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Abstract 
In this paper we explore the use of recursive cubic Hermite 
splines to mimic human movement in open world games. 
Human-like movement in an open world environment has 
many characteristics that are not optimal or directed towards 
clear, discrete goals. Using data collected from a simple 
MMORPG-like game, we use our spline representation to 
model human player movements relative to corresponding 
optimal paths. Using this representation, we show that 
simple distributions can be used to estimate control 
parameters to generate human-like movement across a 
population of agents in a novel environment. 

Introduction    
Online virtual worlds are an increasingly significant venue 
for human interaction. By far the most active virtual worlds 
are video games, headlined by the explosive growth of the 
Massively Multiplayer Online Role-Playing Game 
(MMORPG) genre in the last decade. With growing public 
awareness of the potential of embodied, virtual interaction, 
there has been increased interest in virtual worlds for 
education, training and scientific research (cf. Bainbridge, 
2006; Dickey, 2005). Virtual agents play an important role 
in these online worlds, whether as characters or opponents 
in a game, or as virtual guides and assistants. In this paper, 
we consider the problem of creating agents that move in an 
open world environment in a way that could be considered 
human-like. Standard pathing algorithms allow an agent to 
reach a goal destination when a straight line path is not 
available. They choose paths that are subjectively 
reasonable, typically defined in terms of utility such as 
quickest travel time and attaching cost to certain areas (e.g. 
dangerous ones). In an open world environment, however, 
reasonable movement is not so easily defined in terms of 
goals and utility. First, human players do not always take 
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optimal paths. Second, it is more difficult to model how 
player goals direct movement. For example, a player may 
have a goal of interacting with an entity in the world, and 
thus move to the location of that entity. However, they may 
veer to the left along the way, or wander off the path 
entirely before coming back, or take a suboptimal route to 
get there. This might still be a product of goal based 
movement, but the goals may be opaque, and possibly not 
even clear to the player. Were they avoiding an obstacle? 
Getting a different viewpoint? Not paying attention? 
Exploring the area? Or perhaps a combination of all those 
things. In this work we model human-like movement as 
divergence from the optimal path to a known goal, without 
knowing what unknown goals cause that divergence. We 
contribute a novel representation using recursive cubic 
Hermite splines that is portable to novel paths and maps. 
This representation can be used to generate a path to a goal 
location with human-like divergence, by sampling control 
parameters from distributions taken from actual human 
movement traces. We show these generated paths, for a 
population of agents, have similar qualities to human 
player paths, and that those qualities are maintained when 
sampling from one environment and testing in another. 

Related Work 
There has been prior work, primarily in the computer 
graphics community, using agents to simulate plausible 
movement among other agents. Shao argued for a full-
agent approach combining reactive controllers, scripted 
behaviors and mental states with path-planning and goal 
setting (Shao & Terzopoulos, 2005). In contrast, Treuille 
proposed a deliberately simpler model with less individual 
variation but less cost in modeling and run-time resource 
requirements (Treuille et al., 2006). Lerner showed a 
technique for entirely avoiding rule development with 
agents that retrieve and mimic human samples taken from 
crowd videos (Lerner et al., 2007). Henry trained an agent 
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controller using inverse reinforcement learning to navigate 
through crowded environments, making the distinction 
between shortest and human-like paths (Henry et al., 
2010). Both the environment and the training data were 
generated by simulation. These approaches focus 
particularly on maintaining plausible behavior in crowded 
environments, as human pedestrians do. Players in an open 
virtual world do not move with that deliberative pace and 
flow, so the techniques involved may not transfer well. It is 
also worth noting that the majority of evaluations are 
qualitative visual examples, underlining the difficulty of 
quantitative analysis. 
 A number of evolutionary approaches have been 
evaluated for developing more human-like agent 
controllers. Graham used a genetic algorithm to evolve an 
artificial neural network that implements dynamic obstacle 
avoidance while following a direct path (Graham, 2005). 
Togelius evaluated several co-evolution strategies for 
creating car racing controllers with the aim of deploying a 
diverse population of human-like AI opponents in a car 
racing game (Togelius et al., 2007). These approaches are 
evaluated according to whether they effectively traverse 
space while avoiding obstacles and hitting checkpoints, 
making them human-like from a functional point of view. 
 In the domain of video games, particular interest has 
been shown in developing human-like movement for 
agents in the first-person shooter (FPS) genre. Geisler 
notes the high predictability and manual labor involved in 
traditional AI scripting of game agent opponents (bots) as 
motivation for automatic learning of human-like behavior 
(Geisler, 2004). These behaviors included low-level 
movement primitives such as changing direction, changing 
speed and jumping, as well as basic game actions such as 
aiming and firing a weapon at opponents. Gamez showed 
that a global workspace architecture combining 
independent, hand-tuned neural networks can deliver 
human-like bot control (Gamez et al., 2013). Thurau used 
self-organizing maps and artificial neural networks to learn 
those primitive actions based on position and relative 
enemy positions (Thurau et al., 2003). Geisler evaluated 
both naïve Bayes and neural network approaches to this 
problem with promising results (Geisler, 2004). Schrum 
created a FPS bot architecture that learns combat behavior 
using neuroevolution (Schrum et al., 2012) and won the 2K 
Games’ 2012 BotPrize while being judged as human more 
than 50% of the time (Karpov et al., 2012). These and 
numerous other results (cf. Galway et al., 2008) have 
demonstrated that machine learning and evolutionary 
computation are well suited to optimizing behavior control 
in the fps domain, where the problem has a reactive nature 
(e.g. positioning relative to other agents, strategic 
responses), a small number of output dimensions (e.g. 
movement and facing) and works at a single level of 
abstraction (Bakkes et al., 2012). However, the larger 

question of complex behavior requires working at multiple 
levels of abstraction (Bakkes et al., 2012). Ultimately, that 
is the goal for open world behavior as well. 

Modeling Player Movement 
In MMORPGs, players control avatar characters in a 
physically simulated virtual world. In contrast to more 
reactive and/or linear environments in other genres, players 
roam freely in the world, picking up tasks and completing 
them at their own discretion. At a high level, there is goal-
directed travel between the regions where tasks are 
acquired, completed and turned in for credit. To collect 
player behavior data, we created a lightweight, research 
focused MMORPG. We gathered data from 37 human 
players playing together in a laboratory setting. The game 
collects a wide range of data for each player, including 
movement, avatar actions, UI actions and visibility of other 
entities. For the purposes of this study, we isolated traces 
of player movement between regions. For example, Figure 
1 shows two such traces as yellow lines. They are 
identified from the collected data by interaction events 
(interacting with in-game characters, enemies or other 
entities) at the beginning and end. Most of the movement 
within regions consists of combat or other highly directed 
behavior, so was set aside for other study. The data set 
consists of 162 movement traces grouped into 8 region-to-
region groups. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Navigation mesh with human traces (yellow) and 
corresponding optimal paths (white). 
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Figures 2a and 2b: A human trace (yellow) projected into path-
relative space u,offset based on the normals (blue) of the 

corresponding path (white). 

 

 

 

 

 

 

 

 

 

Figure 3: Human trace (solid, green) fit by a 
recursive Hermite spline (first-order: dotted, red; 
second-order: dotted, blue; third-order: dashed, 

purple). 

Path Modeling 
The first step in our approach is to identify a path to a goal 
location. Many of the systems discussed in the related 
work section train and test in the same environment (game 
map), because they learn movement relative to the 
topology of that map. To allow our model to apply to novel 
environments, we instead model movement relative to 
paths that can be automatically generated using fast, 
standard algorithms. Variations on A* search have long 
been the standard way to compute paths in research and the 
games industry. In some games, this can be implemented 
on a grid in a very straightforward way. However, in 
sophisticated virtual worlds, it is common to use a 
navigation mesh. This is a mesh of edge-connected 
polygons (typically triangles and/or quadrilaterals) that is 
manually overlaid by a designer on the game world. Figure 
1 shows part of the navigation mesh in our lightweight 
MMORPG. Because the navigation mesh is still a graph, 
graph search can be used to find paths. However, once a 
sequence of mesh nodes is identified as a path, specific 
waypoints must be chosen within those nodes. Using 
centroids, corners or edge midpoints creates very 
unnatural, jagged paths. A common solution is the funnel 
or string-pulling algorithm, which finds the optimal 
waypoints through a sequence of mesh nodes (Lee & 
Preparata, 1984). Figure 1 shows two human movement 
traces in yellow. First consider the shorter trace on the 
right.  The corresponding straight white lines show the path 
generated using the navigation mesh and funnel algorithm 
between the start and end points (yellow circles) of the 
human trace. The corners of the white paths are funnel 
points. 
 To represent the human movement in a path-relative 
way, we project the points in the trace onto the path.  Each 

point becomes a tuple (u,offset), where u is the distance 
along the path and offset is the distance along the normal 
from the path to the point. Those normals are computed at 
each funnel point (shown in blue in Figure 2a) as the 
average of the perpendicular normals of each adjacent path 
edge, and linearly interpolated between the funnel points. 
Figure 2b shows the projection of the human movement 
trace from Figure 2a into path space (u,offset). The large 
blue dots along the x-axis indicate the positions of the 
funnel points in u.  In these experiments, the sampling rate 
for the project is equal to the sampling rate used in the data 
collection, but it does not have to be. 
 The long human movement trace on the left side of 
Figure 1 shows multiple yellow circles along the trace that 
are treated as intermediate target locations. In plain terms, 
any time the player is not moving in a way consistent with 
the path to the end goal (the end of the trace), they must be 
moving towards some other target location within the 
trace. These intermediate target locations are assumed to 
be motivated by some unknown player goal (e.g. went over 
to look at a flower along the way). The human movement 
trace is automatically segmented by those locations such 
that the projection of each trace segment is monotonic 
along the generated path from the beginning to the end of 
that segment. The segmentation is done by working 
backwards along the trace, adding points to a segment until 
it results in a non-monotonic projection, which identifies 
an intermediate target location at that point. There are two 
intermediate target locations in the example trace. This 
work only uses intermediate target locations, and does not 
extend to predicting their occurrences. 

Recursive Splines 
To facilitate learning and mimicking these movement 
traces, we present a compact representation based on 
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recursive cubic Hermite splines. These splines (and subsets 
such as Catmull-Rom splines) are commonly used to 
represent curving paths in computer animation. A Hermite 
spline defines a curve as a linear interpolation between two 
points based on a tangent leaving the first point and a 
tangent arriving at the second point. This is a natural fit for 
an agent leaving the path and curving back to it, as seen in 
the example traces. In order to fit the human movement 
trace, we represent the coarse, low-frequency component 
of the trace using what we will call the first-order recursive 
splines. The first-order recursive splines for the example 
trace shown in Figure 2a and 2b are shown as a red dotted 
line in Figure 3. Each spline leaves the path and returns to 
it, so for the single crossing of the human movement trace 
in this example, there are 2 first-order recursive splines. 
Each spline is defined by its start and end points in u (the 
start and end of the path and the single crossing point), and 
the tangents at those points. The tangents are estimated by 
taking the derivative of the cubic B-spline interpolation at 
those points using the scipy1 implementation of Dierckx's 
spline fitting algorithms (Dierckx, 1993). Those estimated 
tangents are then refined using a recursively finer grained 
grid search over the angle and magnitude to minimize the 
mean square distance (MSD) between the spline curve and 
the human trace points. 
 Once the first-order splines have been created, the 
human trace in (u,offset) is projected against those splines 
to create a new projection of the remaining error. That 
projection is used to recursively create second-order 
recursive splines that make higher-frequency crosses of the 
parent first-order splines. This process continues until a 
minimum threshold MSD is reached, or a specified depth 
limit is reached. The dotted blue line in Figure 3 shows the 
second-order spline fit (with the second-order splines 
added to the first-order), and the dashed purple line in 
Figure 3 shows the third-order spline fit. Table 1 shows the 
mean square distances at different depths of recursion, 
averaged across all the human movement traces being used 
in this work. As shown, the gains in fit fall off sharply after 
third-order splines, so that limit is used. 

Table 1: Average mean square distances between the 
recursive splines and the human traces they are fitting. 

depth MSD STDDEV 

0 83.77601 101.13 
1 14.34542 18.37096 
2 2.851349 3.767416 
3 0.77223 0.776236 
4 0.460432 0.44196 
5 0.412963 0.430128 

                                                
1 http://www.scipy.org 

By modeling the human movement traces as recursive 
splines relative to the path in (u,offset), we have created a 
small number of parameters that control the shape of the 
movement in a portable way. Given a set of training traces, 
a model can be trained to sample from the distribution of 
appropriate values for each parameter. 

Path Generation 
To generate a human-like path to a goal, an agent first must 
compute the optimal path as described in the prior section. 
It then generates a sequence of recursive splines (to a given 
depth) for human-like movement along that path by using a 
model to sample controlling parameter values. For each 
path segment (separated by the funnel points), the number 
of crossing points is sampled from the model. These values 
are modified according to two constraints. 1) If a segment 
runs along an impassable edge of the navigation mesh, 
there can be no crossing points in that segment.  2) If a 
crossing causes the path to end up on an impassable side in 
a later segment, another crossing is added.  The locations 
of the crossings within each segment are also sampled 
from the model.  Once the set of crossing points is 
determined, it defines the beginnings and ends of the first-
order splines. The starting and ending tangent parameters 
are similarly sampled from the model. It then recursively 
generates higher-order splines in the same manner, to the 
specified depth. The only difference is that the higher-
order splines do not take the path segments into account, 
but predict crossing points along their parent spline 
instead. Once the full recursive splines have been created, 
they can be followed by evaluating it and its children along 
u (using the agent’s movement speed) and summing the 
resulting offsets, then projecting that (u,offset) from the 
path back into world space. The cost of the algorithm is 
polynomial in the number of crossings generated at each 
level, which in this data set is predominantly in the range 
of 1-3 at all levels. Even this cost could be amortized over 
the entire movement by only generating the recursive 
spline up to the next crossing at the deepest level. 
 Figure 4 shows human-like paths (blue) generated by 
this algorithm using the same target locations as the human 
movement traces in the running example. Figure 5 shows a 
complete set of region-to-region human movement traces 
(yellow) and a corresponding set of generated paths 
(purple). 

Parameter Sampling 
Path generation as described above requires a model of the 
controlling parameter distributions. The crossing point 
parameters are the number of times a path segment or 
spline is crossed by a higher-order spline, and the relative 
locations of those points as percentages of the extent of the 
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segment or spline in u. The spline tangent parameters are 
the (u,offset) components of the tangent, normalized by the 
path extent in u covered by the spline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Generated paths (blue) over the same target 
locations as the human traces (yellow). 

 
 
 
 
 
 
 
 

Figure 5: Human traces (yellow) and generated paths 
(purple) over the same target locations. 

 In this work, we investigate two distributions for 
parameter estimation. These are taken globally over the set 
of training traces. The first, intended to be a baseline, is the 
Gaussian normal distribution of the parameter given the 
mean and standard deviation of the training data (hereafter 
normal). These parameters do not follow a normal 
distribution in the training data, but it is the obvious first 
choice for introducing randomness into agent movement. 
The second, intended to verify the feasibility of this 
approach and give insight into evaluation metrics, is 
inverse transform sampling from the training distribution 
(hereafter training). Given a parameter as a random 

variable X and its cumulative distribution function (CDF) 
F, a random number x in X can be generated by generating 
a random number y from a uniform distribution such that 
F(x) = y (cf. Devroye 1986). This is simple to implement 
for finite, discrete data, as the CDF is simply the 
integration of the probability density function of X, and the 
inverse transform can be done as a lookup table, essentially 
the same as common game industry hit tables. 

Evaluation 
Evaluating behavior that is not intended to be optimal or 
narrowly task focused is quite difficult. The problem is 
further complicated because the goal is not to mimic a 
particular human movement trace, but to generate a 
population of agents have the same qualities in their 
movement as the human players. Various metrics have 
been tested (cf. Gamez et al., 2013), but their utility 
remains an open question. Here we consider distributional 
similarity: for a given metric, to what extent does the 
distribution generated by an agent population match the 
distribution generated by a human player population? As in 
many curve matching approaches, the similarity is 
computed as the mean square distance (MSD) between the 
values in the distributions, evaluated in discrete bins over 
the union of their ranges. We experimented with using 
cubic smoothing over the distributions in the MSD 
calculation, but found no notable difference in the results. 
 In the first experiment, the normal and training 
distributions are drawn from all the region-to-region traces 
in the data set. Then, for all the traces in that set, the 
algorithm generates a population of paths, over the same 
target locations, for each of the two distribution models. 
The purpose of this self-test experiment is to calibrate the 
similarity metrics for an agent population vs. a human 
population. 
 In the second experiment, the region-to-region traces are 
divided into two sets.  Each set contains half of the 
start/end region pairings, selected randomly. The normal 
and training distributions are taken from one set, then used 
to generate a population of paths according to the traces in 
the other set. The purpose of this experiment is to verify 
that this approach can use data from one set of paths with a 
certain topology to generate paths for novel locations in a 
different topology. The generated movement should show 
the same distribution similarity to human traces as the self-
test. In both experiments we hypothesize that the human-
generated training distribution should be more effective at 
parameter estimation than the normal distribution. 
 Four evaluation metrics are used. The number of path 
crossings is an indicator of broad (low-frequency) back-
and-forth movement off the optimal path. The number of 
high-frequency crossings is counted from the higher-order 
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splines crossing the first-order splines, an indicator of how 
smooth or bumpy the path is. The path area is the mean 
square distance between the generated path and the optimal 
path, an indicator of how far off the optimal path the 
generated path moves. Finally, the path slack is the length 
of the generated path divided by the length of the optimal 
path, an indicator of how direct the movement is.  Each 
metric is calculated for the human traces, the paths 
generated with the normal distribution and the paths 
generated with the training distribution. The distribution of 
each metric for the generated paths is compared to the 
distribution of that metric for the human traces, and the 
MSD is calculated. Smaller MSD values indicate more 
similarity to the human traces, as a population. Each 
experiment was run 5 times and the mean and standard 
deviation reported. 

Results 
The results of the experiments are shown in Table 2. In 
path crossings and path slack, the training distribution 
outperforms the normal distribution as predicted in both 
experiments (best values in bold). However, in path area 
the values show no difference relative to their standard 
deviations, and in high-frequency crossings the normal 
distribution outperforms the training distribution even in 
the self-test. It does not appear from these results that the 
training distribution has a notable advantage over the 
normal distribution. Comparing the two experiments, the 
distributions perform in a similar pattern and range in 
experiment 2 as experiment 1. This provides some 
evidence that even these distributions, with no 
sophisticated correlations to environmental variables, have 
some portability. However the magnitude of the difference 
in distribution similarity remains un-calibrated except by 
visual, qualitative assessment of the generated paths. 

Table 2: Results for self-test (Exp1) and region-to-region 
(Exp2) experiments for normal and training distributions. 

HF crossings = high-frequency crossings. 

Metric Dist Exp. 1 Exp. 2 
  mean std mean std 
Path 
crossings 

normal 0.316 0.055 0.532 0.285 
training 0.115 0.059 0.305 0.280 

HF 
crossings 

normal 0.015 0.001 0.034 0.016 
training 0.031 0.005 0.072 0.019 

Path area normal 0.001 0.001 0.007 0.005 
training 0.001 0.001 0.006 0.003 

Path slack normal 12.31 2.543 29.32 4.78 
training 10.97 2.031 27.59 4.60 

Conclusion 
We have presented an approach to modeling and 
generating human-like movements in an open-world virtual 
environment such as found in the MMORPG genre. We 
have shown how recursive splines can be used for path-
relative modeling that translates easily to different 
locations and environments based on industry-standard 
path-finding techniques. We have also provided empirical 
evidence that simple distribution sampling of parameters 
from human traces can generate these splines on a novel 
path, in a way that satisfies some measures of human-
likeness to the movement. Finally, we have presented a set 
of possible quantitative metrics for such measurement and 
demonstrated their use with a measure of distribution 
similarity. 
 While this technique generates what appear to be quite 
reasonable and useful movements, the use of global normal 
and training distributions is a substantial simplification. 
We have done preliminary tests with Bayesian support 
vector regression and Gaussian processes for parameter 
estimation, based on features such as the width of the 
navmesh funnel, the sharpness of path segment corners and 
the presence of obstacles. However, given the difficulty of 
evaluation, we felt that the strong performance of global 
distribution sampling warranted further investigation. As 
the results show, there is at least a reasonable level of 
fidelity that can be gained in this very general, 
straightforward way. We hope that this study will provide a 
clearer baseline to expand the work with machine learning.  
 The most challenging element continues to be finding 
ways to quantitatively evaluate a population of agents' 
behaviors for human likeness. Clear future work includes 
having humans make qualitative judgments, but we must 
continue to establish objective measures and hypotheses 
about them, or a lot of time may be wasted on expensive 
and undirected human subject evaluations. 
 Because this work is applicable to real-time simulation, 
and shared virtual worlds in particular, the practical 
efficiency of the algorithm is another important question. It 
is worth noting that hit tables are well understood, and the 
spline evaluations are common in graphics applications 
and conducive to matrix-based implementation, creating 
possible synergy with consumer hardware acceleration. 
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