Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

Game-Tree Search over High-Level Game States in RTS Games

Alberto Uriarte and Santiago Ontaion
Computer Science Department
Drexel University
{albertouri,santi } @cs.drexel.edu

Abstract

From an Al point of view, Real-Time Strategy (RTS)
games are hard because they have enormous state
spaces, they are real-time and partially observable. In
this paper, we present an approach to deploy game-
tree search in RTS games by using game state abstrac-
tion. We propose a high-level abstract representation
of the game state, that significantly reduces the branch-
ing factor when used for game-tree search algorithms.
Using this high-level representation, we evaluate ver-
sions of alpha-beta search and of Monte Carlo Tree
Search (MCTS). We present experiments in the context
of StarCraft showing promising results in dealing with
the large branching factors present in RT'S games.

Introduction

Real-Time Strategy (RTS) games pose a significant chal-
lenge for artificial intelligence (AI) mainly due to their enor-
mous state space and branching factor, and because they are
real-time and partially observable (Buro 2003). These chal-
lenges have hampered the applicability of game-tree search
approaches, such as minimax or Monte Carlo Tree Search
(MCTS) to RTS games, and contribute to the fact that pro-
ficient humans can still defeat the best Al solutions for RTS
games we have nowadays (Ontanén et al. 2013).

In this paper we present an approach to address the large
branching factors in RTS games based around the idea of
game state abstraction. Specifically, we focus on using
game-tree search for controlling the army movements in
full-scale RTS games. In other words, how to maneuver
all the combat units around the map during a full game and
deciding which enemies to attack and when. Solutions to
large-scale adversarial domains are important both due to
their applicability to entertainment (creation of more chal-
lenging RTS games), and to other domains such as cyber
security or disaster planning.

Specifically, our approach focuses on translating the low-
level game state to an abstracted high-level game state that
captures most of the tactical army information. To construct
this, we propose to divide the map into a collection of re-
gions, and represent the distribution of friendly and enemy

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

73

units in these regions. We show how this abstract represen-
tation can be used in the context of game-tree search, and
analyze the difference in branching factor between using the
high-level representation versus a low-level representation
of the game. We evaluate this approach into an actual Star-
Craft playing agent.

The remainder of this paper is organized as follows. First
we provide background on game-tree search in RTS games.
Then we present our high-level abstraction approach. After
that, we review the two game-tree search algorithms that we
used in our evaluation: alpha-beta and MCTS. Finally, we
present an empirical evaluation in StarCraft, a popular RTS
game used as a testbed for RTS Game Al

Background

RTS is a sub-genre of strategy games where players need to
build an economy (gathering resources and building a base)
and military power (training units and researching technolo-
gies) in order to defeat their opponents (destroying their
army and base). From a theoretical point of view, the main
differences between RTS games and traditional board games
such as Chess are: they are simultaneous move games (more
than one player can issue actions at the same time), they
have durative actions (actions are not instantaneous), they
are real-time (each player has a very small amount of time to
decide the next move), they are partially observable (players
can only see the part of the map that has been explored, al-
though in this paper we assume full observability) and they
might be non-deterministic.

Classical game-tree search algorithms have problems
dealing with the large branching factors in RTS games. For
example the branching factor in StarCraft can reach num-
bers between 30°C and 302°° (Ontanén et al. 2013). To pal-
liate this problem several approaches have been explored.
For example, (Chung, Buro, and Schaeffer 2005) applied
Monte Carlo planning to an RTS game by simplifying the
decision space: assuming that each player can choose only
one amongst a finite set of predefined plans. Balla and
Fern (2009) applied the UCT algorithm to tactical assault
planning in Wargus. To make game-tree search applica-
ble at this level, they perform an abstraction of the game
state representation grouping the units in groups but keep-
ing information of each individual unit at the same time,
and allowing only two types of actions per group: attack

and merge with another group. Alpha-beta has been used
in scenarios with simultaneous moves (Saffidine, Finnsson,
and Buro 2012) and Churchill et al. (Churchill, Saffidine,
and Buro 2012) extended it with durative actions, being
able to handle situations with up to eight versus eight units
without using abstraction. An improvement of this work
is presented in (Churchill and Buro 2013), where they de-
fined scripts to improve the move-ordering; and experiments
with UCT considering durations and a Portfolio Greedy
Search; showing good results in larger combat scenarios
than before. Ontafién (2013) presented a MCTS algorithm
called NaiveMCTS specifically designed for RTS games,
and showed it could handle full-game, but in the context of a
simple RTS game. Some work has been done also using Ge-
netic Algorithms and High Climbing methods (Liu, Louis,
and Nicolescu 2013) or Reinforcement Learning (Jaidee and
Muiioz-Avila 2012).

In this paper we build upon some of those ideas to present
an approach that combines game state abstraction with scal-
able game-tree search approaches to handle the army strat-
egy in RTS games.

High-level Abstraction in RTS Games

In order to deploy game-tree search in RTS games, we de-
fined an abstraction mechanism that provides a high-level
representation of the game state. In the following subsec-
tions, we describe the different elements involved in this ab-
straction: game state, action space, and mapping from low-
level game state representation to high-level representation.

State Representation

Since we focus on controlling combat units, our high-level
representation focuses on placement of those units in the
game state. Moreover, instead of representing the exact loca-
tion of groups of units, we use a high-level representation of
the map, by dividing it into a set of regions using Perkins al-
gorithm (Perkins 2010), implemented in the BWTA library.
This algorithm decomposes the map into a set of regions
connected by chokepoints. Let us call R’ to the set of re-
gions, and C to the set of chokepoints resulting from this
analysis. From this information, we generate a set of regions
R, where each region is a set of tiles from the map, and the
union of all regions in R is the complete set of walkable tiles
in the map. R is defined as follows:

e For each chokepoint ¢ € C, there is an region r € R
containing all the cells whose distance to the center of ¢
is smaller than the radius of the chokepoint (defined by
BWTA).

e For each region ' € R/, there is a region r € R con-
taining all the cells from region r’ that are not part of any
region generated from a chokepoint.

As a result we have an abstract interpretation of our map
as a set of n regions R = {r1, ...,y }, (similarly to the rep-
resentation proposed by Synnaeve and Bessiere (2012)). In
Figure 1 we can see a snapshot of a game state and its ab-
stract representation, where we can appreciate the region de-
composition (each region r; is labeled by its index), and

74

s A8 ﬁ\\
@ 3

<

Figure 1: Top image is a snapshot of a StarCraft game. Bot-
tom image illustrates the representation of a game state using
our high-level abstraction with the ID of each region.

where non walkable regions in gray. Since the map is invari-
ant through all the game, this process only has to be done
once, at the beginning of the game. Moreover, in order to
speed up our calculations later on, we precompute a matrix
with all the distances between the center points of each pair
of regions.

As we stated before, we focus on combat units. Hence, we
only include those in the abstract representation, and ignore
all the workers and buildings (except the command center
buildings). We include the command centers because we
are using them as an indicators of where the enemy created
bases, since this helps the search algorithm in knowing what
regions to attack or to defend in the absence of combat units.
Otherwise our army would be “blind” and unable to attack
the enemy base or defend our bases unless there are combat
units to attack or defend. The remaining units are grouped
by unit type and region. Thus, the whole game state is rep-
resented as a matrix with one row per unit type and region,
and the following columns (illustrated in Table 1):

e Player. Which player controls this group.

e Type. Type of units in this group.

e Size. Number of units forming this group.

e Region. Which region is this group in.

e Order. Which order is this group currently performing.

o Target. If the order requires, the ID of the target region
(e.g. towards which region is the group moving).

e End. In which game frame is the order estimated to finish.

Table 1: Grouped units in the high-level abstraction.

Player | Type Size | Rgn. | Order | Target | End

1 Base 1 1 N/A - -

1 Tank 2 2 Move | 3 230

1 Vulture | 4 3 Idle - 400
Actions

Let us now define the set of actions that a player can perform
given a high-level representation of the game state. We de-
fine the following set of possible actions for each high-level
group: N/A, Move, Attack and Idle:

e N/A: only for buildings as they cannot perform any action,
e Move: move to an adjacent region,

e Artack: attack any enemy in the current region, and

e [dle: do nothing during 400 frames.

For example, the groups of player 1 in the game state in
Table 1 can execute the following actions:

e Base will be stuck in N/A for the whole game since build-
ings cannot perform any other action in our high-level rep-
resentation (we only consider combat).

e Assuming that the Tanks were not executing any action,
they could Move to region 3 or 1, or stay Idle. They cannot
Attack since there is no enemy in the same region (2).

e Assuming that the Vultures were not executing any action,
they can Move to regions 2, 4, 5 or 6, or stay Idle.

Thus, since player 1 can issue any combination of those
actions to her units, the branching factor of this example is
(1) x (2+41) x (4+1) = 15. An important aspect to analyze
is how much does this high-level representation reduce the
branching factor with respect to having a low-level repre-
sentation. To answer that, we analyzed the branching factor
in StarCraft game states every 400 frames during a regu-
lar game. Figure 2 shows the branching factor from three
points of view: Low Level is the actual branching factor of
StarCraft when all actions of all units are considered in the
low-level game state representation, SparCraft is a simpli-
fied branching factor of the low-level game state only con-
sidering combat units (as calculated by the combat simulator
SparCraft! (Churchill, Saffidine, and Buro 2012)), and High
Level, which the branching factor using our high-level repre-
sentation. As expected, the branching factor using the low-
level representation of the game state is too large for game-
tree search approaches (reaching values of up to 103°Y in
our experiment). Our high-level abstraction is able to keep
the branching factor relatively low (reaching a peak of about
10%9). The branching factor considered by SparCraft is in
between, but still many orders of magnitude larger (reading
more than 10299).

Mapping Low-Level and High-Level States

The goal of our high-level abstraction is to use a game-
tree search for high-level control of combat units in actual

"https://code.google.com/p/sparcraft/

75

10300
10250

Low Level
SparCraft
500 High Level
10

10150
10100

Branching

1030

100 4 T T T T 1
0 5000 10000 15000 20000 25000

Time (frames)

Figure 2: Comparison of the branching factor using our
high-level representation with respect to the branching fac-
tor using the low-level StarCraft game states and SparCraft
abstraction.

full-scale RTS games like StarCraft. Therefore, in order to
employ it, we need to define a mapping between low-level
states and high-level states that is to be used while playing
the game. Moreover, our search process does not produce
the exact micro actions that the combat units need to per-
form, but high-level actions such as moving from one region
to another, or attacking a particular enemy group. Thus, we
assume that there is a low-level agent that translates the low-
level state to our high-level representation and then is ca-
pable of translating the actions defined above (N/A, Move,
Attack, Idle) into actual low-level micro actions.

Most StarCraft bots are decomposed in several individ-
ual agents that perform different tasks in the game, such as
scouting, construction, etc. (Ontanén et al. 2013). One of
such agents is typically in charge of combat units, and is in
charge of controlling a military hierarchy architecture. The
high-level game-tree search approach presented in this paper
is designed to replace such agent. Figure 3 shows the mil-
itary hierarchy architecture used in the StarCraft bot used
in our experiments (Uriarte and Ontafién 2012), and where
our high-level game-tree search is injected (abstract layer).
As described above, our high-level search process assigns
actions to groups of units. Our StarCraft bot uses the inter-
mediate concept of squads to control groups of units, which
is analogous to the concept of groups in the high-level rep-
resentation. Unfortunately, generating the set of group in
a given low-level game state given the set of squads is not
trivial, since, for example, units in a given squad might ap-
pear to split in two groups when moving from one region to
another, as some units arrive earlier than others, thus break-
ing squad continuity. Additionally, if two squads with units
of the same type arrive to the same region, they would be
grouped together into a single large group according to the
high-level representation, which might not be desirable.

To address these problems, given a squad g in the low-
level, we add each unit v € g to the high-level group, record-
ing which high-level group the unit is being mapped to.
Once all the units in the squad have been added to the high-
level state, all the units are reassigned to the high-level group
to which most of the units in ¢ had been assigned. During

Low Level

High Level
Game Sate Game Sate
F=—==--
| % | Unit Abstract Layer
i I L2sent I~ Squag
| Unit a1 Agent {
I % | Agent 4
| | Squad Manager
| Unit
+—
| * Agent
I | : [Squad
| | Unit |a—1 Agent
| Agent

Figure 3: The different layers of abstraction from Low-Level
Game State to High-Level Game State.

this process, the abstract layer records the set of squads that
were mapped to each of the high-level groups (notice that
a high-level group can have more than one squad since two
different squads in the same region and with the same unit
type, will be one unique high-level group).

Once the low-level state has been mapped to a high-level
game state, we can use a game-tree search algorithm to get
an action for each group (which can be mapped to orders for
each squad for execution by the other agents of the StarCraft
playing bot). Since RTS games are real-time, we perform a
search process periodically (every 400 game frames), and
after each iteration, the orders that each different squad is
executing are updated if different from the one the squad is
currently executing.

High-Level Game-Tree Search

The previous section has described our high-level game state
representation, and how to compute the set of actions in a
given game state (corresponding to the children states of a
given state in the game-tree), how to map low-level states
to high-level states and how to map high-level actions to
low-level actions. However, two more pieces are required
in order to perform game-tree search. The first one is a
state forwarding function that can roll the game forward
using the high-level game state representation, and the sec-
ond one is the state evaluation function. The next subsec-
tions explain a basic way to have this; and then we explain
two different game-tree search algorithms that we experi-
mented with (ABCD (Churchill, Saffidine, and Buro 2012)
and MCTSCD) that can exploit the high-level game state
representation presented in this paper.

High-Level State Forwarding

As we already explained, one of the particularities of RTS
games is that they have simultaneous and durative actions.
For this reason we need a state forwarding process that can
simulate the game for as many frames as needed to reach
the next decision point (a game state node where at least one
player can execute an action).

Our high-level state forwarding has two components:

76

e End frame action prediction. Given a durative action
(Move, Attack or Idle) for a group g, we predict in which
game frame the action will be finished. For Move, we get
the group velocity g.velocity (all the units of the group
are the same unit type) and the group location g.location,
and target region m.target. Using the region distance
matrix previously computed, we can apply the formula
g.velocity x distance M atriz]g.location][m.target] to
get the expected end frame. For Affack, we compute the
minimum amount of time to finish the battle. To get
this we use the Damage Per Frame (DPF) of each group
in the region in conflict and the total Hit Points (HP)
of each group. Then we apply the following equation
timeToKillenemy = enemymp/selfppr to get both
times and the minimum is when the battle will end. The
Idle action always takes 400 frames.

e Simulation. When we reach a state where none of the
players can make a move, then we identify the action with
the smallest end time and forward the game time to that
moment. At this point we need to update the outcome of
the finished actions. For the Move action we only need
to update the group position with the target position. For
the Attack action we remove all the units of the defeated
group, and we also remove the units that the defeated
group can manage to kill before being destroyed. Since
this is only an approximation we consider that the sur-
vivors are taking damage in a sequential fashion rather
than an even spread.

High-Level State Evaluation

A game state evaluation helps us to define how good or bad
is a non terminal state (or how promising it is). In our
experiments we use a simple game state evaluation where
we use the destroy score of a unit. This score is defined
by StarCraft and it is related to the value of the resources
needed to produce that unit. So, given a set of high-level
friendly groups F' of size n and a set of high-level enemy
groups E of size m, we calculate the following reward:
score =y | (F;.sizex F;.destroyScore)—Y_|" (E;.sizex
E;.destroyScore).

High-Level ABCD

To determine whether our high-level abstraction captures
enough information of the game state to produce meaning-
ful actions, we experimented with two different game-tree
search algorithms. The first one is a variant of alpha-beta
search capable of dealing with simultaneous moves and du-
rative actions defined by Churchill et al. (Churchill, Saf-
fidine, and Buro 2012) called ABCD (Alpha-Beta Consid-
ering Durations). They showed how this algorithm can be
applied to handle low-level control for small scale combat
situations in RTS games. ABCD does not automatically al-
ternate between players, instead it determines the next player
that can do a move based on the duration of the actions that
are currently being executed. In game states where both
players can issue actions simultaneously, ABCD defines a
policy to establish the order of the player to move. In their
work they experimented with two policies: RAB (Random-

Algorithm 1 MCTS Considering Durations

1: function MCTSSEARCH(sq)

2 ng < CREATENODE(s,)

3 while withing computational budget do
4: n; < TREEPOLICY(ng)

5: A < DEFAULTPOLICY(n;)

6 BACKUP(n;, A)

7 return (BESTCHILD(ng)).action

8

9: function CREATENODE(s,ng)

10: n.parent <— ng

11: n.lastSimult < ng.lastSimult

12: n.player < PLAYERTOMOVE(s,n.lastSimult)
13: if BOTHCANMOVE(s) then

14: n.lastSimult < n.player

15: return n

16:

17: function DEFAULTPOLICY(n)

18: lastSimult < n.lastSimult

19: § <4 n.s

20: while withing computational budget do

21: p < PLAYERTOMOVE(s,lastSimult)

22: if BOTHCANMOVE(s) then

23: lastSimult < p

24: simulate game s with a policy and player p
25: return s.reward

Alpha-Beta presented by (Kovarsky and Buro 2005)), that
randomizes the player that will play first in each simultane-
ous node; and Alf, which alternates between players. They
report better results with the Alf policy in their experiments,
which is the one we employed in our work.

High-Level MCTS Considering Durations
(MCTSCD)

MCTS is a family of algorithms which is better suited with
games with large branching factors than the variants of min-
imax. The main concept of MCTS is that the value of a state
may be approximated using repeated stochastic simulations
from the given state until a leaf node (or a terminal condi-
tion). There are two important parts: the tree policy is used
to balance the exploration (look in areas that have not been
explored yet) and exploitation (look at the most promising
areas of the tree); the other part is the default policy used to
simulate games until a terminal node is reached. The sim-
plest default policy that can be used to run the simulations is
selecting uniform random actions for each player.

Research exists on adapting MCTS to games with si-
multaneous moves (Teytaud and Flory 2011; Churchill
and Buro 2013; Ontaién 2013). In our approach we
modify a standard MCTS algorithm using an e-greedy
tree policy to be able to process simultaneous and du-
rative actions, and we call it Monte Carlo Tree Search
Considering Durations (MCTSCD). Another recently de-
fined MCTS-variant that considers simultaneous and dura-
tive actions is UCTCD (Churchill and Buro 2013). Al-

77

gorithm 1 shows the pseudocode of the MCTSCD algo-
rithm, where the simultaneous move policy is defined in
PLAYERTOMOVE(state, lastSimultaneousPlayer).

Experimental Evaluation

In order to evaluate the performance of our approach, we
used the RTS game StarCraft. We incorporated our abstrac-
tion layer into a StarCraft bot (Uriarte and Ontaién 2012)
and evaluated the performance of using both ABCD and
MCTSCD to command our army during a real game. The
following subsections present our experimental setup and
the results of our experiments.

Experimental Setup

Dealing with partial observability, due the fog of war in Star-
Craft is out of scope in this paper. Therefore we disable
the fog of war in order to have perfect information of the
game. We also limited the length of a game to avoid situa-
tions where our bot is unable to win because it cannot find all
the opponent’s units (StarCraft ends when all the opponent
units are destroyed). In the StarCraft Al competition the
average game length is about 21,600 frames (15 minutes),
and usually the resources of the initial base are gone after
26,000 frames (18 minutes). Therefore, we decided to limit
the games to 20 minutes (28,800 frames). If we reach the
timeout we evaluate the current game state using the evalu-
ation function to decide who won the game.

In our experiments, we perform one high-level search ev-
ery 400 frames, and we pause the game while the search is
taking place for experimentation purposes. As part of our
future work, we want to explore splitting the search along
several game frames, instead of pausing the game.

For ABCD we defined the following limits. First, the
maximum depth is limited to 3. Second, the number of
children to be considered at each node in the tree is limited
to 100,000 nodes (given that the branching factor can grow
enormously towards the mid game). And finally, we limited
the ABCD execution to 30 seconds, that means that if our
search is taking longer than that, after 30 seconds, ABCD
will start to close all the open nodes to return the best actions
found so far. In the case of MCTSCD we use a e-greedy tree
policy with € = 0.2, a random move selection for the default
policy and an Alt policy to decide which player will play first
in a simultaneous node. We also limit the depth of the tree
policy to 10, and run MCTSCD for 2,000 playouts with a
length of 7,200 game frames.

We used two different tournament StarCraft maps (Ben-
zene and Destination) for our evaluation and run 40 games
on each one of the maps with our bot playing the Terran race
against the built-in Terran Al of StarCraft. We also compare
the results against a highly optimized scripted version (par-
ticipating in the StarCraft Al competition in recent years).

Results

Table 2 shows the results we obtained with each algorithm
against the built-in AL. The columns labeled as Avg. Eval
and % > 0 show the average value of the evaluation func-
tion at the end of the game, and the percentage of games

Table 2: Results of two game-tree search approaches using
our high-level game state representation and a scripted Al.

. Avg. %
Algorithm | Map Avg. Eval | % >0 Overwrt.
Scripted Benzene 35853.33 | 100.00 -
Scripted Destination | 32796.51 | 100.00 -
ABCD Benzene 16020.45 | 81.82 83.05
ABCD Destination | 18226.32 | 87.72 88.05
MCTSCD | Benzene 16170.51 89.74 83.74
MCTSCD | Destination | 20753.85 | 84.62 92.25

Min. Avg. ——
Max. Freq.
1016 300
101‘2‘ 7 - 250 2
21050 3 - 200 S
< 4 O
& 1108 - 150 8
© 10° 7 - 100 o
m 104 — >

2 - 50 e

104 -] A/ G}

100 T 1 T T 1T T T T 1 0

0 5 10 15 20 25 30 35 40 45 50
Number of Groups

Figure 4: Average branching factor grouped by the number
of groups in the high-level state.

where our system was ahead at the end of the game. As
we can see, MCTSCD achieves slightly better results than
ABCD. Avg. % overwritten shows the percentage of times
that the result of a search was a different action than the ac-
tion currently being executed by a group of units. As a refer-
ence point we compare the results against a highly optimized
scripted version of the bot showing that the scripted version
still achieves a higher win ratio. A close examination re-
vealed that both ABCD and MCTSCD sometimes were not
able to search deep enough in the tree to realize that they
should attack the enemy, when the enemy was far away in
the map. Future work will focus on addressing this problem
by increasing play out length, and by adding deterministic
playouts to the ABCD version as done in (Churchill, Saffi-
dine, and Buro 2012). Moreover, the fact that both ABCD
and MCTSCD played better than the built-in Al of StarCraft
indicates that our high-level abstraction is useful in trans-
forming the problem of large-scale combat in RTS games to
a level of abstraction where game-tree search is feasible and
where the resulting actions are meaningful in the game.

To get further insights into the results, Figure 4 shows
the average branching factor as a function of the number of
groups in a high-level game state. As we can see the branch-
ing factor only grows beyond 10*° when having a large num-
ber of groups (30 or more), which, as shown in the group
frequency bars, is infrequent. In StarCraft the maximum
number of units at a given time is limited to 400 (200 for
each player), therefore the theoretical limit of the number of
groups in our high-level representation is 400. But having
400 different type of units all spread over the map is really

78

60
o ABCD
ﬁ 50 4 timeout -
[} MCTSCD
£ 40 +
£
< 30 41
o
® 20 A
w0
o 10
>
<
0 I 1 T T T T T T T 1
0O 5 10 15 20 25 30 35 40 45 50

Number of groups

Figure 5: Average search time for each algorithm grouped
by the number of groups in the high-level state.

unlikely. Hence, as we can see in Figure 4 the most common
number of groups in our high-level representation is around
10 with an average branching factor of 10%.

We also analyze the amount of time spent doing search.
This is a crucial point since we want to be able to execute
the search during a RTS game. Figure 5 shows the evolution
of time spent per search by each algorithm as the number of
groups in the high-level state increases. Notice how ABCD
starts to saturate (stopping the search due the defined time-
out) when we have more than 30 groups. After having more
than 19 groups, our implementation of ABCD starts hitting
the limit of 100,000 nodes explored per tree level, and thus
time stabilizes. MCTSCD’s time increases with the number
of groups, since the time it takes the simulator to roll the
game state forward increases with the number of groups.

Conclusions

This paper has presented an approach to game-tree search in
large-scale RTS combat scenarios based on game-state ab-
straction. We presented a state representation, a procedure
to map low-level states to high-level states and a simulator
that can roll the state forward. We also presented a new vari-
ant of MCTS that considers durative actions (MCTSCD).
Our experimental results indicate that the information cap-
tured in our high-level abstraction is at the appropriate level
of detail to reduce the branching factor, while still producing
meaningful actions.

As part of our future work, we would like to first ex-
plore different bandit strategies for MCTS, such as Naive
Sampling that better exploit the limited number of iterations
that MCTS can be executed in an RTS game. Addition-
ally, we would like to incorporate additional aspects of the
game (such as construction, and resource gathering) into the
game-tree search approach, to achieve a RTS-playing sys-
tem purely based on game-tree search. Finally, we would
also like to improve our game simulator to learn during the
course of a game, and produce more accurate combat esti-
mations, independently of the RTS game being used.

References

Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In International Joint

Conference of Artificial Intelligence, IJCAI, 40—45. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Buro, M. 2003. Real-time strategy games: a new Al research
challenge. In Proceedings of IJCAI 2003, 1534-1535. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo
Planning in RTS Games. In IEEE Symposium on Computa-
tional Intelligence and Games (CIG).

Churchill, D., and Buro, M. 2013. Portfolio Greedy search
and Simulation for Large-Scale Combat in StarCraft. In
CIG. IEEE.

Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast
Heuristic Search for RTS Game Combat Scenarios. In Al-
IDE.

Jaidee, U., and Mufioz-Avila, H. 2012. CLASSQ-L: A
Q-Learning Algorithm for Adversarial Real-Time Strategy
Games. In AIIDE.

Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. In Advances in Artificial Intelli-
gence. Springer. 66-78.

Liu, S.; Louis, S. J.; and Nicolescu, M. N. 2013. Com-
paring heuristic search methods for finding effective group
behaviors in RTS game. In IEEE Congress on Evolutionary
Computation. IEEE.

Ontafion, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
AIIDE 2013, 58-64.

Ontanén, S.; Synnaeve, G.; Uriarte, A.; Richoux, F;
Churchill, D.; and Preuss, M. 2013. A Survey of Real-Time
Strategy Game Al Research and Competition in StarCraft.
IEEE Transactions on Computational Intelligence and Al in
Games (TCIAIG) 5:1-19.

Perkins, L. 2010. Terrain Analysis in Real-Time Strategy
Games: An Integrated Approach to Choke Point Detection
and Region Decomposition. In AIIDE, 168-173.

Saffidine, A.; Finnsson, H.; and Buro, M. 2012. Alpha-Beta
Pruning for Games with Simultaneous Moves. In 26th AAAI
Conference (AAAI). Toronto, Canada: AAAI Press.

Synnaeve, G., and Bessiere, P. 2012. A Bayesian Tactician.
In Computer Games Workshop at ECAI.

Teytaud, O., and Flory, S. 2011. Upper confidence trees
with short term partial information. In Applications of Evo-
lutionary Computation. Springer. 153-162.

Uriarte, A., and Ontafién, S. 2012. Kiting in RTS Games
Using Influence Maps. In AIIDE.

79

