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Abstract 
While many open-ended digital games feature non-linear 
storylines and multiple solution paths, it is challenging for 
game developers to create effective game experiences in 
these settings due to the freedom given to the player. To 
address these challenges, goal recognition, a computational 
player-modeling task, has been investigated to enable digital 
games to dynamically predict players’ goals. This paper 
presents a goal recognition framework based on stacked 
denoising autoencoders, a variant of deep learning. The 
learned goal recognition models, which are trained from a 
corpus of player interactions, not only offer improved 
performance, but also offer the substantial advantage of 
eliminating the need for labor-intensive feature engineering. 
An evaluation demonstrates that the deep learning-based 
goal recognition framework significantly outperforms the 
previous state-of-the-art goal recognition approach based on 
Markov logic networks. 

Introduction  
Recent years have seen a growing number of digital games 
featuring open-ended environments that provide players 
with significant autonomy over the goals they pursue and 
the plans they use to achieve their goals (Squire 2008). The 
non-linear goals, story plots, and multiple solution paths 
highlighted in these open-ended environments can promote 
player’s engagement and support increased replayability. 
However, designing and developing these games pose 
significant challenges for game developers, who have to 
simultaneously provide cohesive narratives and storyworld 
events in a timely and relevant fashion while supporting 
dynamic progress in the game.  

Previous research has addressed these challenges in the 
context of player-adaptive games, which dynamically 
adapt players’ in-game experiences through computational 
modeling of player experience. Such player-adaptive 
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games have incorporated computational techniques such as 
drama management (Li and Riedl 2010; Mateas and Stern 
2005; Roberts, Cantino, and Isbell 2007; Thue et al. 2010), 
procedural content generation (Jennings-Teats, Smith, and 
Wardrip-Fruin 2010; Shaker, Yannakakis, and Togelius 
2010), and adaptive pedagogical planning in educational 
games (Mott, Lee, and Lester 2006; Ha et al. 2011; Min et 
al. 2013).  

As an approach to player modeling, goal recognition has 
drawn increasing attention in Game AI. Goal recognition, a 
restricted form of plan recognition, focuses on identifying 
the player’s concrete objectives, given a series of low-level 
actions in virtual environments (Carberry 2001; Kautz and 
Allen 1986; Schmidt, Sridharan, and Goodson 1978). As a 
promising research area, goal recognition has been 
investigated in serious games, where it contributes to 
assessing players’ learning progress, and thus assists in 
delivering tailored pedagogical strategies attuned to 
individual learners (Conati, Gertner, and VanLehn 2002; 
Johnson 2010; Lee, Mott, and Lester 2012). In addition to 
runtime adaptation of games, goal recognition can also 
support the game design process by facilitating 
interpretation of raw game logs along with identified goals, 
and providing insights to improve player experiences 
(Zoeller 2010).  

Previous goal recognition work has traditionally focused 
on sequences of user actions derived from well-defined 
goals and plans (Blaylock and Allen 2003; Carberry 2001; 
Charniak and Goldman 1993; Geib and Goldman 2009; Hu 
and Yang 2008; Kautz and Allen 1986; Pynadath and 
Wellman 2000). In contrast to these environments, digital 
games with non-linear goals often do not explicitly present 
goals to players; rather, players identify and achieve goals 
in an exploratory fashion. In these situations, players’ goals 
are hidden from the system’s perspective, and thus they 
must be dynamically inferred based on observable features 
such as players’ low-level actions and triggered events.  

This paper proposes a computational framework for 
player goal recognition based on stacked denoising 
autoencoders, a deep learning technique. In this work, goal 
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recognition is formalized as predicting the next sub-goal in 
a path to achieving the game’s final objective. The goal 
recognition framework therefore identifies sub-goals based 
on the players’ preceding sequence of actions. This 
framework has been evaluated with CRYSTAL ISLAND, a 
non-linear story-centric educational game with ill-defined 
goals. CRYSTAL ISLAND presents players with a single 
high-level objective, namely, to solve a science mystery. 
Findings from the evaluation suggests that the deep 
learning approach significantly outperforms the previous 
state-of-the-art approach based on Markov logic networks 
(MLN) in terms of prediction accuracy rates on the same 
dataset. In addition to the predictive performance 
improvement, deep learning’s representation learning 
constitutes a significant step forward with respect to MLN-
based goal recognition models because it eliminates the 
labor-intensive need to manually engineer hand-crafted 
features in the form of logic formulae. 

Related Work 
Goal recognition and plan recognition have been widely 
investigated in the context of digital games to support tasks 
such as determining players’ objectives in action-adventure 
games and creating adaptable computer-controlled 
opponents. Kabanza, Bellefeuille, and Bisson (2010) 
explored challenges with behavior recognition in real-time 
strategy games to create adaptable computer-controlled 
opponents. Their work extended Geib and Goldman’s 
(2009) PHATT algorithm to perform intent recognition on 
the opponents’ behaviors. Gold (2010) investigated Input-
Output Hidden Markov Models for recognizing high-level 
player goals in an action-adventure game, and the model 
was compared to a hand-authored finite state machine, a 
common computational framework used in commercial 
games.  

Closely related to the work presented in this paper, Mott 
et al. (2006) examined several probabilistic goal 
recognition models to support dynamic narrative planning 
in an educational game. In a related game-based learning 
environment, Ha et al. (2011) used Markov logic networks 
(MLNs) to recognize players’ goals from observed 
sequences of player actions to support personalized 
experiences (e.g., narratives and storyworld events) and 
targeted pedagogical planning. Our research is the first to 
propose a computational approach based on deep learning 
for goal recognition, and is evaluated against state-of-the-
art MLN models (Ha et al. 2011). 

Goal Recognition Corpus 
To investigate the effectiveness of deep learning-based 
goal recognition models for open-ended digital game, data 
was collected from student interactions with the CRYSTAL 

ISLAND game-based learning environment (Figure 1). 
CRYSTAL ISLAND features a science mystery where players 
attempt to discover the identity and source of an infectious 
disease that is plaguing a research team stationed on a 
remote island. Players explore the research camp from a 
first-person viewpoint and manipulate virtual objects, 
converse with characters, and use lab equipment and other 
resources to solve the mystery. CRYSTAL ISLAND has been 
the subject of extensive empirical investigation, and has 
been found to provide substantial learning and 
motivational benefits (Rowe et al. 2011), while also 
offering significant challenge with fewer than half of 
players solving the mystery in less than an hour.  

Players advance through CRYSTAL ISLAND’s non-linear 
narratives by completing a partially ordered sequence of 
goals. In this work, seven goals are considered: speaking 
with the camp nurse about the spreading illness, speaking 
with the camp’s virus expert, speaking with the camp’s 
bacteria expert, speaking with a sick patient, speaking with 
the camp’s cook about recently eaten food, running 
laboratory tests on contaminated food, and submitting a 
complete diagnosis to the camp nurse.  

Players interact with CRYSTAL ISLAND using a diverse 
set of actions occurring in the seven major locations of the 
research camp (Figure 2): a large outdoors region, an 
infirmary, a living quarters, a waterfall, the lead scientist’s 

Figure 1. CRYSTAL ISLAND virtual environment. 

1.  Outdoors 
2.  Infirmary 
3.  Living Quarters 
4.  Waterfall 

5.  Lead Scientist’s Quarters 
6.  Dining Hall 
7.  Laboratory 

Figure 2. Map of the CRYSTAL ISLAND research camp. 
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quarters, a dining hall, and a laboratory. Players can 
perform actions that include: moving around the camp, 
picking up and dropping objects, using the laboratory’s 
testing equipment, conversing with virtual characters, 
reading microbiology-themed books and posters, 
completing a diagnosis worksheet, labeling microscope 
slides, and taking notes. 

All player actions are logged by the CRYSTAL ISLAND 
learning environment and stored for later analysis. The 
data used for creating the goal recognition models was 
collected from a study involving 137 eighth grade students 
from a public middle school. 

Deep Learning-Based Goal Recognition 
Similar to previous work on goal recognition (Blaylock 
and Allen 2003), we define goal recognition as the task of 
predicting the most likely goal for a given sequence of 
observed player actions in the environment. Following Ha 
et al. (2011), this work assumes that a given sequence of 
actions maps to a single goal, and no interleaving occurs 
between actions associated with different goals, since our 
existing dataset does not lend itself to this type of analysis. 
Under these conditions, goal recognition is cast as a 
multiclass classification problem in which a learned 
classifier predicts the most likely goal associated with the 
currently observed sequence of actions after the previously 
observed goal. In this work, a player action is encoded with 
five properties: action type, location, narrative state, 
previously achieved goals, and action argument. The 
action argument is a newly added property that was 
excluded in Ha et al.’s work due to data sparsity issues (Ha 
et al. 2011). The feature set including this additional 
property is called the expanded feature set, while the 
feature set that only considers the original four properties 
is called the reduced feature set. The effects of utilizing 
this extra property are explored in the evaluation section. 
The framework considers five properties of player actions:  
• Action Type: The type of current action taken by the 

player, such as “move” to a particular location, and 
“talk” to a non-player character. Our data includes 19 
distinct types of player actions. 

• Action Argument: The argument taken by the action, 
such as talk to “Robert” and test “milk” using the 
laboratory’s testing equipment. Our data, in sum, 
includes 90 distinct action arguments. 

• Location: The location in the virtual environment, 
where a current player action is taken. This includes 39 
fine-grained and non-overlapping sub-locations that 
decompose the seven major camp locations. 

• Narrative State: An indication of the player’s progress 
in solving the narrative scenario. Narrative state is 
represented as a vector of four binary variables. Each 
variable represents a milestone event within the 

narrative. The four milestone events are: discuss the 
illness with the nurse, test the contaminated object, 
submit a diagnosis to the nurse, and submit a correct 
diagnosis to the nurse. 

• Previously Achieved Goals: An indication of the 
previous goals achieved by the player. The previous n-1 
goals are considered for an n-gram encoded model. For 
example, the trigram model takes into consideration the 
two previously achieved goals, and the last three actions.  

Goals represent key problem-solving steps in the CRYSTAL 
ISLAND science mystery. Two salient features of goals in 
the game environment influence encoding of the input data 
for our models. First, goals are dependent; some goals are 
completed in rapid succession to other goals, and a pair of 
goals is more likely to occur subsequently than other pairs. 
This is likely attributed to the geographical proximity in 
CRYSTAL ISLAND. Second, players are not provided 
explicit goals to achieve; rather, a cyclical causality 
between player actions and goals is possible, and players 
can learn about goals while interacting with the virtual 
environment. These correlations among goals and actions 
suggest that n-gram encoded models (especially when n > 
1) might be able to improve the goal recognition predictive 
performance over unigram encoded models.  

The current work employs n-gram augmented deep 
learning (DL) that pre-trains hierarchical representations 
through multi-layer abstraction of data, often in the context 
of artificial neural networks (Hinton, Osindero, and Teh 
2006; Bengio et al. 2007). Advantages of DL over 
conventional supervised learning techniques include 
(1) representation learning without requiring labor-
intensive feature engineering relying on domain-specific 
details, and (2) unsupervised pre-training that leverages 
unlabeled training instances. It has been empirically shown 
that pre-training helps find a region of parameter space that 
can reach a better local optimum in a non-convex 
optimization graph (Erhan et al. 2010; Palm 2012). 

We utilize stacked denoising autoencoders (SDAEs), an 
implementation of DL in the artificial neural network 
paradigm (Vincent et al. 2008), to solve the goal 
recognition task. SDAEs, an extension of stacked 
autoencoders (Bengio et al. 2007), offer several benefits 
such that (1) unsupervised initialization of layers with 
denoising techniques helps capture robust hierarchical 
representations that effectively deal with noise in inputs, 
and (2) denoising techniques help eschew from situations 
where basic autoencoders learn trivial weights (i.e., 
identity matrix for weights between layers) (Vincent et al. 
2008). Additionally, SDAEs provide a representational 
benefit: each neuron can denote a feature such as an action 
type and location at a certain time. To provide input data to 
the artificial neural network formalism for the expanded 
feature set, the raw game data is encoded into data 
instances that consist of 152 features (19 action types + 90 
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action arguments + 39 locations + 4 narrative states) for the 
input layer and 7 features (7 goals) for the output layer in a 
unigram encoded model with the expanded feature set. 
This encoding scheme allows our domain to be compactly 
modeled for SDAE, and is especially beneficial in both 
model training and inference, by significantly reducing the 
number of required computations.  

Deep Learning Background 
Deep learning (DL) emerged from work on artificial neural 
networks (ANNs). The back-propagation algorithm using a 
gradient descent method has been popularly utilized to 
train ANNs since the mid-1980s (Russell et al. 1995); 
however, this algorithm has been shown to not be scalable 
to deep ANNs with multiple layers, not only for its slow 
learning rate, but also because it often gets trapped in a 
poor local optima (Deng and Yu 2014). To address these 
challenges, Hinton et al. (2006) proposed a deep belief 
network based layer-wise unsupervised pre-training 
technique leveraging restricted Boltzmann machines 
(RBMs), undirected probabilistic graphical models 
constrained to form a bi-partite graph with two layers: a 
visible layer and a hidden layer. Another class of layer-
wise unsupervised pre-training algorithms utilizing 
autoencoders (AEs) instead of RBMs was introduced with 
a similar purpose (Bengio et al. 2007; Vincent et al. 2008). 
In conjunction with various pre-training algorithms, DL 
can further improve the model by fine-tuning the initialized 
weights during back-propagation. Successful domains 
leveraging DL include computer vision, natural language 
processing, and information retrieval (Erhan et al. 2010).  

An AE is interpreted as a nonlinear generalization of 
principal component analysis, where it encodes high-
dimensional input data into a low-dimensional output data 
by applying a deterministic function (Hinton and 
Salakhutdinov 2006). As a variant of AEs, stacked 
autoencoders (SAEs) perform layer-wise representation 
learning, sequentially for all layers (Bengio et al. 2007). To 
pre-train a model, in the first layer, a SAE encodes an 
example input vector x in the visible layer into h(x) in the 
hidden layer, using the current weight parameters W1 and 
an activation function s (e.g., sigmoid) (Equation 1). Then, 
it decodes the encoded input h(x) to z(x) using W2 and s 
(Equation 2), and updates the current weight parameters W1 
and W2 so as to minimize the reconstruction error between 
the original input x and the decoded input z(x), for example 
using stochastic gradient descent. In the equations, b1 and 
b2 are biases for W1 and W2, respectively.  

h(x) = s(W1x+b1).         (1) 
 z(x) = s(W2h(x)+b2).       (2) 

Once the first layer is trained, the hidden neuron vector 
h(x) activated by Equation 1 on the input vector x now 

serves as a visible input vector for the next hidden layer, 
and this step is iteratively applied to all hidden layers. 
Once the last hidden layer is trained, it is connected to a 
supervised layer that consists of output neurons, and all the 
weight parameters in the deep architecture are fine-tuned 
using supervised learning (Bengio et al. 2007). 

We utilize stacked denoising autoencoders (SDAEs), an 
extension of SAE, for goal recognition. SDAEs address a 
commonly observed challenge posed by SAEs, such that 
W1 often converges to a trivial solution (i.e., identity 
matrix), especially when the number of variables in the 
hidden layer is equal to or greater than the number of 
variables in the visible layer (Vincent et al. 2008). Figure 3 
shows a conceptual illustration of how the SDAE 
algorithm learns weights for a visible layer and a hidden 
layer. A training example x in the visible layer is corrupted 
(in this work, we set random neurons to 0) into a partially 
destroyed input x’, then x’ is deterministically mapped to 
h(x’) in the hidden layer using Equation 1, and weight 
parameters (W1 and W2) are updated to minimize the 
reconstruction error (L) between the uncorrupted input x 
and the decoded input z(x’), similar to the manner in which 
SAEs operate. As a result, SDAEs leverage a stochastic 
mapping of x for the autoencoders’ layer-wise pre-training 
and thus effectively eschew W1 from simply converging to 
the identity matrix (Vincent et al. 2008).  

Deep Learning for Goal Recognition 
We utilize DeepLearnToolbox, a Matlab toolkit, to build a 
goal recognition classifier leveraging SDAE (Palm 2012). 
SDAE has an adjustable parameter set for pre-training; 
most of them are for the ANNs, while the corruption level 
(fraction of corrupted input neurons) is specific to the 
SDAE algorithm. Selecting an effective network topology 
(i.e., hyper-parameters) for ANNs often must be 
empirically determined, such as selecting a model with the 
minimum validation error among multiple variants of 
models (Svozil, Kvasnicka, and Pospichal 1997). 
Therefore, on one hand, we explore the model space by 
adjusting values of some parameters such as the input 
feature set (the expanded and reduced feature sets), the 
number of input neurons according to the n-gram encoding 
(792 at the most and 62 at the least), the number of hidden 
layers (2 or 3), and the number of epochs for autoencoders’ 

Figure 3. Conceptual illustration of layer-wise stacked
denoising autoencoders; red crosses denote corruption.  
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gradient descent learning (1 or 2). On the other hand, we 
have fixed the following parameters: the number of 
neurons per a hidden layer (100), the gradient descent 
optimization method in back-propagation (stochastic 
gradient descent), the corruption level (0.5), the layer-wise 
learning rates, and the activation function (sigmoid). 
Specifically for the pre-training learning rates, we applied 
1, 0.3, and 0.1 for the first, second, and third layer with 
respect to 3 hidden layer models, and 1 and 0.1 for the first 
and second layer with respect to 2 hidden layer models. 
For the supervised fine-tuning, 1 is used for every layer. 

Evaluation 
To evaluate the proposed SDAE-based goal recognition 
model, the data from the observation corpus is processed 
with the procedure introduced in Ha et al. (2011). First, all 
actions identified in the observation sequence that precede 
the current goal but follow the previous goal are labeled 
with the current goal. Second, actions that achieve goals 
are removed from the data, because it would be trivial to 
directly recognize goals from the goal-achieving actions. 
Finally, all actions taken after achievement of the last goal 
are ignored, since these player actions are more related to 
exploration of the game world solely for engagement, not 
resulting in any goals. The total number of goals achieved 
in the training data is 893, and the average number of 
player actions per goal is 86.4. Note that the 86.4 figure 
resulted from players’ exploratory actions, and thus it does 
not necessarily represent the length of an efficient path to a 
goal. The most likely goal out of the seven is running 
laboratory test on contaminated food that has the 
probability of 26.6%. 

 Model evaluation is conducted along three dimensions: 
(1) comparison of accuracy rates between the current state-
of-the-art MLN goal recognition models and the DL 
models, (2) impact analyses of adjustable parameters in DL, 
and (3) correlation tests among accuracy rates, 
convergence rates, and convergence points for DL models 
(Blaylock and Allen 2003). Convergence rate is a metric 
that measures the percentage of sequences that are 
eventually classified to the correct goal. Any sequence 
whose final action is predicted as belonging to the correct 
goal is said to have converged on the goal, and thus a 
higher number is better for this metric. Convergence point 
measures the percentage of a converged sequence that was 
observed before the correct goal was consistently predicted, 
and thus a lower number indicates improved performance. 

First, accuracy rates are cross-compared among four 
models: a MLN based on the reduced feature set (MLN-R) 
that excludes action arguments, a MLN based on the 
expanded feature set (MLN-E) that includes action 
arguments, and two SDAE models  (SDAE-R and SDAE-E) 

based on the two feature sets. Each model is trained and 
evaluated using 10-fold cross validation; in the cross 
validations, models use the same split of the training data 
for pairwise comparisons. Table 1 illustrates average 
accuracy rates, convergence rates, and convergence points 
of the four models, in which the SDAE models are the ones 
that achieve the highest accuracy rate from each feature set. 
Through empirical analyses, the most accurate model for 
SDAE-R is obtained by the five-gram setting with two 
hidden layers and 1 epoch, and the most accurate model for 
SDAE-E is achieved by the five-gram setting with two 
hidden layers and 2 epochs. The logic formulae used to 
generate the MLN models are described in Ha et al. (2011). 
They were hand-engineered, achieving sizable 
improvements over prior approaches.  

For pairwise comparisons of the models, we run the 
Friedman test, a non-parametric equivalent of repeated 
measures ANOVA, along with a post-hoc analysis with 
Wilcoxon signed-rank tests, since accuracy rates of folds 
do not necessarily follow normal distributions (Demšar 
2006). Based on the Friedman test, there is a statistically 
significant difference in accuracy rates depending on the 
models, χ2 (3) = 24.98, p < .001. The Wilcoxon signed-
rank post-hoc tests indicate there are statistically 
significant improvements in accuracy rates for SDAE 
models over MLN models (all with Z = -2.8, p = .005), but 
MLN-R vs. MLN-E and SDAE-R vs. SDAE-E do not 
constitute a statistically significant difference.  

Second, by aggregating fold-based validation accuracies 
per a distinct set of variant parameters, we evaluate the 
impact of DL parameters on the goal recognition predictive 
performances. The parameters are (1) n in n-gram input 
encoding: 1-5, (2) feature set types: expanded and reduced, 
(3) hidden layers: 2-3, and (4) epochs: 1-2. Pairwise 
comparisons are conducted on the validation result. Note 
that the n-gram test (5 groups) is conducted using the 
Friedman test geared with Wilcoxon signed-rank post-hoc 
tests, while the two other tests (2 groups each) are 
performed with Wilcoxon signed-rank tests (Demšar 2006). 
For n-gram, the Frieman test shows that the n-gram 
encoding elicit statistically significant differences (χ2 (4) = 
218.63, p < .001), and the post-hoc test indicates that every 
pair of models are different with statistical significance in 
terms of average accuracy rates (p < .001), other than four-
gram vs. five-gram (Table 2). For the other statistical 
analyses, overall improvement in accuracy rates is found 
for the reduced feature set (Red.), 2 layer model (2 Lay.), 

Table 1. Averaged rates of MLN and DL.  
 MLN-R MLN-E SDAE-R SDAE-E 

Accuracy Rates 48.4% 48.2% 62.3% 61.7% 
Convergence Rates 43.5% N/A 70.9% 66.9% 
Convergence Points 32.1% N/A 42.8% 44.3% 
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and 1 epoch model (1 Ep.); however, there is no 
statistically significant difference in these tests (Table 3). 

Lastly, convergence rate and convergence point view the 
goal recognition problem from different angles. Even 
though the goal recognition system consistently makes 
correct predictions on sequential actions (i.e., high 
accuracy rate), if it makes an incorrect prediction on the 
last action (i.e., low convergence rate), the model might be 
regarded as lacking robustness and reliability, considering 
the last action usually has more importance than priors. On 
the other hand, convergence point suggests how early the 
system can adapt to the player’s current goal. A Spearman 
non-parametric correlation test is run to evaluate the 
correlation across these two metrics along with accuracy 
rate. The results indicate that there is a statistically 
significant positive correlation between accuracy rate and 
convergence rate (r = .69, p < .001), and a statistically 
significant negative correlation between accuracy rate and 
convergence point (r = -.70, p < .001), and convergence 
rate and convergence point (r = -.68, p < .001). To further 
examine the correlation, we ran two additional correlation 
tests on high performing models and low performing 
models, after separating the evaluation result into two 
groups based on the median of the models’ accuracy rates. 
Out of these tests, it is noteworthy that the high performing 
models’ accuracy rate is no longer in a strong correlation 
with the convergence point (r = -.02, p = .93). 

Discussion 
Our DL based goal recognition model achieves a 28.7% 
marginal improvement over the state-of-the-art MLN 
model with a prediction rate accuracy of 62.3% (Table 1). 
A possible explanation for the DL-based model’s strong 
performance compared to other machine learning 
techniques is that the DL’s objective, “to discover high-
level representations of raw low-level data,” is inherently 
related to the latent intent of the goal recognition task, “to 
recognize higher-level patterns that result in goals using 
low-level action sequences.” 

The evaluation results for different parameter settings 
suggest that previous actions along with achieved goals 
serve as strong predictors to improve the goal recognition 
performance (Table 2). Considering the highest 
performance is obtained using the five-gram encoding, it 

might be worth investigating higher n-gram encodings in 
the future. Other parameters such as the number of layers 
and the number of epochs do not show any statistically 
significant difference under our constrained experiments. 
Interestingly, the expanded feature set that considers action 
arguments turned out not to improve the model’s predictive 
performance as echoed in the MLN experiments, which 
indicate the action arguments might be too noisy or sparse 
to be served as strong predictors in DL (Table 3). 

It is straightforward to see such a strong correlation 
among accuracy rate, convergence rate, and convergence 
point when considering the entire evaluation data. 
However, when we split the data into the high and low 
performing model groups, interestingly, the accuracy rate 
for high performing models is no longer in strong 
correlation with the convergence point. This can be 
partially explained by the fact that high performing 
predictive models are capable of making correct 
predictions even for action sequence examples that do not 
strongly follow the trained model (e.g., noisy data that are 
usually predicted as incorrect with low performing models), 
but they tend to begin to make correct predictions in a 
relatively later phase of the action sequence. 

Conclusions 
Automated player goal recognition is a key capability for 
enabling open-ended digital games to dynamically adapt 
gameplay experiences and promote players’ engagement. 
In game-based learning environments such as CRYSTAL 
ISLAND, goal recognition can play a pivotal role in 
supporting tailored pedagogical scaffolding based on 
assessments of student learning and problem solving, and 
also inform game and curriculum design. This paper has 
introduced a data-driven goal recognition framework based 
on stacked denoising autoencoders that significantly 
outperforms the previous state-of-the-art technique. 
Empirical evaluations suggest that deep learning holds 
great potential as a novel computational approach to goal 
recognition for open-ended games. With accurate goal 
recognition models in hand, a promising direction for 
future work will be to design player-adaptive games that 
leverage the goal recognition models to create highly 
effective gameplay that is customized to individual players. 
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Table 2. Averaged accuracy rates based on n-gram 
Unigram Bigram Trigram Four-gram Five-gram 
48.7% 51.5% 56.2% 60.0% 60.4% 

Table 3. Averaged accuracy rates based on feature sets,
the number of layers, and the number of epochs 

Exp. Red. 2 Lay. 3 Lay. 1 Ep. 2 Ep. 
55.2% 55.6% 55.7% 55.0% 55.4% 55.3% 
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