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Abstract 
Video game virtual characters should interact with the 
player, each other, and the environment. However, the cost 
of scripting complex behaviors becomes a bottleneck in 
content creation. Our goal is to help game designers to more 
easily populate their open world with background characters 
that exhibit more believable behaviors. We use a cyclic 
scheduling model that generates dynamic schedules for the 
daily lives of virtual characters. The scheduler employs a 
tiered behavior architecture where behavior components are 
modular and reusable. This research validates the designer 
usability of an implementation of this model. We present the 
results of a user study that evaluates the scheduling system 
versus manual scripting based on three metrics of behavior 
creation: behavior completeness, behavior correctness and 
behavior implementation time. The results indicate that the 
behavior architecture produces more reliable behaviors and 
improves designer efficiency which will reduce the cost of 
generating more believable character behaviors. 

Introduction   
Video game worlds contain many virtual characters that 
are Non-Player Characters (NPCs). As virtual worlds 
become larger and more realistic-looking, the importance 
of socially believable virtual characters also grows. These 
characters should interact with the player, each other, and 
the environment. In recent years, the behavior AI of virtual 
characters has not developed as quickly as other aspect of 
video games, such as graphics. Complex behaviors can be 
created manually, but the creation time makes the cost 
prohibitive for background characters at a large scale. 
Scripting costs are an important contributing factor to a 
major bottleneck in content creation, leading to a plethora 
of games with very simplistic behaviors for almost all 
virtual characters outside the main plot line. AAA titles 
such as Dragon Age II (BioWare 2011), Mass Effect 3 
(BioWare 2012) and The Elder Scrolls V: Skyrim 
(Bethesda 2011) have several main characters whose 
behaviors are quite believable in some instances, due to 
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extensive scripting. However, these same games have 
secondary characters and extras that lack believability and 
simply exist to fill up the game world. 

Three key changes are necessary to address this 
problem. First, the behaviors must be more believable as 
measured by game players. Second, the behaviors must be 
reliable so that they work as designed. Third, designer 
efficiency must be increased to reduce production costs. 

This paper extends our work on a tiered behavior 
architecture model (Zhao and Szafron 2014) which 
attempts to alleviate the content creation bottleneck for 
cyclic behaviors. Our architecture employs a cyclic 
scheduling algorithm, which determines the general 
objectives of the virtual characters and specifies the roles 
that will satisfy these objectives dynamically at game time. 
We validated the believability of the generated behaviors 
against a recent commercial game with a user study (Zhao 
and Szafron 2014). 

 The research in this paper further evaluates the design 
and implementation of this tiered architecture for cyclic 
behaviors by addressing the behavior reliability and 
designer efficiency issues. It presents the results of a 
second user study that compares the behaviors generated 
by an implementation of our architecture with behaviors 
created by manual scripting. It uses three metrics: behavior 
completeness, behavior correctness, and behavior 
completion time. These metrics are indicators of behavior 
reliability and designer efficiency, key elements in 
reducing the cost of generating more believable behaviors, 
thus adding more depth to the characters. 

In addition, as noted by Li et al. (2014), having 
autonomous agents with their own back stories has benefits 
outside of the video game environment, as they increase 
user engagement and can be applied to other non-gaming 
situations. 

Related Work 
Researchers have explored many ways to control the 
behaviors of virtual characters. At the highest level, 
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research has been done on providing complex interactive 
narrative experiences for players (Riedl and Bulitko 2013). 
Although this is the ultimate goal, to achieve success it is 
also necessary to improve the behaviors of individual 
characters who contribute to the narrative. One approach is 
to directly control all characters via manually written 
programming code.  Specialized programming languages, 
such as ABL, have been proposed to help with designing 
believable agents (Mateas and Stern 2002) and they 
certainly have been demonstrated to improve the resulting 
characters. Gomes and Jhala (2013) have demonstrated the 
use of ABL in the believability of NPC social conflict 
resolution. However, even with such better scripting 
languages the production costs are high. Our goal is to 
evaluate the alternative of eliminating manual scripting in 
favor of automatic script generation. 

Other alternatives to scripting exist. Finite State 
Machines (FSMs) have been used in commercial games for 
many years. However, with increasingly complex game 
environments, FSMs do not scale well and get harder to 
maintain (Schwab 2009). Hierarchical FSMs and Behavior 
Trees were introduced to address this problem (Isla 2005) 
with the game Halo. Further improvements include Data-
Oriented Behavior Trees and Event-Driven Behavior Trees 
(Champandard 2012).  More recently, learning Behavior 
Trees have been proposed, which adapt Behavior Trees 
with known player traces and modifiers (Tomai and Flores 
2014). Layered Statechart-based AI by Dragert et al. 
(2012) stresses modularity and reusability as key features 
to successful AI techniques. As we will see, at the lowest 
level of our proposed architecture, any of these techniques 
can be used to fulfill the modular role behaviors. 

However, at a high level, behavior specification can be 
viewed as a planning exercise since the designer should be 
able to generate behaviors from a set of constraints. For 
example, in the scheduling domain for daily behaviors, 
specifying a behavior for each hour or even for a specific 
period of time can be burdensome to a designer who only 
wants to specify the total time allocated for each behavior. 
Rather than using transitions (FSMs, Decision Trees or 
Behavior Trees) for each hour (or period of time), the 
designer should be able to specify more general 
constraints. Nevertheless, we would welcome user studies 
that evaluate the believability and reliability of generated 
behaviors and designer efficiency for complex cyclic 
behaviors using FSMs, Decision Trees or Behavior Trees. 

Planning techniques have also been used in the context 
of guiding behaviors for characters. Goal-Oriented Action 
Planning was used by Orkin (2006). Recently, Coman and 
Munoz-Avila (2012) used case-based planning techniques 
to provide a variety of behaviors and demonstrated it in the 
Wargus real-time strategy game engine. Kadlec et al. 
(2012) constructed a specific game where a virtual 
character tried to achieve a goal using planning with an 

incomplete knowledge of the environment, and the player 
must help the character succeed. Kelly et al. (2008) used 
offline planning with Hierarchical Task Networks to 
generate behaviors. We share their goal of shifting the 
workload offline, but we embed scheduling in a broader 
architecture that supports dynamic online assignment of 
low-level behaviors (roles) to the root nodes (objectives) of 
the scheduler. They also indicated that the generated 
scripts require human effort to “compose and debug.” The 
behavior scripts we produce require no human 
intervention. In addition, our implementation provides a 
graphical user interface with different constraint types that 
our user study has shown to be efficient and reliable. 

In the scheduling domain, the interval scheduling 
maximization problem is one of the oldest problems, where 
the goal is to schedule a largest set of non-overlapping 
intervals. A greedy polynomial time algorithm exists as the 
solution (Kleinberg and Tardos 2005). The scheduling 
problem presented in this paper does not aim to find an 
optimal solution. It determines whether a solution is 
possible that fits all requirements, and if possible, it finds a 
family of solutions. Instead of intervals of fixed start and 
end times, it has blocks of fixed lengths with variable start 
and end times to better match requirements for scheduling 
believable cyclic behaviors of virtual game characters. 

Bakkes et al. (2012) described player behavioral 
modeling strategies, and argued that circumstance-based 
abstractions of player models are needed.  The level of 
details concept is used in this paper, even though this paper 
focuses on the behaviors of background NPCs exclusively. 

Graphical drag-and-drop interfaces and pattern-based 
approach to scripting have been explored by many. In the 
academic environment, CMU’s Alice (Pausch et al. 1995), 
MIT’s Scratch (Resnick et al. 2009), and University of 
Alberta’s ScriptEase (Schenk et al. 2013) are but a few 
examples. Becroft et al. (2011) described a graphical tool 
to create and edit Behavior Trees. These tools are all aimed 
at story designers and those who are learning to program. 
Some commercial game engines have employed visual 
interfaces as well, such as the Blueprints visual scripting 
system of the Unreal Engine (Epic Games 2014), formerly 
known as Kismet. While these tools are able to provide 
event-based scripting capabilities, they are general purpose 
tools which are not specialized in generating believable 
behaviors for virtual characters. It would be difficult to 
implement a cyclic scheduler using these graphical tools. 

Cyclic Scheduling 
Our tiered behavior architecture model (Zhao and Szafron 
2014) separates the behaviors of a virtual character into 
leveled tiers, where each subsequent tier contains 
behaviors at more focused granularity (Figure 1).  
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Figure 1. The tiered behavior architecture model, from Zhao and 
Szafron (2014).    

Figure 1 shows circumstances, schedules, objectives, and 
roles as data layers, which are sets or lists of items, where 
each item is composed of items from the next layer below. 
With this architecture, each item is modular and reusable in 
the sense that they are self-contained units which can be 
adapted to a different place in the behavior architecture. 

When a layer (usually the schedule) is expressed as a 
list, with time as a natural ordering mechanism, a cyclic 
scheduler generates the items in this layer. Specifically, a 
cyclic scheduler determines the objectives of the virtual 
character in a schedule. A simple schedule includes four 
common objectives: sleep, eat, work, and social activities, 
as shown in Figure 2, although more objectives can be 
created by the designer. Each objective can contain 
multiple roles that can satisfy the objective.  For example, 
to eat, one can eat at home, eat at a tavern, eat at a friend’s 

place, etc. according to the designer’s wishes, and the 

availability of executable roles during game time.  
 
Sleep  Work  Work  Sleep 

 

Figure 2. An example of daily schedule of a virtual character in a 
medieval setting.   

In The Elder Scrolls V: Skyrim (Bethesda 2011), a 
typical daily schedule of a virtual character is usually 

cyclic on a daily basis.  Given the large number of 
characters in such a game, automatically populating these 
behaviors would be very helpful. This system allows game 
designers to directly specify any important aspects of a 
daily schedule and the system selects the other aspects. 

A designer considers the principal mission of a 
particular virtual character, and how the character can 
execute this mission.  For example, a farmer usually does 
typical farming tasks, along with sleeping, eating, and 
socializing. All virtual characters fitting the farmer mission 
have similar daily routines in Skyrim. 
 The cyclic scheduler tool includes several key aspects.  
First, it has a timeline (Figure 3) that allows key 
constraints at specific hours to be specified.  For example, 
the designer can ensure that the character is asleep at 1am 
and 6am, using the timeline. The planner may add more 
sleep times at unconstrained times on the timeline, but the 
times on the timelines are honored. We have included one-
hour increments in our timeline but this can be easily 
generalized to arbitrary increment sizes. 

Figure 3. The timeline tool showing some hours filled in by the 
designer.   

Second, the cyclic scheduler tool provides designers 
with the option to set total hours for each objective (Figure 
4), as well as options to group the objective hours into 
consecutive or non-consecutive blocks. For example, the 
designer may require a total of 9 consecutive sleep hours. 
Along with a timeline constraint of sleeping at 1am and 
6am, this would require the character to sleep for any 9-
hour consecutive block that includes the hours 1am to 6am. 
Figure 4 shows the hours for the schedule from Figure 2.  

The ability to specify the exact location and role of a 
character at a particular time allows designers to coordinate 
the schedules of multiple characters without over-
specifying the behaviors of these characters at other times. 
For example, the designer may arrange for a thief and a 
fence to be in the roles buyer and seller in a specific alley 
at mid-night and design the rest of their behaviors 
independently. 

Third, a designer can specify transitional hours (Figure 
4), where the character has a probability of using the next 
objective an hour earlier, an hour later, or anytime in 
between. This provides stochasticity in the schedules so 
that they do not look identical from day to day.  

Fourth, the tool allows a designer to pick one or more 
roles that can be used to satisfy each objective, as well as 
the percentage chance each role can be picked, subject to 
dynamic availability of each role at game time (Figure 5).  

Eat Eat Social (Midnight) 
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Figure 4. The designer can specify hours for each objective.  

Figure 5. The designer can specify probabilities for each role. 

Finally, the scheduler informs designers if the specified 
constraints are satisfiable or unsatisfiable, as specified by 
the cyclic scheduling algorithm in the Appendix. The 
greedy depth-first search algorithm employed in this case 
is complete: if a solution exists, the solution must contain 
every specified objective block in some location. The 
greedy algorithm iterates through every location for each 
block until a satisfiable location is found. Therefore the 
algorithm will find a solution if one exists.  

Schedules are generated off-line before the start of the 
game, and game-time selectors dynamically assign roles to 
objectives as the game is played, allowing dynamic 
adaptation. The scheduling component is done off-line to 
reduce game-time computation. As noted by Wright and 
Marshall (2010), game AI must be fast. With only a 
fraction of the processor time allocated to AI each frame, 
the game-time component of the AI must be computed 
between frame displays. 
 The tiered behavior architecture also enables Level-Of-
Details AI (Wißner et al. 2010), which allows off-screen 
and faraway characters to use only the appropriate high tier 
behavior without going into the details at the lower tiers, 
thus saving computation time on-line. 

User Study Results 
Our previous user study (Zhao and Szafron 2014) showed 
that a cyclic architecture is able to produce behaviors that 
are more believable than the default behaviors of the 
commercial game, The Elder Scrolls V: Skyrim. However, 
unless the architecture can generate reliable behaviors 
quickly, the scripting bottleneck will remain. In this paper, 
we present a user study that measures the reliability of 
generated behaviors and the efficiency of behavior 

designers using the tiered architecture as compared to 
manual scripting of behaviors.  

We used Skyrim to evaluate behavior believability 
(Zhao and Szafron 2014). However, we found it more 
convenient to evaluate designer efficiency and behavior 
reliability using Neverwinter Nights (NWN) (BioWare 
2002), based on the availability of a pool of suitable study 
participants with previous NWScript experience who could 
write manual scripts. Therefore, we modified our Skyrim-
based implementation to work with the NWN engine and 
to generate NWN scripting code, but retained the GUI. 

There were two groups of participants: one group used a 
tool that implemented the cyclic architecture. The other 
group used the manual scripting method for NWN. To 
ensure a fair comparison, all participants were required to 
have played the NWN game so that they could test their 
behaviors quickly using familiar settings and controls.  
Scripting Group participants were also required to be 
programmers who had prior experience with NWN 
scripting.  Participants in the Tool Group were not required 
to have NWN scripting experience. No participants had 
seen the cyclic architecture tool before the study. 

At the start of the study, both groups were given an 
instruction manual for their respective methods. The Tool 
Group was given a detailed manual on how to use the 
architecture tool, while the Scripting Group was given 
access to the NWN Lexicon, a familiar online manual for 
the scripting language. Both groups were also given a 
game file, which contained an identical pre-made town 
area, populated by four characters.  Participants used this 
game file, and creating the behaviors was their only task. 

Lastly, the participants were each given a sample 
behavior for a sample character. The sample behavior was 
identical for both groups, but was implemented in the 
respective method for each group. Participants were asked 
to first examine the sample behavior to see how it was 
implemented (either with the tool or with scripting code), 
and were told they could use the sample as a starting point. 
The sample character behaved as follows: He sleeps at 
home from midnight until hour 6. He starts to work at the 
Market at 7, for 10 hours, then eats at Tavern A at hour 17 
for 2 hours, and then sleeps at home from hour 19 until the 
next day.  He repeats the same behaviors for three days. 

The actual behaviors that the participants were asked to 
create were identical for both groups. They were asked to 
follow instructions to create the behaviors for four 
characters in order, Adam, Bob, Cathy, and Donna, each 
for three consecutive days in game. Each subsequent 
character had increasingly complex behaviors as shown in 
Table 1. Participants were allocated a maximum of three 
hours to complete all behaviors, after which the study was 
stopped regardless of completion. Participants were also 
asked to record the time that they spent on each character.  
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A total of 25 participants were recruited in the user 
study. The Tool Group had 15 participants, where 5 were 
programmers and 10 were not.  A programmer is defined 
as someone who self-reported having written many 
computer programs (in any language). The Scripting Group 
had 10 participants, all experienced NWN script 
programmers.  

 
 Adam Bob Cathy Donna 
Multiple 
Schedules 

Yes Yes Yes Yes 

Stochastic 
Schedules 

Yes Yes Yes Yes 

Multiple 
Roles 

 Yes Yes Yes 

Blocks of 
Roles 

  Yes Yes 

Dynamic 
Roles 

   Yes 

Table 1. The aspects of the behaviors. 

Completeness 

Figure 6. Completeness at 80% or higher: Tool Group vs. 
Scripting Group. 

Figure 6 shows the percentage of participants who 
completed at least 80% of the requirements of all behaviors 
for each character. We assigned 100-160 requirement 
correctness points for each day of each character. We used 
the same scoring rubric for tool users and scripters. For 
example, on Day 1, character Adam had the following 
points assigned: 10 points (Adam starts at home), 20 points 
(Adam goes to the city gate at hour 7), 20 points (Adam 
goes to Tavern B at hour 17), 20 points (Adam goes home 
at hour 18 or 19), 20 points (previous time is random), 10 
points (Adam stays home for rest of day). For each of the 
20 point destination-time requirements, 10 points were 
awarded for the correct time, and 10 points for the correct 
location. We used 80% completeness to avoid penalizing a 
participant who misinterpreted a requirement. For example, 
they may pick the wrong location. A participant who made 

small misinterpretation errors and proceeded to the next 
character would not be penalized for completeness, only 
correctness.  

In addition, the NWN scripting environment notifies a 
user if a script does not compile. In this study all scripts of 
all scripting participants compiled successfully and ran 
without crashing the game. Therefore a scripter was not 
penalized for completeness due to undetected scripting 
errors. 

All 15 participants of the Tool Group completed at least 
80% of the requirements of each character. From the 
Scripting Group, all 10 participants completed at least 80% 
of the requirements of the first two characters, 7 
participants completed at least 80% of the requirements of 
the third character, and 6 participants completed at least 80% 
of the requirements of the fourth character.  Due to the 
small sample sizes, there are no statistically significant 
differences between the two groups for the percentage of 
participants who completed 80% of each character. 

Correctness 
We used two different rules to measure correctness, one 
using all characters created by participants, and the other 
using only the characters completed at the 80% level. The 
second measure allows minor requirement 
misinterpretation errors to not adversely affect the 
interpretation of correctness as a measure of reliability, 
since a blunder in interpretation is not necessarily a 
reliability issue. In addition, the second measure excludes 
characters that were not attempted by a participant so it 
only measures correctness of the work done. 

For each of the characters, the correctness number 
represents the percentage of the requirements of the 
behaviors that were correctly created, averaged over the 
participants. Figure 7 shows the results. The bottom of 
each bar indicates the minimum correctness value across 
all participants, and the top of each bar indicates the 
maximum correctness. The solid line in between represents 
the average correctness score counting all participants, and 
the dotted line (for the Scripting Group) represents the 
average correctness of only those participants who 
completed at least 80% of the character (ignoring those 
less than 80% correct). For Adam/Bob there are no dotted 
lines since everyone completed at least 80%. 

For all four characters, correctness was higher with the 
Tool Group than the Scripting Group.  Looking at the 
overall results (rightmost two bars), the Tool Group had an 
average correctness rate of 97.01%, while the Scripting 
Group had a correctness rate of 79.72% counting all 
characters (solid line), or 91.30% counting only at least 80% 
completed characters (dotted line). A one-tailed unequal 
variance T-test indicates this difference is significant at the 
95% level for both measures (Table 2). 
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Looking at each individual character, there is a 
significant difference between the Tool Group and the 
Scripting Group for the most complex character Donna as 
well as Bob (Table 2). For Cathy the difference is 
significant only when counting all characters. 

Figure 7. Correctness: Tool Group vs. Scripting Group. 

 
 Tool Group vs. 

Scripting Group 
(all) 

Tool Group vs. 
Scripting Group 
(80% completed) 

Adam 0.057 0.057 
Bob 0.039 0.039 
Cathy 0.045 0.094 
Donna 0.011 0.001 
Overall 0.006 0.007 

Table 2. P-values of T-tests comparing the two groups. P-values 
less than 0.05 indicate significance at 95% level. 

Completion Time  
Figure 8 shows the average time needed to implement each 
character by the two groups. Again, each bar indicates the 
minimum, average, and maximum time values across 
participants. Since three participant did not complete Cathy, 
and four did not complete Donna (all from the Scripting 
Group), they did not write down the time to complete these 
characters. To provide a fair comparison, for these 
participants only, we estimated the time (T) they would 
have taken to complete each of these characters, using their 
own time on the previous character, together with the 
average of other participants’ ratio of times between the 

uncompleted character and the last completed character, 
using the formulas: 
 E(TCathy ) = TBob × ( T*

Cathy / T*
Bob ) 

 E(TDonna ) = TCathy × ( T*
Donna / T*

Cathy ) 
 

E() represents the estimated time. T* represents the 
average time spent on the character denoted in subscript by 
all participants who completed that character.  

Figure 8. Completion time: Tool Group vs. Scripting Group for 
all characters. The starred characters include estimates. 

 
 Tool 

Group 
Scripting 
Group 

P-value of 
T-test 

Adam 0:34 0:47 0.032 
Bob 0:19 0:35 0.005 
Cathy* 0:27 0:57 0.001 
Donna* 0:28 0:52 0.002 
Total 1:49 3:12 0.001 

Table 3. The average time (hh:mm) for each character, in hours 
and minutes, with the p-value of T-tests comparing the times. 

Starred characters include estimates. 

Once the completion times for the incomplete characters 
(three Cathys and four Donnas) were estimated, the 
average time for each character was calculated.  The 
Scripting Group took a longer time to complete than the 
Tool Group for each character.  The results are significant 
at the 95% level for all characters, and for the total 
completion time (Table 3). 

It is perhaps not surprising to observe a decrease in 
completion time from Adam to Bob (statistically 
significant for both groups). Although Bob has more 
complex behaviors, the time to implement Adam includes 
a steep learning curve for both groups, as participants were 
getting familiar with the tasks and solution environment. 
With Adam done, participants were able to use what they 
learned creating Adam’s behavior to help them with Bob. 

Note that these completion times do not include the time 
participants were asked to examine a sample character 
before they started working on Adam. 

Efficiency 
Albert and Tullis (2013) define efficiency in the context of 
usability testing as “the ratio of the task completion rate to 

the mean time per task.” A larger ratio implies that more 
participants were able to successfully complete a task per 
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schedule = [] 

itemList = sort(itemList) // longest obj block first 

CyclicSchedule(itemList) 

 

bool CyclicSchedule(itemList) 

 item = pop(itemList) 

 for each location L in schedule 

  if satisfiable(L, item) 

   schedule[L] = item 

   returnValue = CyclicSchedule(itemList) 

   if (returnValue == true) 

    return true 

   else 

    schedule[L] = "" 

 return false 

 

bool satisfiable(location L, obj block Item) 

 if (length of obj block > available obj blocks at L) 

  return false 

 else if (non-consecutive obj block requirement is 

violated) 

  return false 

 else if (current number of assigned obj hours > 

specified number of obj hours) 

  return false 

 else 

  return true 

unit time. As expected, the Tool Group has a significantly 
higher efficiency than the Scripting Group (Table 4). Each 
entry in Table 4 represents the percentage of all character 
behaviors for all four characters that were successfully 
completed per minute, averaged over all participants in a 
group. On average, to complete all behaviors for all 
characters someone using the tool would require (100% 
behaviors) / (0.91% behaviors/minute) = 109.89 minutes. 
The first line excludes learning time spent examining the 
sample character, and the second line includes this time.  
 
 Tool 

Group 
Scripting 
Group 

P-value 
of T-test 

Excluding sample time 0.91 0.46 0.000 
Including sample time 0.78 0.43 0.000 

Table 4. The percent efficiency (completion/time). 

Discussion 
While it was necessary to implement a specific scheduling 
tool to conduct a user study, the architecture is general. A 
scheduling tool may need to be tailored to the game being 
designed. For example, in a stealth game, the scheduling of 
guards/targets needs to be more fine-grained. A scheduling 
tool could be constructed so that designers specify the 
duration and granularity of a schedule before being 
presented with a scheduling template graphical interface. 
Instead of presenting the objectives Eat, Sleep, Work, and 
Social, stealth game objectives could be used. For 
example, patrol an area, guard a set of portals (doors), 
check the security (lock state) of portals, etc.  Each of these 
objectives can be satisfied by multiple roles. For example, 
patrolling an area can be done using random waypoints, a 
fixed path or patrolling subareas with frequencies based on 
current threat levels. One example of dynamic roles is a 
blocked patrol path where the guard may switch to random 
waypoints. Another example is when a designer only 
wishes to switch to threat-level patrols when the threats in 
some subareas go above a threshold. 

Conclusion 
In this paper, we showed that a tiered behavior architecture 
utilizing cyclic scheduling lets game designers populate 
behaviors for virtual characters more reliably and with 
higher efficiency than with manual scripting. Although in 
our user study we used a specific implementation of a 
scheduling tool, our goal was to introduce a general 
behavior architecture with powerful scheduling capabilities 
across a wide range of story-based games. One could argue 
that a usability study should be conducted that compares 
the experience of a group of designers using the high-level 

tool to the same group of designers using manual scripting. 
However, story-based game development has evolved so 
that the roles of designers and scripters (often referred to as 
technical designers) are usually fulfilled by different 
individuals. Therefore, a heads-up comparison of the two 
techniques by the same study participants would be of little 
use. Therefore, we instead looked at objective measures of 
reliability and efficiency for each approach as the key 
factors in comparing the two techniques. According to 
Albert and Tullis (2013), “in almost every situation, the 

faster a participant can complete a task, the better the 
experience.” Therefore our efficiency measure provides an 
indirect measure of a positive designer experience. 
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