
Belief-Driven Pathfinding Through Personalized Map Abstraction

Davide Aversa and Stavros Vassos
Department of Computer, Control, and Management Engineering

Sapienza University of Rome
Rome, Italy

{aversa,stavros}@dis.uniroma1.it

Abstract

We investigate the case of belief-driven pathfinding
(BDP) according to which characters hold a personal-
ized account of a dynamic changing game-world. BDP
is concerned with maintaining and revising a set of be-
liefs that persists over time as a character navigates to
subsequent target destinations. This allows for a differ-
entiation among characters with different observations
in the game and can provide better believability. We
present BGCA*, a practical BDP approach that is based
on (i) decomposing the map into regions, (ii) using per-
sonalized beliefs per character about the connectivity of
regions, and (iii) employing a regular pathfinding com-
ponent as a service. We evaluate BGCA* in terms of
computational effort and precision wrt a regular solver
over several benchmark maps. Our results motivate a
simple belief revision strategy that induces small over-
head and amortizes effort spent toward precision.

Introduction
Traditionally, AI for non-player characters (NPCs) in games
has to do a lot with pathfinding, i.e., finding an appropriate
path so as an NPC can navigate from their current location to
a desired target destination. This is an essential mechanism
for every game with characters and is crucial for the quality
of the interaction between the human player and the NPCs.
As the demand for a higher level of believability for NPCs
increases, many techniques have been developed that handle
different aspects of pathfinding, e.g., smoothing the trajecto-
ries so that paths look more realistic or taking into account
the different types of terrain and NPC capabilities.

Nonetheless, there is one aspect that is typically ne-
glected, namely, the personalized view of the game-world
regarding what each NPC knows or believes about the con-
nectivity of the areas in a dynamic world. In other words,
it is not possible two different NPCs to follow a different
path based on what they observed in the world or what they
missed to observe in areas that were not visible to them.

Typically a game engine includes a pathfinding module
that is used by all NPCs in order to navigate in the game map
(perhaps also conditioned on their size and capabilities). But
what happens when one NPC has seen, hence should know,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that the shortest path to the target destination is blocked
while another NPC does not possess this information? Even
though these special cases would probably arise less fre-
quently in existing games, these are exactly the cases where
the believability of NPCs is challenged. When game AI is
more or less “cheating” by allowing the characters to do
things that they are not supposed to, an immersion-breaking
moment happens that significantly lowers the quality of the
gameplay. This is similar to the frustration of players in the
past when opponent NPCs would always follow them in the
most optimal way, simply because they could always see the
location of the player (even if this should not be possible
by means of their location and observations). What we iden-
tify here is a similar case but more refined as it refers to
all observations about the connectivity of areas in the game-
world, and not just a single piece of information such as the
last known location of the human player.

There is a good reason for not including personalized be-
liefs per NPC, namely real-time efficiency. As requests need
to be resolved almost instantly for many characters in par-
allel, it is important that a pathfinding service in the game
is optimized in terms of CPU time. Similarly, as the game-
worlds become larger it is equally important that their rep-
resentations used for pathfinding are compact in terms of
memory usage. Nonetheless, as available computing power
of consoles and computers increases, there is more space for
experimenting with such aspects.

In this work we investigate BGCA*, a practical approach
for belief-driven pathfinding (BDP) that combines intuitions
from work on map abstraction, e.g., (Sturtevant and Buro
2005), and transit routing (Abraham et al. 2010). We em-
ploy a simple map decomposition into disjoint regions and
identify gates that connect them, and use a personalized gate
connectivity graph per NPC as a means to capture the beliefs
of eah NPC. The proposed approach is tested in a number of
maps of different size and over a large number of synthetic
pathfinding requests. Our results motivate a simple belief re-
vision strategy that induces small overhead and amortizes
effort spent toward precision.

Related Work
There is a lot of work on pathfinding in dynamic (or un-
known) maps based on interleaving planning and execution
in a similar manner as in the one adopted by BDP. According

Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

2

to agent-centered search (Koenig 2001) the agent searches
over a local part of the map that is typically centered around
the agent, computes a minimal path from its current location
and the most promising location on the local boundaries,
and retries after moving to the found location. In the gen-
eral setting of real-time search (Korf 1990) each deliberation
step is limited by time restrictions typically expressed by
means of a maximum number of expanded nodes. The aim
is to optimize the nodes expanded while leading (through re-
planning) to paths with high quality, e.g., some recent work
is LRTA* with subgoals (Hernández and Baier 2011) and
TBA* (Björnsson, Bulitko, and Sturtevant 2009).

In these approaches the path quality is measured wrt the
shortest path found by a regular pathfinder that searches for
a complete solution. In BDP though, the aim is not to find
the shortest path (by possibly also “physically” moving back
to previous locations from time to time) but to generate a
path that is consistent with the acquired (and possibly out-
dated) information about the map that was accessible to the
character. Note also that in BDP the acquired information is
intended to persist for more than the duration of a planning
and execution cycle for a single target destination.

So what is the main challenge with BDP? One can adopt
the very simple solution that each NPC maintains a person-
alized copy of the whole game map. This representation of-
fers some advantages, in particular the ability for NPCs to
consider beliefs about every tile of the map and that or-
thogonally to this any additional tricks can be applied to
the pathfinding over the copy of the map, including real-
time search methods. However this solution is not efficient
in many practical cases because it needs to allocate a large
amount of map tiles in memory when there are many NPCs
in the game, either for the copy of the map alone or addi-
tionally for the cached search nodes that are explored. A
more refined solution can be developed by exploiting map
abstraction techniques so that only some abstraction level of
the map is personalized and the rest is common to all NPCs.

Moreover, there are several aspects that need to be ex-
plored in this setting that arise from the use of beliefs: (i)
how long should a belief about the free/blocked state of a
particular map tile be kept? (ii) what is a practical repre-
sentation for the belief about a map tile that is “forgotten”
or discarded from the belief set? (e.g., it is different to as-
sume that it is now free following an open-door assumption
than marking it as unknown) (iii) if a path cannot be found
using the personalized information of an NPC, should the
pathfinding procedure discard beliefs in order to relax its as-
sumptions? (iv) and if so, which beliefs should be discarded?

Our analysis aims at giving answers to some of these
questions over a practical BDP approach that keeps a “time-
window” of the recently observed information about a par-
ticular set of tiles called gates. In our approach a simple
abstraction is employed that is based on decomposing the
map into regions, while gates connect these regions and their
free/blocked state is personalized per NPC. In this way a
high-level path over regions is personalized for each NPC
while a low-level path is generated by a regular pathfinding
service that operates over the true, updated, map.

Observe that when the time-window of our BDP approach

is zero, meaning that no beliefs are maintained between
searching for different destinations, then BDP reduces to a
simple hierarchical pathfinding method (with no real-time
search tricks) that replans whenever new information is ac-
quired or when the perceived path fails in execution. When
the window allows for some beliefs to persist, then different
paths are found based on the beliefs.

Our work is then closely related to hierarchical abstrac-
tions, e.g., HPA* (Botea, Müller, and Schaeffer 2004) in
which the high-level structures are fixed in regular regions
(e.g., squares) as well as abstractions based on map topol-
ogy such as the one in PRA* (Sturtevant and Buro 2005) and
those examined in (Sturtevant and Jansen 2007). Note that
since we are interested in ascribing beliefs to the elements
of the abstraction, the approach we adopt based on gates
can be more intuitive in practice, mapping to points of in-
terest that may be open, closed, or blocked, in contrast to the
other representations that are, in a sense, more mathematical.
PRA*(k) also employs an approximation so that only a path
number up to length k is searched per abstraction level. As
mentioned before, this type of approximating, time-slicing,
or keeping search information such as D∗ (Stentz 1995) and
D∗-Lite (Koenig and Likhachev 2005), are orthogonal to the
issues that BDP is concerned.

Finally, BDP is also relevant to the work in heuristics
based on identifying and exploiting the high-level structure
of the game map. In particular, the case of pre-computed
heuristics for optimal pathfinding such as those described in
(Felner, Sturtevant, and Schaeffer 2009), and the gateway-
based (Björnsson and Halldórsson 2006) and portal-based
heuristic (Goldenberg et al. 2010).

Belief-Driven Pathfinding (BDP)
A centralized pathfinding service is a typical core compo-
nent of many games that deals with finding an optimal (e.g.,
shortest) path between two points on the game map. Assum-
ing a dynamic environment where passages may be blocked
by obstacles or locked doors, the map may be changing con-
stantly under the effects of the player and NPCs in the game.
Typically, a pathfinding service operates on the current (up-
dated) game map for all requests. We call this omniscient
pathfinding because it assumes that every NPC has an accu-
rate view of the whole game map at any given time.

On the contrary, belief-driven pathfinding (BDP) assumes
that each NPC has a personalized version of the game map
which is appropriately updated only for the areas that the
NPC visits as it moves. This personalized version of the map
is represented in terms of beliefs that the NPC has about the
connectivity of the game map. When a pathfinding request
is made by an NPC, a BDP service returns a path that is
optimal wrt the NPC’s beliefs, but not necessarily also op-
timal with respect to the actual game map. The motivation
for such a personalized BDP service is that the resulting path
provides a more believable behavior for the NPC navigation.
This is illustrated in the following example scenario.

Example 1. Imagine a scenario according to which the
player decides to block a passage by putting some obstacle
in the way after he passes through. This means that a hypo-

3

thetical chaser NPC would have to go to the blocked pas-
sage, find the path obstructed and compute a different route
in order to get close to the human player. This is an important
piece of information that actually should affect greatly how
the NPCs will decide to navigate in the game-world. Using
omniscient pathfinding it is as if the NPC is instantaneously
informed about the obstacle, defeating, in practice, the at-
tempt by the player to slow down the NPC. On the contrary,
with BDP the NPC can act in a more believable way: since it
does not know that the passage is blocked it first tries to go
through the normal (previously shortest) route, sees that it is
blocked, and then goes around using the alternative route.

First, we describe a simple hierarchical pathfinding ap-
proach over gates in the game map and then we discuss how
this can be used to form a practical BDP approach.

GCA*: Gate connectivity A*
We assume that the game-world is represented as an octile
map M such that each tile m ∈ M may be blocked or free,
and appropriate functions exist for retrieving neighbouring
tiles and the state of the tile. We choose the grid representa-
tion for simplicity but note that the methods we present can
be adapted to work for other representations.

Gate connectivity A* (GCA*) relies on a simple map de-
composition of M into a set R of n regions Ri ⊆ M , such
that

⋃n
i=1 Ri = M , and Ri ∩Rj = ∅ for every i 6= j. Given

R, we define MP as the set of tiles that are in the edge of
one region in the sense that they have a neighbor that be-
longs to a different region. Then, we define a portal p as
a pair (mi,mj) such that mi ∈ MP , mj ∈ MP , mi ∈ Ri,
mj ∈ Rj and i 6= j. We say that p belongs to Ri iff mi ∈ Ri

or mj ∈ Ri. As a consequence, any portal always belongs
to exactly two regions. Finally we define a gate G as a set of
portals, such that (i) every portal p ∈ G belongs to the same
pair of regions Ri, Rj and (ii) the portals in G form a conse-
qutive horizontal or vertical line of one or more portals. We
also say then that gate G connects regions Ri and Rj and
use conn(G) to denote the set {Ri, Rj}.1

Given a map M and an appropriate set of regionsR (e.g.,
one that decomposes the map into coherent areas) and an ap-
propriate set of gates G (e.g., one that segments the borders
of regions into gates of bounded size), the gate connectivity
graph ΓG = (V,E) is an undirected graph such that: (i) the
set of vertices V is the set of gates G; (ii) an edge (Gi, Gj) is
in E iff conn(Gi) ∩ conn(Gj) 6= ∅; (iii) each edge (Gi, Gj)
is labeled with the true distance between Gi and Gj (consid-
ering the center of each gate). Note that,R can be fixed and
ΓG can be precomputed offline.

Similar to more sophisticated hierarchical planning ap-
proaches, e.g., (Botea, Müller, and Schaeffer 2004; Sturte-
vant and Buro 2005; Sturtevant 2007), GCA* first searches
for a path in the higher-level portal connectivity graph, and
then searches for low-level paths that realize each of the

1Our definition of portals is inspired by (Goldenberg et al. 2010)
but we use a pair of tiles connecting exactly two regions, instead of
a single tile that may connect multiple regions. A gate then is a (part
of a) gateway in the sense of (Björnsson and Halldórsson 2006).

Figure 1: A small map decomposed in five regions, and a
corresponding gate connectivity graph. Gate G1 is a set of
three portals, each of which is denoted by a double arrrow.

high-level moves between regions. GCA* handles a request
between tiles ma and mb as follows:

1. If ma and mb belong to the same region, the algorithm
returns the path ma → mb.

2. Otherwise, graph ΓG is expanded with two vertices va and
vb into graph Γ?

G . New edges are added between va and
each gate that connects the region where ma is in, and
similarly for the new vertex vb and mb.

3. An A∗ search is launched on Γ?
G in order to find a high-

level path of the form va → pi → · · · → pj → vb. If no
path is found GCA* returns with failure.

4. Otherwise, the high-level path found is expanded by a reg-
ular omniscient pathfinding algorithm such that for each
step pi → pj a low-level path is found that connects pi
and pj through tiles of the map M while searching only
inside the area that pi, pj reside.

BGCA*: Belief-based gate connectivity A*
We now build on GCA* to provide a BDP approach such
that each NPC maintains its own gate connectivity map cap-
turing the beliefs of the NPC about the map. This is a practi-
cal way to capture beliefs about connectivity as it essentially
filters out the local obstacle avoidance inside each region,
which may be also fine-tuned at execution. Also, each NPC
need only maintain beliefs about a small subset of the map,
i.e., the gates, which are points of interest that are expected
to map well to meaningful positions, e.g., doors or places
where an obstacle may be put to obstruct the passage, or can
be specified at design time to actually correspond to such.

Note that a gate connecting two regions may actually be
just a couple of tiles wide, while two automatically decom-
posed regions may be connected through a large number of
tiles, e.g., as illustrated the map of Figure 1. At the one ex-
treme one can consider every portal as a gate (that the NPC
believes to be free or blocked), and at the other extreme one
can consider just one gate per two neighboring regions. In
Figure 1 the gate connectivity graph is composed by six
gates that abstract the connections of the regions according
to the latter extreme. An edge between two gates indicates
that they belong to the same region (and thus are assumed to
be always reachable one to the other).

Depending on the resolution of the map, many portals can
be grouped together to form a meaningful gate that corre-
sponds to a part of the map that can be blocked during play

4

in a way that actually obstructs navigation from one region
to another. In this sense the extreme case of putting together
all portals in the border between two regions in a single
gate works well, as the personalized portal connectivity map
would hold information about the high-level connectivity of
regions and not about the actual detailed position that the
NPC should enter or leave the region. Nonetheless, since in
very wide borders this detail may provide a nice refinement
to the path followed by a belief-driven NPC, we expect that
a better approach is to group portals together into gates ac-
cording to an average size of gateways in the game. For ex-
ample, in the map of Figure 1 a reasonable choice for the
size of a gate would be three portals.

We assume that gates are formed based on a maximum
size in tiles. This then gives some bounds on the memory
that each NPC needs to allocate for the personalized beliefs
as well as the total memory overhead for this BDP approach.
In the worst case the memory required for storing the beliefs
for a single NPC is proportional to the size of the portal set
|MP |, which with an average decomposition algorithm is ex-
pected to be much smaller than the total number of tiles in
the map. The total memory needed for n NPCs is then just
the amount needed for a single one multiplied by n.

Maintaining and discarding beliefs. A generic proce-
dure for an NPC navigating with BGCA* is one that inter-
leaves planning and execution in a straightforward way as
studied in AI in various contexts. The NPC starts with an
empty set of beliefs and updates the beliefs during execu-
tion accordingly for the portals that are in his field of view.
As time goes by the NPC may need to “forget” or discard
some of his beliefs because they may have become obsolete.

At one extreme the NPC may focus solely on his percep-
tion, keeping only the beliefs that come from his field of
view and discard anything else, and at the other extreme he
may give strong trust to his memory, keeping all beliefs un-
til they are revised by his perception. A middle ground is
desired where beliefs are kept in memory only up to a cer-
tain time-limit so that they guide his navigation but without
hurting too much the precision of his results. Note that it is
actually desired that the NPC follows paths that may be ob-
solete at the time of execution or even fails to find a path
when in fact there is one, but this should happen within an
overall precision that makes his navigation reasonable.

It is important to specify how beliefs are stored and what
does it mean to discard a belief about the state of a gate.
In knowledge representation terms, a precise way to for-
malize this is by allowing the belief about a gate to range
over three states: free, blocked and unknown. The informa-
tion that is received by the perception of the NPC would
then update beliefs about gates to free or blocked accord-
ingly, while the discarded beliefs (due to a time-window that
passed) would be updated to unknown. This allows for dif-
ferent search strategies, e.g., one that promotes paths that go
through unknown areas and are more exploratory, and one
that promotes paths with gates whose state is known.

BGCA* adopts a practical solution that simplifies the han-
dling of unknown gates by an open-door assumption, i.e.,
the discarded beliefs are updated to beliefs that the corre-

sponding gates are free. This is a common assumption fol-
lowed by several approaches for pathfinding in unknown
maps. We believe that a correct account of unknown gate
states would be prove useful to generating paths that follow
different dispositions, but it is out of the scope of this anal-
ysis and is left for future work. BGCA* also adopts a prac-
tical one-step strategy for discarding beliefs: essentially all
beliefs are kept until the NPC gets to a point that a pathfind-
ing request fails to find a solution. Then beliefs that are older
than a specified time window are discarded.

BGCA* handles a request between a source and destina-
tion tile by interleaving planning and execution as follows.

Execution procedure:
1. Loop over step 2 until a maximum number of repaths is

reached. If the maximum is reached then return failure.

2. Use the planning procedure to compute a path from the
current tile to the destination. If a path is found then ex-
ecute this path and update the beliefs for all gates that lie
inside the perception radius of the NPC, otherwise return
failure. If the destination is reached then return success.
Stop the execution (and break the loop) if some gate be-
lieved to be blocked is sensed to be free or if the path
execution fails.

Planning procedure:
1. GCA* is run using the personalized gate connectivity

graph of the NPC that made the request. If a path is found
then returns the path.

2. Otherwise, the gate connectivity graph is updated by dis-
carding all beliefs that are older than a specified time-
window, i.e., the corresponding gates are considered to be
free. Another GCA* instance is run on the same tiles us-
ing the updated gate connectivity graph. If a path is found
then returns the path, otherwise returns failure.

Note that the behavior of BGCA* is configured by three
parameters: (i) the maximum number of repaths (i.e., plan-
ning and execution iterations) allowed, (ii) the perception
radius of the NPC, and (iii) the time-window for maintain-
ing beliefs. Next, we proceed to discuss a testbed for BGPA*
(and BDP in general) and a set of experiments that we con-
ducted to identify the configurations for these parameters
that generate the intended results.

A BDP testbed in Unity
In order to investigate the correlation between the parame-
ters of BGCA* and the performance of the algorithm, we
have developed a testbed in the Unity game engine (unity3d.
com) that automatically iterates over a set of configuration
files and maps2. For each configuration and each map the
benchmarking tool acquires a map area decomposition us-
ing the flood-filling method of (Björnsson and Halldórsson
2006), generates the gate connectivity graph, and goes over
a number of BGCA* pathfinding requests as specified in

2The testbed is publicly available at https://github.com/
THeK3nger/BDP-Benchmark

5

Figure 2: Total effort and effort per repath for maps in Group A (top) and Group B (bottom).

the configuration file. Unlike other benchmarks that gener-
ate paths with random start and destination tiles, here only
random destinations are generated and the request uses the
current position of the NPC as the start. This is needed in or-
der to measure the use of BGCA* in a scenario where beliefs
about the areas that the NPC visited recently can be used to
drive the new paths requested.

The parameters that can be specified are the following:

• max-gate-size: the maximum size for gates.

• iterations: the number of destination requests,

• initial-closed: the ratio of closed gates,

• shuffle-amount: the ratio of gates to be updated,

• shuffle-rate: the frequency of updating gates,

• max-repaths: the maximum number of repaths,

• update-radius: the perception radius of the agent,

• belief-window: the time-limit for discarding beliefs.

During the generation of destinations, positions that lie in
the same area as the NPC are filtered out. The initial ratio
of closed gates is specified in the parameters and a shuffling
of them takes place every few iterations. This changes the
state of the percentage of gates specified but keeps the to-
tal ratio of closed gates constant. The last three parameters
correspond to the parameters of BGCA*. In particular, the
update radius refers to the depth in terms of areas that the
NPC can perceive, i.e., a value of 1 means that the NPC can
perceive all gates in lying in the same area, while a value of
2 means that he can also perceive gates in areas connected
to the one he is located. Also, as far as the time-window is

concerned, since the navigation of the NPC is simulated, we
chose to specify the window in terms of the number of shuf-
fling events that have occurred. For example, if a shuffling
rate of 10% is specified, then belief window of 4 would cor-
respond to the time required on average before 40% of the
map has changed in a real-time running game.

The map decomposition can be specified manually or
automatically by means of a map partitioning algorithm,
e.g., the counter-based graph-partitioning algorithm (Gold-
enberg et al. 2010) based on the betweenness centrality
of the portal edges, or the flood-filling algorithm used in
(Björnsson and Halldórsson 2006) for their pathfinding gate-
way heuristic. While the first algorithm provides a more ro-
bust map decomposition, the second one, which is the one
used in our testbed, always provides horizontal or vertical
portals that are easier to use and store. On the other hand,
this partitioning method does not perform well on every map
and may generate non-intuitive regions.

The testbed reports a detailed log for each configuration
file and map. As we intend to compare the performance of
BGCA* with an omniscient pathfinder, the testbed also per-
forms the same requests with an omniscient PCA*. This is
so that the comparison is fair, as PCA* is also hierarchical
and works in the same way but in one-shot using the accurate
version of the current map.

Experimental Results
For evaluating BGCA* we set up a set of experiments us-
ing the testbed of the previous section and benchmark maps
from the video game “Dragon Age: Origins” provided by
(Sturtevant 2012). We formed two groups of representative

6

maps of increasing size, each of which consisting of five
maps. Group A contains “open” maps that allow multiple
solutions to pathfinding requests, while Group B contains
“maze-like” maps where one blocked passage may cut-off
connectivity between big parts of the map.3

We measure the outcome of the different configurations
for BGCA* wrt effort and precision. As far as the effort is
concerned, we look into the number of total expanded nodes
for the whole set of planning execution steps until the des-
tination is reached or BGCA* quits. We also look into the
number of expanded nodes for each execution step. We refer
to this as the expanded nodes per repath and it corresponds
to the effort needed before the NPC can start moving in the
game map. As far as precision is concerned we focus mea-
sure the ratio of destination instances that BGCA* and the
omniscient PCA* agree about success or failure. Also, we
take into account the number of repaths per destination.

Our intention is to identify the parameters that achieve
a balance between the NPC finding paths with a precision
above 75% while inducing the least effort as possible and
keeping the number of repaths to a small constant, e.g., 2
or 3.4 For example, if we would allow the NPC to discard
all beliefs and retry as many times as needed then he would
eventually find a path if one exists. At the other extreme if
we never allow the NPC to discard beliefs then at some point

3Group A consists of maps: orz500d, den504d, rmtst,
arena, den101d. Group B consists of maps: lak302d,
den005d, lak202d, den020d, orz601d.

4This is also because unlike other contexts where the shortest
path is desired regardless of repath steps, here we are interested
in behaviors that generate only a few “re-thinking” events for the
NPC that are easier to be acknowledged by the player.

he may not be able to find paths outside of his area of vision
when the last information he had was that the surrounding
areas next to his location were blocked.

The following results show how this balance can be
achieved for the two groups of maps that we identified. We
performed several experiments and we report here the ones
that are more suitable for drawing conclusions. For each one
we set the number of iterations to 500, and for all reported
sets we set the ratio of closed gates to 20% and a shuffling
ratio of 10% after every destination iteration. Also, we used
a fixed number for the maximum size of gates to be at most
5 portals. As far as the parameters of BGCA* are concerned
we report on combinations of belief-window values of 2,4,6
and update-radius values of 1,2. Figure 2 shows the effort
for these experiment sets, where “W” stands for the belief-
window and “R” for the update-radius. Figure ?? shows
the precision and repaths for all combinations for Group B,
along with screenshots of the maps. From these graphs we
can conclude the following:

• The average effort per repaths of BGCA* in the “open”
maps of Group A is comparable with the one of omni-
scient PCA*. This means that as far as the NPC making
the first move is concerned, BGCA* is not inducing any
significant overhead.

• The average effort per repaths of BGCA* for the “maze-
like” maps of Group B is greater than that of omniscient
PCA*. However, it seems to be bounded by a factor of 2-3
times the effort of PCA*. This shows that some constant
overhead is to be expected to maps of this type.

• The total effort of BGCA* is larger than that of omni-
scient PCA* which is expected as the NPC makes a num-

7

ber of repaths before reaching the destination.

• There is a trade-off between total effort and precision. A
lower value for the belief-window can help the agent to
reach a precision above 90%, however leads to a larger
total effort. On the other hand, an increase of the percep-
tion radius can help the agent achieve a higher precision
with the same effort. For instance in Figure ??, every ex-
periment with radius 2 leads to a precision score above
90% but the effort is comparable with the effort of the
corresponding experiments with a perception radius of 1.
The use of a radius larger than 1 is a way to achieve better
performance by giving the NPC more perception power.

The last point motivated us to explore further a slightly
more adaptive version of BGCA* such that in the planning
procedure instead of performing a one-shot revision (point
2), relies on an incremental revision up to a smaller belief-
window. Additional experiments showed that a variant of
BGCA* that uses a variable belief-window from 6 to 4 (de-
picted as W=6-4) has a more consistent performance wrt
precision in the maps of Group B, and in fact achieves supe-
rior performance wrt precision in the maps of Group A.

As far as memory usage is concerned, the total number of
gates shows the memory usage per NPC. Assuming that one
bit is stored per tile and gate, a map with n tiles requires n
bits for a single copy, nm bits for m agents keeping a full
copy each, and km bits for our approach where k is the num-
ber of gates. E.g., for map den005d in group B, n is 17559
and k is 571. Note that portals and gates are identified by
means of an automated procedure for decomposing the map
into regions and considering all tiles in the border between
regions. In practice the number of gates could be much lower
if game designers identified directly those points of interest
that are appropriate to be considered as gates, e.g., doors,
passages, breakable walls, etc.

Conclusion and Future Work
We investigated an approach for realizing a belief-driven
pathfinding (BDP) service that allows for a differentiation
between the paths that non-player characters (NPCs) fol-
low, based on their beliefs and former observations. Our ap-
proach, BGCA*, appeals to a practical map abstraction in
order to provide a memory-friendly way of storing a person-
alized copy of the map per NPC. We provide a testbed for
experimenting with the parameters of BGCA* and through
our analysis we identify appropriate configurations for em-
ploying BGCA* in practice. As BGCA* can be built on top
of a pre-existent regular pathfinding service, it is possible to
use this approach only for some particular NPCs.

We believe that this type of belief-driven deliberation and
decision making is necessary for increasing the believability
of characters in games, as this is perceived by means of the
navigation and actions of the characters in the game-world.
Moreover, we believe that exploring such approaches opens
up many opportunities for developing more advanced behav-
iors that rely on each NPC holding a personalized view of
the properties of the game-world that is separated from the
real (updated and completely specified) state of affairs.

For our future work we intend to explore a more refined
notion of beliefs that distinguishes between gates that are
known to be free and those that are unknown (unlike the ex-
isting account that follows the open-door assumption). We
also want to investigate the middle ground between pathfind-
ing and goal-oriented action planning toward hybrid ap-
proaches such that (beliefs about) properties of the game-
world may affect navigation, for instance taking into account
the ability to go to a particular region and get a key in order
to open a gate that blocks the path to the destination.

Finally, in addition to evaluating the BDP agent from an
effort and performance point of view, it is important to de-
fine appropriate metrics for measuring the believability of
the NPC behavior wrt to a belief-consistent point of view.

References
Abraham, I.; Fiat, A.; Goldberg, A. V.; and Werneck, R. F.
2010. Highway dimension, shortest paths, and provably ef-
ficient algorithms. In Proc. of SODA’10, 782–793.
Björnsson, Y., and Halldórsson, K. 2006. Improved Heuris-
tics for Optimal Path-finding on Game Maps. In In Proc. of
AIIDE’06.
Björnsson, Y.; Bulitko, V.; and Sturtevant, N. R. 2009.
TBA*: Time-Bounded A*. In Proc. of IJCAI’09, 431–436.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. Journal of game development.
Felner, A.; Sturtevant, N.; and Schaeffer, J. 2009.
Abstraction-Based Heuristics with True Distance Computa-
tions. In Proc. of SARA’09, 1–8.
Goldenberg, M.; Felner, A.; Sturtevant, N.; and Schaeffer, J.
2010. Portal-based true-distance heuristics for path finding.
In Proc. of SoCS’10.
Hernández, C., and Baier, J. A. 2011. Fast subgoaling for
pathfinding via Real-Time search. In Proc. of ICAPS’11.
Koenig, S., and Likhachev, M. 2005. Fast replanning
for navigation in unknown terrain. IEEE Transactions on
Robotics 21(3).
Koenig, S. 2001. Agent-centered search. AI Magazine
22(4):109.
Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42(2-3):189–211.
Stentz, A. 1995. The focussed D algorithm for real-time
replanning. In In Proc. of IJCAI’95, 1–8.
Sturtevant, N., and Buro, M. 2005. Partial pathfinding using
map abstraction and refinement. In Proc. of AAAI’05.
Sturtevant, N., and Jansen, R. 2007. An analysis of map-
based abstraction and refinement. In Proc. of SARA’07.
Sturtevant, N. R. 2007. Memory-Efficient abstractions for
pathfinding. In Proc. of AIIDE’07, 31–36.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.

8

