These new plans take advantage of the user’s incom-
plete information of the narrative environment to rewrite plot
events that have already taken place without contradicting
the player’s experience.

Knowledge Microtheory

This system needs a model of knowledge that determines
whether a character observes plot events (plan steps) and

Modified
Planner

Knowledge
Annotator

Policy
Generator

Mediation Tree

Figure 3: System overview.

whether a character observes how plot events change the
story world (literals established by step effects). Creating
an accurate model of how agents observe and know aspects
of their world is a complex problem (Petrick and Bacchus
2004) and may change based on each story domain. In-
stead of incorporating a highly-structured model of character
knowledge into our system, we introduce a general frame-
work that can be modified to fit particular domains. This
general framework is called a microtheory.

A microtheory (Guha and Lenat 1993) is a group of
statements about some topic that may make special as-
sumptions or simplifications about the world. Microtheories
are intended to provide a scaffold for building extensible
databases that describe a particular domain. Instead of ex-
pecting its statements to always hold, a microtheory instead
expects that its axioms hold only in a certain context (Mc-
Carthy 1993). Microtheories are useful because they allow
systems to be built on a working theory of some domain
that may later be substituted for or integrated with a more
fine-grain solution. For this system we present a base model
of character knowledge as a microtheory that may be sub-
stituted for or integrated with domain-specific theories for
each story world.

We define the microtheory by calling it KnowledgeMt. To
specify that some axiom A belongs to KnowledgeMt,

ist(KnowledgeMt, A) (1)

where ist stands for ’is true in’, KnowledgeM?t is the con-
text where the axiom holds, and A is the axiom. The driv-
ing force behind the base microtheory is that a character ob-
serves everything at their current location.

ist(KnowledgeMt,N'xyzCharacter(x) N\ At(z, 2)

NAL(y, z) — Observes(x,y)) @

The characters in this theory can perform actions. If one
character observes another character as they perform an ac-
tion, the first character also observes the action.

ist(KnowledgeMt,VxyzCharacter(xz) A Actor(y, z)

3
NAction(z) N\ Observes(z,y) — Observes(x, z)))

Finally, things in the world may have properties or char-
acteristics. If a character observes a thing in the world, the
character also observes its properties.

156

ist(KnowledgeMt, Y xyzCharacter(x) A Property(y, z)

AObserves(x,z) — Observes(z,y))
“)

This microtheory is used during the knowledge annotation
process to determine what parts of a plan are observed by the
user’s character. These axioms are procedural and produce
supported implications when applied to a fact database.

Knowledge Annotation

Given a plan P=<S5,B,0,L>, a microtheory of knowledge
Mt, and the user’s character u, the annotation algorithm de-
cides what steps and step effects in P that u could possibly
observe under Mz. The system returns two sets: .S, the set of
steps in S observed by u, and F,, the set of relevant step ef-
fects observed by u. The system assumes actions will be ex-
ecuted in a linear order as the plan controls interaction with
the user. However, POCL plan steps are partially ordered. In
order to reason about all actualizations of P the system must
enumerate its total orderings.

State Trees A total ordering of a partial order plan is any
valid linear arrangement of the steps in .S according to the
ordering constraints in O. The set of all total orderings of
P is equivalent to the set of valid topological sorts of the
directed acyclic graph whose vertices correspond to the steps
in S and whose edges correspond to the orderings in O.

Given T, the set of all total orderings ¢ of P, the system
builds a state tree. A state tree is a tree whose vertices are
world states and edges are plan steps.

Figure 4: A state tree that corresponds to the Figure 1 plan.

Definition 11 (World State). A world state is a conjunc-
tion of ground literals that specify what is true in a world.
In POCL plans the world’s initial state is obtained from the
effects of the first plan step.

To generate a state tree, the system takes the conjunction
of effects from P’s initial step and sets it as the root node 7.
For every unique step s; that is ordered after the initial step
sp in some ¢ € T', the system creates a new branch from r.
For each branch created by step s; from r, the correspond-
ing child node is generated by applying the effects of s; to
the conjunction contained in r. The resulting formula will

o0 el T B
I state1 1 I tate
\
’ [
AR | User(CharacterB)

I At(CharacterA, Location)
|At(CharacterB, Location)

(a) A state tree with one step, performed

by CharacterA in Statel. by the Statel node.

| Character(CharacterA)
| Character(CharacterB)

(b) The world state formula represented

KnowledgeMt

(2)
Character(CharacterB)
At(CharacterB, Location)
At(CharacterA, Location)

— Observes(CharacterB, CharacterA)

(c) Application of Formula 2 to Statel. The
system concludes CharacterA is observed.

Figure 5: Microtheory application.

be the state of the world after s; is executed in all total or-
derings where s; is performed after the initial step sg. This
process is repeated until all possible states are enumerated.
An example state tree is given in Figure 4.

Observing Actions The system uses the state tree to deter-
mine what story events are observed by the user’s character.
For every step s € S the system determines whether s is
observed by u in any total ordering ¢. This is accomplished
with a search through the state tree paired with the obser-
vation axioms contained in Mt. The system begins at r and
performs a depth first search for an edge that corresponds
to s. Actions represented by edges are performed in the pre-
ceding state, modeled as the vertex v at the tail of the edge.
To determine whether u observes s the system applies
Mt to the state representation contained in v to create facts
about what characters observe. The system adds predi-
cates Action(s) and Actor(c,s) to describe the action and
its performer to the state description. s is observed by wu if
Observes(u,s) is produced by applying Mt to v. If s is ob-
served, the system adds Observes(u,s) to S,. Figure 5 is an
example of applying KnowledgeM?t to a state description.

Observing Effects A user may observe ways in which the
world changes due to an action without observing the action
itself. In order to preserve changes of unseen actions the sys-
tem must track what effects of unobserved steps a user can
observe and at what points in the plan they are observed.
This system reasons about time in terms of steps, so steps
serve as indices as it tracks this class of effects.

For every unobserved step s, such that Observes(u,s,,) is
not in the user’s fact database and for every effect e in the
set of effects € of s,,, search the state tree for states in which
Observes(u,e). For each state s that contains Observes(u,e),
let s; be the plan step that corresponds to the outgoing edge
of s. For every unique s;, add Observes(u,e,s,,s;) to the
database of facts the user has observed. Once finished, the
algorithm has collected all steps and observed effects of un-
observed steps that the user can witness at run-time.

Policy Generation

The policy generation algorithm is run at plan-time to build a
mediation tree. It begins with an initial plan P and the excep-

157

tional step s, that triggered the parent node (null if the parent
is the root). If there can be instantiated and established any
new exceptional step s, that breaks a causal link [ordered
after s, in P the algorithm must prepare a new node of the
mediation tree by generating a plan using accommodation.

The system removes all steps causally dependent on [as
well as all unobserved steps ordered before s,,. For every
step s that is ordered before s,, (s < s,) € O, the system
checks the fact database for =Observes(u,s). If so, s is re-
moved from S and for every effect e of s and every remain-
ing step s; in S the system checks for Observes(u,e,s,s;). If
s0, a new precondition e is added to s;’s list of preconditions
p. This new precondition preserves the observed effect of the
recently removed step at this point in the plan. Finally, the
the prepared partial plan is sent to a modified POCL planner.

If a valid plan P’ is found it is associated with a new node
in the mediation graph reachable from the parent node con-
taining P by way of an edge associated with s,,. The algo-
rithm is recursively invoked to find all children of P’.

Replanning
This system modifies the planner’s operator selection phase
to ensure added steps are consistent with user observations.
A new step s is consistent only if it is ordered after the user’s
exceptional step s, {s, < s} € O, or if “Observes(u,s).
Any unobserved step s added to the plan that is possibly
ordered before s,, must have consistent effects. An effect e is
consistent if for all steps s; possibly ordered before s,, either
e satisfies a precondition of s; or =Observes(u,e,s,s;). If a
consistent step has one or more inconsistent effects, the step
becomes inconsistent. Only consistent steps may be added.
If successful, the planner returns a story that accomplishes
the author’s objectives, incorporates the user’s exceptional
action, may include modifications to story events that oc-
curred prior to the inciting incident, and remains consistent
with everything the user has observed in the story world.
This plan will assume control of execution if the user takes
action s,, during P at run time.

Example

To illustrate the system’s mechanics consider a scene modi-
fied from the third act of The Dark Knight (Nolan, 2008).

Kidnap(Joker, Rachel, 52" St.) | | Kidnap(Joker, Harvey, Ave. X)

| Move(Batman, Station, Ave. X) |

| Save(Batman, Harvey, Ave. X) |

Figure 6: An exceptional action in the Batman domain.

i Kidnap(Joker, Harvey, 52" St.) i i Kidnap(Joker, Rachel, Ave. X) E

| Move(Batman, Station, 52" St.) |

J

| Save(Batman, Harvey, 52" St.) |

\

Figure 7: The accommodated plan.

Linear Plan

The Joker has kidnapped two important characters: Rachel
and Harvey. The Joker tells Batman the two kidnapping lo-
cations but does not specify what character is where. Batman
has time to save one of them. In the film, Batman travels to
Ave. X where he saves Harvey at the expense of Rachel.
There are three actions available in the domain: Kidnap,
Move, and Save. The problem’s goal is for Rachel to die. The
Joker, Harvey, and Rachel begin at the apartment. In order
to fulfill the problem’s goal Harvey and Rachel must be kid-
napped. The only character capable of kidnapping is Joker.
Once kidnapped Harvey must be saved. The only character
capable of saving is Batman who must first move from his
initial location at the Police Station to Harvey’s location at
Ave. X. Once Batman performs the save action on Harvey
Rachel is killed and the planning problem’s goal is satisfied.

Accommodation

If given the linear plan mediation identifies a threatened
causal link: if the player moves from the Police Station
to 52nd St. she breaks the establishing condition of Bat-
man being at the Station. This exceptional action is pic-
tured in Figure ??. Accommodation is called and begins
by clearing away the action at the tail of the broken causal
link, Move(Batman, Station, Ave. X), and the causally down-
stream Save(Batman, Harvey, Ave. X). The removal of these
steps creates an open precondition of —Alive(Rachel) at the
goal step. Accommodation sends this plan fragment to the
planner.

Unfortunately, no plan can incorporate Move(Batman,
Station, 52nd St.) and accomplish —Alive(Rachel) because

158

Batman can only move to one location from the Police Sta-
tion. Once Batman is at 52nd St. the only action available
is Save(Batman, Rachel, 52nd St.) which produces the ef-
fect ~Alive(Harvey) and does not fit the planning problem’s
goal. Unable to find a solution, mediation must assign a fail-
ure mode intervention to the player’s choice.

Schrodinger Accommodation

If modified to reason about character knowledge the system
finds an accommodative solution to the planning problem.
Not only are Move and Save removed from the plan but the
knowledge annotator identifies Kidnap(Joker, Rachel, 52nd
St.) and Kidnap(Joker, Harvey, Ave. X) as unobserved by the
player’s character and removes them as well. Starting from
a plan in which the only action is Move(Batman, Station,
52nd St.) the planner constructs a plan where the kidnapped
locations of Rachel and Harvey are swapped.

The planner accomplishes —Alive(Rachel) by adding the
step Save(Batman, Harvey, 52nd St.) before the goal. It then
supports this action by adding Kidnap(Joker, Rachel, Ave. X)
and Kidnap(Joker, Harvey, 52nd St.) before the exceptional
step and verifying that they are consistent actions. Since the
two actions change nothing of the world that the user has
observed they are added to the plan. The planner returns this
solution as an accommodation for the action.

Implementation

This system is implemented with Longbow (Young and
Moore 1994). On an Intel Core i7 3.5GHz system with 8GB
RAM the Batman mediation tree is built in 5.54 seconds.

Conclusion

In interactive narratives where the user has incomplete infor-
mation of the story world unobserved past events can be re-
structured to further author goals. We show that the branch-
ing factor of story graphs produced by interactive narrative
systems can be increased to include this class of interactive
stories by including a model of character knowledge into the
generation process.

References

Bruckman, A. 1990. The Combinatorics of Storytelling:
Mystery Train Interactive.

Guha, R. V., and Lenat, D. B. 1993. Cyc: A Midterm Report.
Readings in Knowledge Acquisition and Learning 839-866.
Harris, J., and Young, R. M. 2009. Proactive Mediation in
Plan-Based Narrative Environments. IEEE Transactions on
Computational Intelligence and Al in Games 1(3):233-244.
Li, B.; Thakkar, M.; Wang, Y.; and Riedl, M. O. 2014. Data-
Driven Alibi Story Telling for Social Believability. In Social
Believability in Games.

McCarthy, J. 1993. Notes on Formalizing Context.

Petrick, R., and Bacchus, F. 2004. Extending the
Knowledge-Based Approach to Planning with Incomplete

Information and Sensing. In International Conference on
Automated Planning and Scheduling, 613-622.

Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
Planning to Interactive Storytelling: Narrative Control Using
State Constraints. ACM Transactions on Intelligent Systems
and Technology 1(2):10.

Ramirez, A.; Bulitko, V.; and Spetch, M. 2013. Evaluating
Planning-Based Experience Managers for Agency and Fun
in Text-Based Interactive Narrative. In Artificial Intelligence
and Interactive Digital Entertainment, 65-71.

Riedl, M. O., and Young, R. M. 2006. From Linear Story
Generation to Branching Story Graphs. Computer Graphics
and Applications 26(3):23-31.

Riedl, M. O., and Young, R. M. 2010. Narrative Planning:
Balancing Plot and Character. Journal of Artificial Intelli-
gence Research 39(1):217-268.

Riedl, M. O.; Stern, A.; Dini, D. M.; and Alderman, J. M.
2008. Dynamic Experience Management in Virtual Worlds
for Entertainment, Education, and Training. International

Transactions on Systems Science and Applications 4(2):23—
42.

Riedl, M.; Saretto, C. J.; and Young, R. M. 2003. Manag-
ing Interaction Between Users and Agents in a Multi-Agent
Storytelling Environment. In Autonomous Agents and Mul-
tiagent Systems, 741-748.

Sunshine-Hill, B., and Badler, N. I. 2010. Perceptually Re-
alistic Behavior through Alibi Generation. In Artificial In-
telligence and Interactive Digital Entertainment, 83-88.
Ware, S. G., and Young, R. M. 2011. CPOCL: A Narrative
Planner Supporting Conflict. In Artificial Intelligence and
Interactive Digital Entertainment, 97-102.

Young, R. M., and Moore, J. D. 1994. DPOCL: A Principled
Approach to Discourse Planning. In International Workshop
on Natural Language Generation, 13-20.

Young, R. M.; Riedl, M. O.; Branly, M.; Jhala, A.; Martin,
R. J.; and Saretto, C. J. 2004. An Architecture for Integrat-
ing Plan-Based Behavior Generation with Interactive Game
Environments. Journal of Game Development 1(1):51-70.

159

