
The Real-Time Strategy Game Multi-Objective Build Order Problem

Jason Blackford and Gary Lamont
Department of Electrical and Computer Engineering, Air Force Institute of Technology

Wright-Patterson Air Force Base, Dayton, Ohio, United States of America

Abstract

In this paper we examine the build order problem in
real-time strategy (RTS) games in which the objective
is to optimize execution of a strategy by scheduling
actions with respect to a set of subgoals. We model
the build order problem as a multi-objective problem
(MOP), and solutions are generated utilizing a multi-
objective evolutionary algorithm (MOEA). A three di-
mensional solution space is presented providing a de-
piction of a Pareto front for the build order MOP. Re-
sults of the online strategic planning tool are provided
which demonstrate that our planner out-performs an
expert scripted player. This is demonstrated for an AI
agent in the Spring Engine Balanced Annihilation RTS
game.

Introduction
A goal of current real-time strategy (RTS) game AI research
is to develop an agent that performs at the level of an expert
human player. A multitude of researchers explain that there
exist a set of RTS player competencies an expert must mas-
ter (Cunha and Chaimowicz 2010) (Coy and Mateas 2008)
(Sailer, Buro, and Lanctot 2007). These competencies in-
clude strategy execution, tactical maneuvering of units in
battle, resource collection, production of units, buildings and
upgrades, and scouting enemy positions. Each of these are
intertwined with one another in that they introduce compet-
ing goals and resource allocation needs.

The competencies may be divided into several managers
including: strategy, resource collection, production, tactics,
and finally a reconnaissance manager. Each of these man-
agers possess their own goals that compete for resources and
execution. These managers can be integrated into a frame-
work that enables these managers to interoperate as a func-
tioning RTS game AI. One specific framework is known as
a multi-scale agent (Weber et al. 2010). We adopt this ap-
proach for our investigation.

In addition to the RTS player competencies, Weber (We-
ber 2012) presents three capabilities unique to expert players
in RTS games: estimation, adaptation, and anticipation. Es-
timation and anticipation relate to predicting an opponents

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

next action based on an observed strategy the opponent is
executing. Adaptation corresponds to an agent’s planning
mechanism in which an agent adapts its plans in real-time
to cope with changes in an uncertain environment and op-
ponent. These three capabilities enable an AI to learn from
and reason about its world. Together the competencies and
capabilities describe an AI framework that enables an agent
to manage competing goals in an uncertain and dynamic en-
vironment.

To summarize the high level requirements for the devel-
opment of an expert RTS agent, we generated the expert
RTS agent pyramid in Fig. 1. The foundation of the pyra-
mid is the RTS player competencies that are implemented
with various AI algorithmic techniques. These techniques
can range from complex search algorithms (Sailer, Buro, and
Lanctot 2007) to scripted managers that encapsulate each
competency. Above the player competencies are the expert
RTS player capabilities. The capabilities rely on the algo-
rithmic techniques utilized to implement the competencies.
Collectively the competencies and capabilities enable an AI
agent to handle uncertainty and manage competing goals in
an RTS environment.

Figure 1: The expert RTS agent pyramid organizes from the
bottom up what is necessary for constructing a multi-scale
agent capable of playing an RTS game at an expert level.

Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

105

The research problem we address in this paper is on op-
timizing the performance of the strategic decision-making
process or build orders of an RTS agent. This investigation
includes the development and analysis of an RTS agent that
optimizes strategy execution in order to perform at an expert
human level (Blackford 2014)1; therefore, we make the as-
sumption that the build orders generated by an expert player
are near-optimal. The objective of our planning tool is to
produce build orders that are as good as or better than expert
build orders or near-optimal. Our approach is real-time and
is comparably as fast as the approach presented by Churchill
and Buro in (Churchill and Buro 2012) whose depth-first
search (DFS) technique utilizes around five seconds of plan-
ning time to produce build orders in Starcraft.

Background
Players of an RTS game attempt to advance the skills and
technology of their cities and armies in order to over power
their opponent. This technology advancement is defined in
the technology tree of an RTS game. A technology tree is
a large directed decision tree that determines the execution
of a player’s selected strategy. It establishes an ordering of
actions a player must take in order to build and advance their
army. This leads to the concept of build orders.

A build order is an ordered sequence of actions a player
takes to execute their chosen strategy. Strategy execution is a
planning problem requiring two components: first, determin-
ing a good goal-ordering to ensure expert level execution of
a strategy with respect to resource allocations and time to ex-
ecute the strategy; and second, issuing and executing actions
in a build order to ensure expert or near-optimal player per-
formance measured in resource allocations and time to reach
a goal. With respect to providing an AI agent with the ability
to rationalize across this planning problem, the first compo-
nent involving goal-ordering can be determined by deriving
a goal-ordering from the replays of an expert RTS player
(Weber and Mateas 2009) (Ontanon et al. 2007) and then
provide this to the agent via case-based reasoning (CBR).
Resolving the second component is known in the RTS re-
search community as the build order optimization (Churchill
and Buro 2011) problem and is the focus of this investiga-
tion.

Build Order Methodology
This investigation frames the RTS strategic decision-making
process as a build order optimization problem. The build or-
der problem is modeled as a multi-objective problem (MOP)
(Coello Coello, Lamont, and Veldhuizen 2007) with three
objective functions and three constraints. The mathematical
model of the strategic decision-making process is then in-
tegrated into an RTS game simulator capable of executing
strategic decisions common to generic RTS games including
Starcraft: Broodwars and Balanced Annihilation. The simu-
lator is written in C++ and utilizes seven XML schema files
to define any RTS game to be simulated (Blackford 2014).
As build orders are passed into the simulator, it scores them

1https://code.google.com/p/online-planning-rts-agents/

based upon the three objective functions of the build or-
der MOP. To generate build orders, an MOEA framework
in conjunction with the RTS strategic decision simulator is
utilized to score a population of randomly generated build
order plans. To enhance the discovery of near-optimal so-
lutions, expert solutions are injected into the population of
the MOEA framework utilizing CBR (Blackford 2014). This
results in an RTS strategic planning capability that is online
and provides an agent with near-optimal build orders. The
capabilities of the strategic planner are demonstrated in the
Spring game engine with the Balanced Annihilation RTS
game. Results for the ability of our model to approximate
Starcraft build orders are presented in (Blackford 2014), but
the focus of this paper is the RTS Spring Engine 2 Balanced
Annihilation (BA) game.

Build Order as Producer/Consumer Problem
In formulating the mathematical model to approximate the
build order problem, a goal programming approach was
adopted (Coello Coello, Lamont, and Veldhuizen 2007).
Goal programming is defining objective functions that min-
imize a distance to a goal. Distance is defined loosely as any
quantitative metric that can be utilized to measure equiva-
lence of a feasible solution from a multi-objective problem
population to a target goal.

The conjecture that the BOO problem is a planning and
scheduling problem with producer/consumer constraints is
first addressed in (Wei and Sun 2009). The scheduling prob-
lem consists of two parts: Scheduling highly cumulative
activities and scheduling highly disjunctive activities. Both
pieces are required to minimize the makespan for executing
and completing actions to reach a desired goal state from an
initial state. Cumulative actions are actions that can be exe-
cuted or issued concurrently (overlap) on the same resource.
This applies to actions requiring volumetric resources. Dis-
junctive scheduling consists of pairs of actions that cannot
be executed concurrently on the same resource. This applies
to actions requiring unary resources. It is possible for actions
to require both unary and volumetric resources; however, in
the RTS domain an action most likely requires one unary
resource and no more than two volumetric resources. For
example, in the popular Age of Empires (AOE) games a sol-
dier requires a barracks (unary) and food or wood and gold
(volumetric resources).

Cumulative Scheduling
In cumulative scheduling, actions or activities are con-
strained by volumetric resources. The constraint is the cu-
mulative producer/consumer constraint (Wei and Sun 2009).
The cumulative constraint requires that the sum of the
amounts of consumable resources required by a set of ac-
tions scheduled at a time t does not exceed the amount of the
resource available at time t. For example, if it costs 100 food
and 15 gold to produce a foot solider in an RTS game, and it
costs 200 food and 100 gold to research advanced armor for
the foot soldier, then to execute these actions concurrently

2https://www.springrts.com/

106

requires a total of 300 food and 115 gold at the time of re-
questing execution of these activities. With respect to RTS
games and volumetric resources in RTS games a slightly
modified representation of the cumulative constraint (Cor-
nelissens and Simonis 1995) can be expressed as 1:

|A|∑
aj∈A

rtj ≤ Lt (1)

Where t is the time of request of the set of actions contained
in the action set A, and aj is a member of the set of actions
being executed at time t. The amount of a single volumet-
ric resource (gold, food, or gas) required by an action aj
is expressed as rj . The total amount of the volumetric re-
source available at time t is represented as L. Keep in mind
that most actions require several resources, but this expres-
sion only captures the constraint between actions on a single
volumetric resource. This constraint must be satisfied for all
volumetric resources shared between actions executed at a
time instance t.

Disjunctive Scheduling
This discussion is derived from the definition of a unary re-
source in RTS games from (Wei and Sun 2009). At first it
would seem that the number of workers a player possesses
can be considered a volumetric resource. For each action
that requires a worker, simply assign a worker to the action.
However, individual workers themselves are a resource, so
it is better to divide the non-unary resource (total number
of workers) into unary resources (individual workers)(Wei
and Sun 2009). A non-unary resource in an RTS game is
a renewable resource - this excludes consumable resources
which are volumetric. In the RTS domain each non-unary
renewable resource of capacity C is divided into C sub-
sets (one capacity per subset), and each activity requiring
the non-unary resource is divided into C sets and assigned
one of the unary subsets. For example, if C = 15 work-
ers then there exists 15 subsets of the now unary resource
worker. Possible activities requiring a worker include: min-
ing a finite amount of gold or building a structure which has
a constant duration. Each one of these actions requires hold-
ing onto the unary resource for some constant duration that
is generally fixed and known (derived empirically via a sim-
ulation or available data).

A popular technique for performing disjunctive schedul-
ing is constraint satisfaction programming (CSP) (Baptiste
and Pape 1996). The objective in using CSP to schedule ac-
tivities under a unary resource constraint is to reduce the set
of possible values for the start and end times of pairs of ac-
tivities sharing the unary resource. A precedence ordering
is establish for actions as follows: (Baptiste, Pape, and Ilog
1996) given two actions A and B that both require the same
unary resource, schedule them according to expression 2:

end(A) ≤ start(B) ∨ end(B) ≤ start(A) (2)

This expression shows that A precedes B or B precedes A
with respect to time. A solution is found when the assign-
ment of domain start times satisfies the Boolean expression.
Expression 2 is the RTS game disjunctive constraint.

Exist Constraint
A final constraint that is present in RTS games is the exist
constraint. The exist constraint is defined implicitly in all
RTS games and is established by the technology tree of an
RTS game. It stipulates that an action A can only be exe-
cuted if a unary resource R exists. This is different from the
disjunctive constraint in that the action A does not require
use of the resource R, only that the resource exists. For ex-
ample, in Starcraft before a Barracks can be constructed a
Command Center must exist. A unary resource cannot be
both an exist and disjunctive constraint for a single action to
be executed. The exist constraint can be formulated logically
as the implication statement 3:

B ⇒ A (3)

Where B and A are actions. This expression draws a log-
ical implication between actions B and A (B implies A).
For example, in Starcraft the unary resource Command
Center must exist before a unary resource Barracks can
be produced. Therefore, the action Build Barracks is B
and the action Build Command Center is A. An alter-
native view is to bind the variables B and A to the unary
resources produced from the actions Build Barracks and
Build Command Center. From this alternative binding,
the unary resource Barracks cannot exist without the
unary resource Command Center. This implies that the
action Build Barracks cannot be taken without action
Build Command Center having already completed.

Multi-Objective Build Order Optimization
The multi-objective build order optimization problem (MO-
BOO) is defined by three objective functions and by the cu-
mulative, disjunctive and exist constraints. The three objec-
tive functions are as follows:

objectives,

min(

|AG|∑
iεAG

Di ∗ ({Gi} − {Si})) (4)

min(
1

Cr
[
∑
rεAG

(AGr
)−RSr

]) (5)

min(

|A|∑
iεA

Fi) (6)

constraints,

B ⇒ A (7)

|A|∑
aj∈A

rtj ≤ Lt (8)

ET (A) ≤ ST (B) ∨ ET (B) ≤ ST (A) (9)

The descriptions of the three objective functions are pro-
vided in the order that the functions are presented in the MO-
BOO MOP.

107

1. The first objective function, equation 4, is to minimize the
summed duration of the actions i contained in the set AG,
defined by the goal state Gi, not taken by the agent in its
current game state Si. The duration of an action is cap-
tured by Di. This is a mathematically defined objective
function derived from the heuristic function description
introduced by Churchill and Buro in (Churchill and Buro
2011).

2. The second objective function, equation 5, is to minimize
the difference in required volumetric resources r (defined
by the goal state and its action set) and available volu-
metric resources in the agent’s current state, RSr , for all
volumetric resources required by the actions in AG. The
quantity Cr is the collection rate for a resource r. Said in
another way, to minimize the time required to collect the
volumetric resources needed to execute the set of actions
in the goal state or AG. This is also derived from one of
the heuristic functions introduced by Churchill and Buro
in (Churchill and Buro 2011). Again the authors loosely
defined the heuristic in words, but we have mathemati-
cally formulated our derived objective function here for
modeling purposes.

3. The third objective function, equation 6, is makespan.
The objective is to minimize the completion time of
execution for a set of actions A. The finish time of an
action i is stated as Fi.

Decision and Objective Space
Solutions in the MO-BOO decision space are action strings
or build orders represented with two variable types. The first
variable is an array of integers with a domain of values rang-
ing from one to the total number of available strategic ac-
tions defined by an RTS technology tree. The decision vari-
ables contained in the integer array are initialized to a ran-
dom ordering of actions. The second variable type is a bi-
nary array. This array is the same size as the integer array
and each decision variable corresponds to whether or not
the action defined in the integer array is to be taken. A one
is used to enforce execution of an action and a zero is to sig-
nify not to take an action. As solutions are simulated in the
simulator a repairing function flips the decision bits of indi-
vidual actions depending on whether or not an action is fea-
sible (passed constraints). Therefore, an initially infeasible
solution becomes a feasible solution that maps to objective
space. This encourages exploration, diveristy and preserves
good building blocks.

The Objective space of MO-BOO is three dimensional
and defined by the three objective functions. The phenotype
of an action string from solution space is a single point in the
three dimensional objective space. The Pareto front (Coello
Coello, Lamont, and Veldhuizen 2007) is a tradeoff surface
between the three objectives. The domain of the objective
space is positive real numbers which means the objective
space is uncountably infinite. A large objective space allows
for more diversity amongst solutions.

The objective functions for each solution are calculated
from an inputted goal state provided by the user. The goal

state lists the desired volumetric and unary resources the
player would like to reach as well as the combat units. The
solutions attempt to reach this goal state and are not limited
in time, but by their string length also referred to as action
string length or bit length. An example of a solution map-
ping to objective space is provided below for clarification.

Genotype Representation: 7 1 5 7 0 1 5 7 3 6::1111101111

The genotype representation identifies actions to be exe-
cuted as integers on the left-side of the colons. Each integer
is an identifier for some action to be executed. The binary on
the right-side of the solution representation dictates whether
a corresponding integer on the left-side should be or can be
executed due to constraints or solution feasibility.

The objective scores in Table 1 reveal the following about
the solution selected. The first objective measured in at 120
seconds. This means that the solution had a lower bound of
120 seconds, which is the summation of the durations of the
actions remaining to be taken to reach the goal state. This is
the best possible time remaining if the resource constraints
are satisfied. The quality of this measure or how close to this
lower bound the solution is relies on the second objective
which measures the required resources the plan needed in
order to reach the goal. A value of 102.22 reflects that by
the time the plan ended it still required 102.22 seconds to
meet the volumetric requirements necessary to satisfy the
goal state. Therefore, the time required for the build order to
reach the goal state exceeds the lower bound established by
the first objective. The third objective measures the total time
or makespan of the actions completed by the plan. In the end,
this plan would have reached the goal state if more decision
variables or the length of the action plan was increased.

Table 1: List of Objective Measures
Objective # Fitness Score

1 120.0
2 102.22
3 786.67

Experiments
For experimentation we utilized the Ubuntu 11.10 32-bit op-
erating system, Spring Engine V91.0, Balanced Annihila-
tion V7.72, Starcraft: BroodWars, Python 2.7, JMetalCPP
v1.0.1. All C and C++ code is compiled with GCC 4.6.1
and/or Intel’s compiler ICC. The hardware specifications
are 8GB Memory, 2.80GHz Intel Core2 Duo, and NVIDIA
Quadro. Matlab 2013a was utilized for analysis. We uti-
lized the Jmetal metaheuristic algorithm suite (Nebro and
Durillo 2013) to define and solve our multi-objective prob-
lem. Jmetal provides the ability to define unique solution
types and is widely used throughout the metaheuristic com-
munity. We selected the NSGAII algorithm from Jmetal.
More on why NSGAII was selected can be found in (Black-
ford 2014).

108

MO-BOO Pareto Fronts
To visualize the tradeoff surface of our three objective func-
tions we plot several Pareto fronts produced by our strategic
planner for the initial Balanced Annihilation (BA) state and
goals defined in Table 2.

Table 2: Initial State and formulated Goals small(s) and large
(L). armvp: ARM vehicle plant; armmex: metal extractor;
armsolar: solar panel; armstumpy: assault tank; C.R: collec-
tion rate; Amt: amount

Resources Initial State Goal (S) Goal (L)
armvp 0 - -
armmex 0 - -
armsolar 0 - -
armstumpy (tanks) 0 3 6
metal C.R 1.5 - -
metal Amt 1000 - -
energy C.R 25 - -
energy Amt 1000 - -

To produce the Pareto fronts the strategic planning tool
settings in Table 3 are used because they have empiri-
cally demonstrated to provide computationally fast and near-
optimal results with respect to various BA strategies. These
parameters tune the MOEA so that the planner is suitable for
online use by an RTS agent in the BA game. The BitLength
parameter is the action string length or genotype size of the
solutions. This relates to the maximum number of actions
the planner can return for a build order. In most cases, the
planner returns build orders with a fraction of the actions
represented by the bit string. The time column in Table 3 is
the average (over five runs) in game runtime to generate a
single build order. It may be possilbe to decrease this run-
time further through parallelization of the MOEA.

The parameters used for the simulator are displayed in Ta-
ble 4. These parameters are derived from the Balanced An-
nihilation game. Other technical requirements for the simu-
lator were obtained from technical data provided by the Bal-
anced Annihilation game developers website 3.

The simulator implementation is designed to be a cus-
tomizable RTS game strategic decision-making (build order)
simulator. It is designed around the mathematical formula-
tion of the MO-BOO problem. It strictly enforces the exist,
cumulative, and disjunctive constraints, however, the objec-
tive functions can be easily modified. The simulator design
supports RTS games like Age of Empires (AOE), Starcraft,
and Wargus. Most RTS games can be simulated by properly
defining the XML schema files (Blackford 2014).

It is important to note that not all RTS games follow the
same formula. For example, the Total Annihilation and BA
games are fundamentally different from games like Starcraft
and AOE largely in regards to how the economies are struc-
tured. To distinguish these two types of RTS games, games
like Starcraft, AOE or Wargus are labeled cumulative econ-
omy games, and games like Total Annhilation and BA are la-
beled non-cumulative economy games. The justification for

3http://www.balancedannihilation.org/

this naming scheme comes from the cumulative constraint
present in MO-BOO. Cumulative economy games must sat-
isfy the cumulative constraint specified in MO-BOO prior
to issuing and executing actions, however, non-cumulative
economy games do not. In fact this constraint is absent from
the MO-BOO model that approximates BA’s strategic deci-
sion making process.

Table 3: Balanced Annihilation C++ Planner: NSGAII Pa-
rameters and planning tool execution time - execution time
is not a parameter, but a performance metric. The mutation
rate for all runs is 1/b and the crossover rate is 90%. Pop
Size: population size; Evals: number of evaluations in thou-
sands; Bit Len: bit length; Time: average execution time over
5 runs in seconds

Goal Pop Size Evals Bit Len Runs Time(secs)
S 50 6k b=60 5 6.09
S 50 6k b=100 5 6.70
S 50 6k b=200 5 14.32
L 50 6k b=60 5 8.778
L 50 6k b=100 5 9.92
L 50 6k b=200 5 15.75

Table 4: Balanced Annihilation C++ Planner: Simulator Pa-
rameters

Metal Collect Rate Energy Collect Rate
2.04/sec per metal extract 20/sec per solar panel

A computed Pareto front is depicted in Fig. 2. This front
reveals that the larger the action string or genotype length
of the solution the closer each objective function is to zero.
This provides a decision surface that brings an agent closer
to the goal.

Figure 2: Comparison of the Pareto fronts produced by the
parameters in Table 3 for the small goal which required only
12 actions to be reached.

For a decision maker, RTS agent or expert designer, the

109

best solution from the solutions presented in the Pareto
fronts might be the one that minimizes objectives one and
two to zero and has the smallest constant value for objective
three. Objective three is measured on the vertical axis; there-
fore, a point in objective space lying on this axis reaches
the goal, but may not be optimal with respect to makespan.
Again this is a tradeoff surface. Another, decision maker
may decide that the solution that is close to the goal, but
executes faster than a solution lying on the vertical axis is
a better choice. For example (10, 0, 100) may be considered
a better solution then (0, 0, 300) since only ten additional
seconds are required to reach the goal moving the actual
makespan to 110 seconds over 300 seconds. Table 5 provides
planning results for the goals presented in Table 2 across var-
ious action string lengths.

Table 5: Balanced Annihilation C++ Planner: The best build
orders are marked with ∗.

Goal Bit Length Fitness Score Planning Window
S b=60 (0,0,150) -
S b=100 *(0,0,136) 12
S b=200 (0,0,142) -
L b=60 (0,0,322) -
L b=100 (0,0,232) -
L b=200 *(0,0,198) 24

Agents for Experimentation
Agent LJD is the BA multi-scale AI developed at the Air
Force Institute of Technology (AFIT) for the RTS Spring
Engine BA game. We consider agent LJD to behave at an
expert level with regards to strategy execution because the
agent’s strategy manager is scripted by an expert player.
More on this agent and its design can be found in (Trapani
2012).

Agent BOO - Build Order Optimization - is our newly im-
plemented agent. This agent utilizes our strategic planning
tool to discover and execute build orders that are as good as
or better than expert build orders. For experimental purposes
only, Agent BOO executes any one of the strategies defined
in the list that follows (Blackford 2014)(Trapani 2012):

1. Tank Rush: Requires building an initial economy and
then producing attack waves of three stumpy tanks.

2. Expansion: The agent develops a large attack wave and
base defenses while expanding it’s volumetric resource
control.

3. Turtle: The agent builds base defenses and infrastructure
while Slowly producing large attack waves.

The strategies are manually divided into subgoals and
placed into a CBR case dataset offline. During gameplay
agent BOO’s planner selects a case from BOO’s assigned
strategy’s case set. The planner selects a case based upon
agent BOO’s current game state and passes the goals of the
case to the strategic planning tool.

Throughout experimentation Agent BOO’s planning win-
dow is limited to no more than fifteen actions in order

to minimize planning times and enforce intermediate goal
planning (Chan, Fern, and Ray 2007). A planning window as
defined in (Weber, Mateas, and Jhala 2011) is the maximum
number of actions an agent can execute to reach a goal state.
Agent BOO is demonstrated as being capable of planning
across 21 unique actions, but this is not a limit to the number
of actions that our approach can plan across. These actions
are derived from the first level of the Balanced Annihila-
tion technology tree. Agent BOO is able to plan across the
entire decision space captured in the first technology level.
The planner can be modified to incorporate more BA RTS
actions via XML schema files apart of the simulator, how-
ever, it was unnecessary for our experiments.

Tank Rush Strategy Analysis
The results presented in this section are derived from the best
game out of five games each agent played in isolation. The
purpose for playing in isolation is to observe which agent
executes the strategies the fastest, under the assumption that
an expert RTS player always executes strategies faster than
a player of a lower skill level.

Figure 3: In game execution of the Tank Rush strategy.
The data presented reflects the best game out of five games
played in the Spring Engine.

From the build order timeline of the Tank Rush strategy
displayed in Fig 3, it is obvious that agent BOO executes the
strategy faster than agent LJD. It can be observed in Goal
one that agent BOO decides to produce a vehicle plant ear-
lier than agent LJD. This allows the vehicle plant of agent
BOO to start producing the first tank of assault wave one
13 seconds earlier than agent LJD. Notice, however, in Goal

110

two that LJD still beats BOO in developing the first tank.
This is because agent BOO decides to go and produce addi-
tional infrastructure, a metal extractor, to increase the volu-
metric resource collection rate in Goal two to decrease pro-
duction time; whereas, agent LJD is scripted to remain with
the vehicle plant and assist it in producing tanks for all at-
tack waves. Agent BOO then returns to the vehicle plant in
Goal two to assist in completing the remaining two tanks.
With the increase in metal supply, agent BOO is able to
complete Goal two 3 seconds faster than agent LJD. By the
end of Goal three, agent BOO is now 10 seconds ahead of
agent LJD in overall strategy execution. Finally, in Goal four
agent BOO builds more infrastructure and ends Goal four 20
seconds ahead of agent LJD with respect to overall strategy
execution. Agent BOO produces three additional metal ex-
tractors versus agent LJD, and one more solar panel versus
agent LJD as noted at the top half of Fig 3.

More results are presented in Table 6. The bold text indi-
cates the best time. The times represent when an attack wave
first appears in the game state. It is clear from this table that
agent BOO out-performs the expert scripted agent LJD in all
strategies.

Table 6: Goal Strategy Execution Timeline. Waves (W) iden-
tify the release times of attack waves in seconds. T.R: Tank
Rush; Exp: Expansion; Tur: Turtle.

Agent Strategy W 1 W 2 W 3 W 4
LJD T.R 160.1 238.2 322.5 399.5
BOO T.R 157.4 227.5 303.2 353.0
LJD Exp 573.0 838.8 - -
BOO Exp 519.9 847.9 - -
LJD Tur 622.3 865.0 - -
BOO Tur 617.5 833.9 - -

Conclusion
We provide the RTS research community with a concise
mathematical model of the RTS build order problem that can
be utilized to generate near-optimal build orders for cumula-
tive and non-cumulative economy real-time strategy games
including: Starcraft, Wargus, Age of Empires and Balanced
Annihilation. The build order optimization problem consists
of three objective functions and three constraints. In addi-
tion, we provide a unique, online multi-objective approach
for solving the build order optimization problem in real-
time. Our solution integrates our build order mathematical
model, a simulator, an MOEA, and CBR to produce expert
level build orders for an RTS agent playing against an oppo-
nent in the Spring RTS game engine in real-time.

References
Baptiste, P., and Pape, C. L. 1996. Edge-finding con-
straint propagation algorithms for disjunctive and cumula-
tive scheduling. In Scheduling, Proceedings 15th Workshop
of the U.K. Planning Special Interest Group.
Baptiste, P.; Pape, C. L. E.; and Ilog, S. A. 1996. Disjunctive
Constraints for Manufacturing Scheduling: Principles and

Extensions. International Journal of Computer Integrated
Manufacturing 9(4):306–310.
Blackford, J. M. 2014. Online Build-Order Optimization
for Real-Time Strategy Agents Using Multi-Objective Evo-
lutionary Algorithms. Master’s thesis, Air Force Institute of
Technology.
Chan, H.; Fern, A.; and Ray, S. 2007. Extending online
planning for resource production in real-time strategy games
with search. Workshop on Planning in Games, ICAPS.
Churchill, D., and Buro, M. 2011. Build Order Optimiza-
tion in StarCraft. In 7th AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, 14–19.
Churchill, D., and Buro, M. 2012. Incorporating Search
Algorithms into RTS Game Agents. In In Proceedings of
the AIIDE Conference, 14–19.
Coello Coello, C.; Lamont, G.; and Veldhuizen, D. 2007.
Evolutionary Algorithms for Solving Multi-objective Prob-
lems. Springer, 2nd edition.
Cornelissens, T., and Simonis, H. 1995. Modelling Pro-
ducer / Consumer Constraints. In Workshop on Constraint
Languages and Their use in Problem Modelling.
Coy, J. M. C., and Mateas, M. 2008. An Integrated Agent
for Playing Real-Time Strategy Games. In in Proceedings
of the AAAI Conf. on Artificial Intelligence, 1313–1318.
Cunha, R., and Chaimowicz, L. 2010. An Artificial In-
telligence System to Help the Player of Real-Time Strategy
Games. In Proceedings of the 2010 Brazilian Symposium on
Games and Digital Entertainment, SBGAMES ’10, 71–81.
Washington, DC, USA: IEEE Computer Society.
Nebro, A., and Durillo, J. 2013. jMetal 4.3 User Manual.
Ontanon, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2007.
Case-Based Planning and Execution for Real-Time Strategy
Games. In Case-Based Reasoning Research and Develop-
ment. Springer Berlin Heidelberg. 167–178.
Sailer, F.; Buro, M.; and Lanctot, M. 2007. Adversarial Plan-
ning Through Strategy Simulation. 2007 IEEE Symposium
on Computational Intelligence and Games 80–87.
Trapani, L. D. 2012. A Real-time Strategy Agent
Framework and Strategy Classifier for Computer Generated
Forces. Master’s thesis, Air Force Institute of Technology.
Weber, B. G., and Mateas, M. 2009. A data mining approach
to strategy prediction. 2009 IEEE Symposium on Computa-
tional Intelligence and Games 140–147.
Weber, B. G.; Mawhorter, P.; Mateas, M.; and Jhala, A.
2010. Reactive planning idioms for multi-scale game AI.
Proceedings of the 2010 IEEE Conference on Computa-
tional Intelligence and Games 115–122.
Weber, B.; Mateas, M.; and Jhala, A. 2011. Using Data Min-
ing to Model Player Experience. In In FDB Workshop on
Evaluating Player Experience in Games, Bordeaux, France,
ACM. ACM.
Weber, B. G. 2012. Integrating Learning In A Multi-Scale
Agent. Dissertation, University of California, Santa Cruz.
Wei, L., and Sun, L. 2009. Build Order Optimisation For
Real-time Strategy Game. National University of Singapore.

111

