

Using Cyclic Scheduling to Generate Believable Behavior in Games

Richard Zhao and Duane Szafron
Department of Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2E8

{rxzhao, dszafron} @ualberta.ca

Abstract
Video game virtual characters should interact with the
player, each other, and the environment. However, the cost
of scripting complex behaviors becomes a bottleneck in
content creation. Our goal is to help game designers to more
easily populate their open world with background characters
that exhibit more believable behaviors. We use a cyclic
scheduling model that generates dynamic schedules for the
daily lives of virtual characters. The scheduler employs a
tiered behavior architecture where behavior components are
modular and reusable. This research validates the designer
usability of an implementation of this model. We present the
results of a user study that evaluates the scheduling system
versus manual scripting based on three metrics of behavior
creation: behavior completeness, behavior correctness and
behavior implementation time. The results indicate that the
behavior architecture produces more reliable behaviors and
improves designer efficiency which will reduce the cost of
generating more believable character behaviors.

Introduction
Video game worlds contain many virtual characters that
are Non-Player Characters (NPCs). As virtual worlds
become larger and more realistic-looking, the importance
of socially believable virtual characters also grows. These
characters should interact with the player, each other, and
the environment. In recent years, the behavior AI of virtual
characters has not developed as quickly as other aspect of
video games, such as graphics. Complex behaviors can be
created manually, but the creation time makes the cost
prohibitive for background characters at a large scale.
Scripting costs are an important contributing factor to a
major bottleneck in content creation, leading to a plethora
of games with very simplistic behaviors for almost all
virtual characters outside the main plot line. AAA titles
such as Dragon Age II (BioWare 2011), Mass Effect 3
(BioWare 2012) and The Elder Scrolls V: Skyrim
(Bethesda 2011) have several main characters whose
behaviors are quite believable in some instances, due to

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

extensive scripting. However, these same games have
secondary characters and extras that lack believability and
simply exist to fill up the game world.

Three key changes are necessary to address this
problem. First, the behaviors must be more believable as
measured by game players. Second, the behaviors must be
reliable so that they work as designed. Third, designer
efficiency must be increased to reduce production costs.

This paper extends our work on a tiered behavior
architecture model (Zhao and Szafron 2014) which
attempts to alleviate the content creation bottleneck for
cyclic behaviors. Our architecture employs a cyclic
scheduling algorithm, which determines the general
objectives of the virtual characters and specifies the roles
that will satisfy these objectives dynamically at game time.
We validated the believability of the generated behaviors
against a recent commercial game with a user study (Zhao
and Szafron 2014).

 The research in this paper further evaluates the design
and implementation of this tiered architecture for cyclic
behaviors by addressing the behavior reliability and
designer efficiency issues. It presents the results of a
second user study that compares the behaviors generated
by an implementation of our architecture with behaviors
created by manual scripting. It uses three metrics: behavior
completeness, behavior correctness, and behavior
completion time. These metrics are indicators of behavior
reliability and designer efficiency, key elements in
reducing the cost of generating more believable behaviors,
thus adding more depth to the characters.

In addition, as noted by Li et al. (2014), having
autonomous agents with their own back stories has benefits
outside of the video game environment, as they increase
user engagement and can be applied to other non-gaming
situations.

Related Work
Researchers have explored many ways to control the
behaviors of virtual characters. At the highest level,

Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

94

research has been done on providing complex interactive
narrative experiences for players (Riedl and Bulitko 2013).
Although this is the ultimate goal, to achieve success it is
also necessary to improve the behaviors of individual
characters who contribute to the narrative. One approach is
to directly control all characters via manually written
programming code. Specialized programming languages,
such as ABL, have been proposed to help with designing
believable agents (Mateas and Stern 2002) and they
certainly have been demonstrated to improve the resulting
characters. Gomes and Jhala (2013) have demonstrated the
use of ABL in the believability of NPC social conflict
resolution. However, even with such better scripting
languages the production costs are high. Our goal is to
evaluate the alternative of eliminating manual scripting in
favor of automatic script generation.

Other alternatives to scripting exist. Finite State
Machines (FSMs) have been used in commercial games for
many years. However, with increasingly complex game
environments, FSMs do not scale well and get harder to
maintain (Schwab 2009). Hierarchical FSMs and Behavior
Trees were introduced to address this problem (Isla 2005)
with the game Halo. Further improvements include Data-
Oriented Behavior Trees and Event-Driven Behavior Trees
(Champandard 2012). More recently, learning Behavior
Trees have been proposed, which adapt Behavior Trees
with known player traces and modifiers (Tomai and Flores
2014). Layered Statechart-based AI by Dragert et al.
(2012) stresses modularity and reusability as key features
to successful AI techniques. As we will see, at the lowest
level of our proposed architecture, any of these techniques
can be used to fulfill the modular role behaviors.

However, at a high level, behavior specification can be
viewed as a planning exercise since the designer should be
able to generate behaviors from a set of constraints. For
example, in the scheduling domain for daily behaviors,
specifying a behavior for each hour or even for a specific
period of time can be burdensome to a designer who only
wants to specify the total time allocated for each behavior.
Rather than using transitions (FSMs, Decision Trees or
Behavior Trees) for each hour (or period of time), the
designer should be able to specify more general
constraints. Nevertheless, we would welcome user studies
that evaluate the believability and reliability of generated
behaviors and designer efficiency for complex cyclic
behaviors using FSMs, Decision Trees or Behavior Trees.

Planning techniques have also been used in the context
of guiding behaviors for characters. Goal-Oriented Action
Planning was used by Orkin (2006). Recently, Coman and
Munoz-Avila (2012) used case-based planning techniques
to provide a variety of behaviors and demonstrated it in the
Wargus real-time strategy game engine. Kadlec et al.
(2012) constructed a specific game where a virtual
character tried to achieve a goal using planning with an

incomplete knowledge of the environment, and the player
must help the character succeed. Kelly et al. (2008) used
offline planning with Hierarchical Task Networks to
generate behaviors. We share their goal of shifting the
workload offline, but we embed scheduling in a broader
architecture that supports dynamic online assignment of
low-level behaviors (roles) to the root nodes (objectives) of
the scheduler. They also indicated that the generated
scripts require human effort to “compose and debug.” The
behavior scripts we produce require no human
intervention. In addition, our implementation provides a
graphical user interface with different constraint types that
our user study has shown to be efficient and reliable.

In the scheduling domain, the interval scheduling
maximization problem is one of the oldest problems, where
the goal is to schedule a largest set of non-overlapping
intervals. A greedy polynomial time algorithm exists as the
solution (Kleinberg and Tardos 2005). The scheduling
problem presented in this paper does not aim to find an
optimal solution. It determines whether a solution is
possible that fits all requirements, and if possible, it finds a
family of solutions. Instead of intervals of fixed start and
end times, it has blocks of fixed lengths with variable start
and end times to better match requirements for scheduling
believable cyclic behaviors of virtual game characters.

Bakkes et al. (2012) described player behavioral
modeling strategies, and argued that circumstance-based
abstractions of player models are needed. The level of
details concept is used in this paper, even though this paper
focuses on the behaviors of background NPCs exclusively.

Graphical drag-and-drop interfaces and pattern-based
approach to scripting have been explored by many. In the
academic environment, CMU’s Alice (Pausch et al. 1995),
MIT’s Scratch (Resnick et al. 2009), and University of
Alberta’s ScriptEase (Schenk et al. 2013) are but a few
examples. Becroft et al. (2011) described a graphical tool
to create and edit Behavior Trees. These tools are all aimed
at story designers and those who are learning to program.
Some commercial game engines have employed visual
interfaces as well, such as the Blueprints visual scripting
system of the Unreal Engine (Epic Games 2014), formerly
known as Kismet. While these tools are able to provide
event-based scripting capabilities, they are general purpose
tools which are not specialized in generating believable
behaviors for virtual characters. It would be difficult to
implement a cyclic scheduler using these graphical tools.

Cyclic Scheduling
Our tiered behavior architecture model (Zhao and Szafron
2014) separates the behaviors of a virtual character into
leveled tiers, where each subsequent tier contains
behaviors at more focused granularity (Figure 1).

95

Figure 1. The tiered behavior architecture model, from Zhao and
Szafron (2014).

Figure 1 shows circumstances, schedules, objectives, and
roles as data layers, which are sets or lists of items, where
each item is composed of items from the next layer below.
With this architecture, each item is modular and reusable in
the sense that they are self-contained units which can be
adapted to a different place in the behavior architecture.

When a layer (usually the schedule) is expressed as a
list, with time as a natural ordering mechanism, a cyclic
scheduler generates the items in this layer. Specifically, a
cyclic scheduler determines the objectives of the virtual
character in a schedule. A simple schedule includes four
common objectives: sleep, eat, work, and social activities,
as shown in Figure 2, although more objectives can be
created by the designer. Each objective can contain
multiple roles that can satisfy the objective. For example,
to eat, one can eat at home, eat at a tavern, eat at a friend’s

place, etc. according to the designer’s wishes, and the

availability of executable roles during game time.

Sleep Work Work Sleep

Figure 2. An example of daily schedule of a virtual character in a
medieval setting.

In The Elder Scrolls V: Skyrim (Bethesda 2011), a
typical daily schedule of a virtual character is usually

cyclic on a daily basis. Given the large number of
characters in such a game, automatically populating these
behaviors would be very helpful. This system allows game
designers to directly specify any important aspects of a
daily schedule and the system selects the other aspects.

A designer considers the principal mission of a
particular virtual character, and how the character can
execute this mission. For example, a farmer usually does
typical farming tasks, along with sleeping, eating, and
socializing. All virtual characters fitting the farmer mission
have similar daily routines in Skyrim.
 The cyclic scheduler tool includes several key aspects.
First, it has a timeline (Figure 3) that allows key
constraints at specific hours to be specified. For example,
the designer can ensure that the character is asleep at 1am
and 6am, using the timeline. The planner may add more
sleep times at unconstrained times on the timeline, but the
times on the timelines are honored. We have included one-
hour increments in our timeline but this can be easily
generalized to arbitrary increment sizes.

Figure 3. The timeline tool showing some hours filled in by the
designer.

Second, the cyclic scheduler tool provides designers
with the option to set total hours for each objective (Figure
4), as well as options to group the objective hours into
consecutive or non-consecutive blocks. For example, the
designer may require a total of 9 consecutive sleep hours.
Along with a timeline constraint of sleeping at 1am and
6am, this would require the character to sleep for any 9-
hour consecutive block that includes the hours 1am to 6am.
Figure 4 shows the hours for the schedule from Figure 2.

The ability to specify the exact location and role of a
character at a particular time allows designers to coordinate
the schedules of multiple characters without over-
specifying the behaviors of these characters at other times.
For example, the designer may arrange for a thief and a
fence to be in the roles buyer and seller in a specific alley
at mid-night and design the rest of their behaviors
independently.

Third, a designer can specify transitional hours (Figure
4), where the character has a probability of using the next
objective an hour earlier, an hour later, or anytime in
between. This provides stochasticity in the schedules so
that they do not look identical from day to day.

Fourth, the tool allows a designer to pick one or more
roles that can be used to satisfy each objective, as well as
the percentage chance each role can be picked, subject to
dynamic availability of each role at game time (Figure 5).

Eat Eat Social (Midnight)

96

Figure 4. The designer can specify hours for each objective.

Figure 5. The designer can specify probabilities for each role.

Finally, the scheduler informs designers if the specified
constraints are satisfiable or unsatisfiable, as specified by
the cyclic scheduling algorithm in the Appendix. The
greedy depth-first search algorithm employed in this case
is complete: if a solution exists, the solution must contain
every specified objective block in some location. The
greedy algorithm iterates through every location for each
block until a satisfiable location is found. Therefore the
algorithm will find a solution if one exists.

Schedules are generated off-line before the start of the
game, and game-time selectors dynamically assign roles to
objectives as the game is played, allowing dynamic
adaptation. The scheduling component is done off-line to
reduce game-time computation. As noted by Wright and
Marshall (2010), game AI must be fast. With only a
fraction of the processor time allocated to AI each frame,
the game-time component of the AI must be computed
between frame displays.
 The tiered behavior architecture also enables Level-Of-
Details AI (Wißner et al. 2010), which allows off-screen
and faraway characters to use only the appropriate high tier
behavior without going into the details at the lower tiers,
thus saving computation time on-line.

User Study Results
Our previous user study (Zhao and Szafron 2014) showed
that a cyclic architecture is able to produce behaviors that
are more believable than the default behaviors of the
commercial game, The Elder Scrolls V: Skyrim. However,
unless the architecture can generate reliable behaviors
quickly, the scripting bottleneck will remain. In this paper,
we present a user study that measures the reliability of
generated behaviors and the efficiency of behavior

designers using the tiered architecture as compared to
manual scripting of behaviors.

We used Skyrim to evaluate behavior believability
(Zhao and Szafron 2014). However, we found it more
convenient to evaluate designer efficiency and behavior
reliability using Neverwinter Nights (NWN) (BioWare
2002), based on the availability of a pool of suitable study
participants with previous NWScript experience who could
write manual scripts. Therefore, we modified our Skyrim-
based implementation to work with the NWN engine and
to generate NWN scripting code, but retained the GUI.

There were two groups of participants: one group used a
tool that implemented the cyclic architecture. The other
group used the manual scripting method for NWN. To
ensure a fair comparison, all participants were required to
have played the NWN game so that they could test their
behaviors quickly using familiar settings and controls.
Scripting Group participants were also required to be
programmers who had prior experience with NWN
scripting. Participants in the Tool Group were not required
to have NWN scripting experience. No participants had
seen the cyclic architecture tool before the study.

At the start of the study, both groups were given an
instruction manual for their respective methods. The Tool
Group was given a detailed manual on how to use the
architecture tool, while the Scripting Group was given
access to the NWN Lexicon, a familiar online manual for
the scripting language. Both groups were also given a
game file, which contained an identical pre-made town
area, populated by four characters. Participants used this
game file, and creating the behaviors was their only task.

Lastly, the participants were each given a sample
behavior for a sample character. The sample behavior was
identical for both groups, but was implemented in the
respective method for each group. Participants were asked
to first examine the sample behavior to see how it was
implemented (either with the tool or with scripting code),
and were told they could use the sample as a starting point.
The sample character behaved as follows: He sleeps at
home from midnight until hour 6. He starts to work at the
Market at 7, for 10 hours, then eats at Tavern A at hour 17
for 2 hours, and then sleeps at home from hour 19 until the
next day. He repeats the same behaviors for three days.

The actual behaviors that the participants were asked to
create were identical for both groups. They were asked to
follow instructions to create the behaviors for four
characters in order, Adam, Bob, Cathy, and Donna, each
for three consecutive days in game. Each subsequent
character had increasingly complex behaviors as shown in
Table 1. Participants were allocated a maximum of three
hours to complete all behaviors, after which the study was
stopped regardless of completion. Participants were also
asked to record the time that they spent on each character.

97

A total of 25 participants were recruited in the user
study. The Tool Group had 15 participants, where 5 were
programmers and 10 were not. A programmer is defined
as someone who self-reported having written many
computer programs (in any language). The Scripting Group
had 10 participants, all experienced NWN script
programmers.

 Adam Bob Cathy Donna
Multiple
Schedules

Yes Yes Yes Yes

Stochastic
Schedules

Yes Yes Yes Yes

Multiple
Roles

 Yes Yes Yes

Blocks of
Roles

 Yes Yes

Dynamic
Roles

 Yes

Table 1. The aspects of the behaviors.

Completeness

Figure 6. Completeness at 80% or higher: Tool Group vs.
Scripting Group.

Figure 6 shows the percentage of participants who
completed at least 80% of the requirements of all behaviors
for each character. We assigned 100-160 requirement
correctness points for each day of each character. We used
the same scoring rubric for tool users and scripters. For
example, on Day 1, character Adam had the following
points assigned: 10 points (Adam starts at home), 20 points
(Adam goes to the city gate at hour 7), 20 points (Adam
goes to Tavern B at hour 17), 20 points (Adam goes home
at hour 18 or 19), 20 points (previous time is random), 10
points (Adam stays home for rest of day). For each of the
20 point destination-time requirements, 10 points were
awarded for the correct time, and 10 points for the correct
location. We used 80% completeness to avoid penalizing a
participant who misinterpreted a requirement. For example,
they may pick the wrong location. A participant who made

small misinterpretation errors and proceeded to the next
character would not be penalized for completeness, only
correctness.

In addition, the NWN scripting environment notifies a
user if a script does not compile. In this study all scripts of
all scripting participants compiled successfully and ran
without crashing the game. Therefore a scripter was not
penalized for completeness due to undetected scripting
errors.

All 15 participants of the Tool Group completed at least
80% of the requirements of each character. From the
Scripting Group, all 10 participants completed at least 80%
of the requirements of the first two characters, 7
participants completed at least 80% of the requirements of
the third character, and 6 participants completed at least 80%
of the requirements of the fourth character. Due to the
small sample sizes, there are no statistically significant
differences between the two groups for the percentage of
participants who completed 80% of each character.

Correctness
We used two different rules to measure correctness, one
using all characters created by participants, and the other
using only the characters completed at the 80% level. The
second measure allows minor requirement
misinterpretation errors to not adversely affect the
interpretation of correctness as a measure of reliability,
since a blunder in interpretation is not necessarily a
reliability issue. In addition, the second measure excludes
characters that were not attempted by a participant so it
only measures correctness of the work done.

For each of the characters, the correctness number
represents the percentage of the requirements of the
behaviors that were correctly created, averaged over the
participants. Figure 7 shows the results. The bottom of
each bar indicates the minimum correctness value across
all participants, and the top of each bar indicates the
maximum correctness. The solid line in between represents
the average correctness score counting all participants, and
the dotted line (for the Scripting Group) represents the
average correctness of only those participants who
completed at least 80% of the character (ignoring those
less than 80% correct). For Adam/Bob there are no dotted
lines since everyone completed at least 80%.

For all four characters, correctness was higher with the
Tool Group than the Scripting Group. Looking at the
overall results (rightmost two bars), the Tool Group had an
average correctness rate of 97.01%, while the Scripting
Group had a correctness rate of 79.72% counting all
characters (solid line), or 91.30% counting only at least 80%
completed characters (dotted line). A one-tailed unequal
variance T-test indicates this difference is significant at the
95% level for both measures (Table 2).

98

Looking at each individual character, there is a
significant difference between the Tool Group and the
Scripting Group for the most complex character Donna as
well as Bob (Table 2). For Cathy the difference is
significant only when counting all characters.

Figure 7. Correctness: Tool Group vs. Scripting Group.

 Tool Group vs.

Scripting Group
(all)

Tool Group vs.
Scripting Group
(80% completed)

Adam 0.057 0.057
Bob 0.039 0.039
Cathy 0.045 0.094
Donna 0.011 0.001
Overall 0.006 0.007

Table 2. P-values of T-tests comparing the two groups. P-values
less than 0.05 indicate significance at 95% level.

Completion Time
Figure 8 shows the average time needed to implement each
character by the two groups. Again, each bar indicates the
minimum, average, and maximum time values across
participants. Since three participant did not complete Cathy,
and four did not complete Donna (all from the Scripting
Group), they did not write down the time to complete these
characters. To provide a fair comparison, for these
participants only, we estimated the time (T) they would
have taken to complete each of these characters, using their
own time on the previous character, together with the
average of other participants’ ratio of times between the

uncompleted character and the last completed character,
using the formulas:
 E(TCathy) = TBob × (T*

Cathy / T*
Bob)

 E(TDonna) = TCathy × (T*
Donna / T*

Cathy)

E() represents the estimated time. T* represents the
average time spent on the character denoted in subscript by
all participants who completed that character.

Figure 8. Completion time: Tool Group vs. Scripting Group for
all characters. The starred characters include estimates.

 Tool

Group
Scripting
Group

P-value of
T-test

Adam 0:34 0:47 0.032
Bob 0:19 0:35 0.005
Cathy* 0:27 0:57 0.001
Donna* 0:28 0:52 0.002
Total 1:49 3:12 0.001

Table 3. The average time (hh:mm) for each character, in hours
and minutes, with the p-value of T-tests comparing the times.

Starred characters include estimates.

Once the completion times for the incomplete characters
(three Cathys and four Donnas) were estimated, the
average time for each character was calculated. The
Scripting Group took a longer time to complete than the
Tool Group for each character. The results are significant
at the 95% level for all characters, and for the total
completion time (Table 3).

It is perhaps not surprising to observe a decrease in
completion time from Adam to Bob (statistically
significant for both groups). Although Bob has more
complex behaviors, the time to implement Adam includes
a steep learning curve for both groups, as participants were
getting familiar with the tasks and solution environment.
With Adam done, participants were able to use what they
learned creating Adam’s behavior to help them with Bob.

Note that these completion times do not include the time
participants were asked to examine a sample character
before they started working on Adam.

Efficiency
Albert and Tullis (2013) define efficiency in the context of
usability testing as “the ratio of the task completion rate to

the mean time per task.” A larger ratio implies that more
participants were able to successfully complete a task per

99

schedule = []

itemList = sort(itemList) // longest obj block first

CyclicSchedule(itemList)

bool CyclicSchedule(itemList)

 item = pop(itemList)

 for each location L in schedule

 if satisfiable(L, item)

 schedule[L] = item

 returnValue = CyclicSchedule(itemList)

 if (returnValue == true)

 return true

 else

 schedule[L] = ""

 return false

bool satisfiable(location L, obj block Item)

 if (length of obj block > available obj blocks at L)

 return false

 else if (non-consecutive obj block requirement is

violated)

 return false

 else if (current number of assigned obj hours >

specified number of obj hours)

 return false

 else

 return true

unit time. As expected, the Tool Group has a significantly
higher efficiency than the Scripting Group (Table 4). Each
entry in Table 4 represents the percentage of all character
behaviors for all four characters that were successfully
completed per minute, averaged over all participants in a
group. On average, to complete all behaviors for all
characters someone using the tool would require (100%
behaviors) / (0.91% behaviors/minute) = 109.89 minutes.
The first line excludes learning time spent examining the
sample character, and the second line includes this time.

 Tool

Group
Scripting
Group

P-value
of T-test

Excluding sample time 0.91 0.46 0.000
Including sample time 0.78 0.43 0.000

Table 4. The percent efficiency (completion/time).

Discussion
While it was necessary to implement a specific scheduling
tool to conduct a user study, the architecture is general. A
scheduling tool may need to be tailored to the game being
designed. For example, in a stealth game, the scheduling of
guards/targets needs to be more fine-grained. A scheduling
tool could be constructed so that designers specify the
duration and granularity of a schedule before being
presented with a scheduling template graphical interface.
Instead of presenting the objectives Eat, Sleep, Work, and
Social, stealth game objectives could be used. For
example, patrol an area, guard a set of portals (doors),
check the security (lock state) of portals, etc. Each of these
objectives can be satisfied by multiple roles. For example,
patrolling an area can be done using random waypoints, a
fixed path or patrolling subareas with frequencies based on
current threat levels. One example of dynamic roles is a
blocked patrol path where the guard may switch to random
waypoints. Another example is when a designer only
wishes to switch to threat-level patrols when the threats in
some subareas go above a threshold.

Conclusion
In this paper, we showed that a tiered behavior architecture
utilizing cyclic scheduling lets game designers populate
behaviors for virtual characters more reliably and with
higher efficiency than with manual scripting. Although in
our user study we used a specific implementation of a
scheduling tool, our goal was to introduce a general
behavior architecture with powerful scheduling capabilities
across a wide range of story-based games. One could argue
that a usability study should be conducted that compares
the experience of a group of designers using the high-level

tool to the same group of designers using manual scripting.
However, story-based game development has evolved so
that the roles of designers and scripters (often referred to as
technical designers) are usually fulfilled by different
individuals. Therefore, a heads-up comparison of the two
techniques by the same study participants would be of little
use. Therefore, we instead looked at objective measures of
reliability and efficiency for each approach as the key
factors in comparing the two techniques. According to
Albert and Tullis (2013), “in almost every situation, the

faster a participant can complete a task, the better the
experience.” Therefore our efficiency measure provides an
indirect measure of a positive designer experience.

Acknowledgements
This research was supported by GRAND Network of
Centres of Excellence and NSERC. We thank the
anonymous reviewers for their feedback. We also thank
members of the BELIEVE research group at the University
of Alberta and our colleagues in the GRAND network
across Canada for fruitful collaborations.

Appendix: The Cyclic Scheduling Algorithm

100

References
Albert, W. and Tullis, T. 2013. Measuring the User Experience,
Second Edition: Collecting, Analyzing, and Presenting Usability
Metrics. Waltham, MA: Elsevier Inc.
Bakkes, S., Spronck, P., and van Lankveld, G. 2012. Player
Behavioral Modeling for Video Games. Entertainment
Computing, 3(3):71-79.
Becroft, D., Bassett, J., Mejía, A., Rich, C., Sidner, C. 2011.
AIPaint: A Sketch-Based Behavior Tree Authoring Tool. In
Proceedings of the Seventh AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-11).
Bethesda Softworks LLC. 2011. The Elder Scrolls V: Skyrim.
http://www.elderscrolls.com/skyrim.
BioWare. 2002. Neverwinter Nights. Infogrames/Atari.
http://www.bioware.com/en/games/#game-neverwinter-nights.
BioWare. 2011. Dragon Age II. Electronic Arts.
http://dragonage.bioware.com/da2.
BioWare. 2012. Mass Effect 3. Electronic Arts.
http://masseffect.bioware.com/.
Champandard, A. 2012. Understanding the Second-Generation of
Behavior Trees. http://aigamedev.com/insider/tutorial/second-
generation-bt/.
Coman, A., Munoz-Avila, H. 2012. Plan-Based Character
Diversity. In Proceedings of the Eighth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE-12).
Dragert, C., Kienzle, J., Verbrugge, C. 2012. Statechart-based
Game AI in Practice. In Proceedings of the Eighth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE-12).
Epic Games. 2014. Blueprints Visual Scripting.
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index
.html.
Gomes, P. and Jhala, A. 2013. AI Authoring for Virtual
Characters in Conflict. In Proceedings on the Ninth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE-13).
Isla, D. 2005. Handling complexity in the Halo 2 AI. In
Proceedings of the GDC 2005. Gamasutra.
Kadlec, R., Tóth, C., Cerny, M., Barták, R., Brom, C. 2012.
Planning is the Game: Action Planning as a Design Tool and
Game Mechanism. In Proceedings of the Eighth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE-12).
Kelly, J.P., Botea, A., Koenig, S. 2008. Offline Planning with
Hierarchical Task Networks in Video Games. In Proceedings of
the Fourth Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE-08).
Kleinberg, J., Tardos, E. 2005. Algorithm Design. Addison-
Wesley.
Li, B., Thakkar, M., Wang, Y., Riedl, M. 2014. Data-Driven Alibi
Story Telling for Social Believability. In Proceedings of the FDG
2014 Social Believability in Games Workshop.
Mateas, M., Stern, A. 2002. A Behavior Language for Story-
based Believable Agents. Intelligent Systems, IEEE, 17(4):39-47.
Orkin, J. 2006. Three States and a Plan: The AI of F.E.A.R.
Game Developers Conference (GDC-2006).

Pausch, R., Burnette, T, Capeheart, A.C., Conway, M., Cosgrove,
D., DeLine, R., Durbin, J., Gossweiler, R., Koga, S., White, J.
1995. Alice: Rapid Prototyping System for Virtual Reality. IEEE
Computer Graphics and Applications.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,
Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver,
J., Silverman, B., and Kafai Y. 2009. Scratch: Programming for
All. Communications of the ACM, 52(11):60-67.
Riedl, M. O., and Bulitko, V. 2013. Interactive narrative: An
intelligent systems approach. AI Magazine 34(1).
Schenk, K., Lari, A., Church, M., Graves, E., Duncan J., Miller,
R., Desai, N., Zhao, R., Szafron, D., Carbonaro, M., and
Schaeffer, J. 2013. ScriptEase II: Platform Independent Story
Creation Using High-Level Patterns. In Proceedings of the Ninth
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-13).
Schwab, B. 2009. AI game engine programming. Boston, Mass.:
Course Technology.
Seif El-Nasr, M., Drachen, A., and Canossa, A. 2013. Game
Analytics: Maximizing the Value of Player Data. Springer.
Tomai, E., Flores, R. 2014. Adapting In-Game Agent Behavior
by Observation of Players Using Learning Behavior Trees. In
Proceedings of the 9th International Conference on the
Foundations of Digital Games (FDG 2014).
Wißner, M., Kistler, F., and Andre, E. 2010. Level of Detail AI
for Virtual Characters in Games and Simulation. In Proceedings
of the Third International Conference on Motion in Games, 206-
217.
Wright, I., Marshall, J. 2010. More AI in Less Processor Time:
'Egocentric' AI. Gamasutra.
http://www.gamasutra.com/view/feature/131567/more_ai_in_less
_processor_time_.php.
Zhao, R., Szafron D. 2014. Virtual Character Behavior
Architecture using Cyclic Scheduling. In Proceedings of the 9th
International Conference on the Foundations of Digital Games
(FDG 2014).

101

