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Abstract

Starcraft 11 is a popular real-time strategy (RTS) game, in
which players compete with each other online. Based on their
performance, the players are ranked in one of seven leagues.
In our research, we aim at constructing a player model that is
capable of predicting the league in which a player competes,
using observations of their in-game behavior. Based on cog-
nitive research and our knowledge of the game, we extracted
from 1297 game replays a number of features that describe
skill. After a preliminary test, we selected the SMO classi-
fier to construct a player model, which achieved a weighted
accuracy of 47.3% (SD = 2.2). This constitutes a signific-
ant improvement over the weighted baseline of 25.5% (SD =
1.1). We tested from what moment in the game it is possible
to predict a player’s skill, which we found is after about 2.5
minutes of gameplay, i.e., even before the players have con-
fronted each other within the game. We conclude that our
model can predict a player’s skill early in the game.

Introduction

In competitive computer gaming, also called eSports, play-
ers of a game participate in tournaments to determine who
has mastered the game the most. In real-time strategy (RTS)
games, a popular game used for eSports is Starcraft Il (Bliz-
zard Entertainment, 2010). The online game divides players
into 7 distinct leagues, based on their performance against
other players. We therefore assume that a player’s league is
a good representation of their level of skill.

Skill differences between novices and experts have been
researched in several domains. Studies in chess suggest that
because of their extensive knowledge, experts are strong at
recognizing patterns, make quick decisions based on ob-
served patterns, and are able to make effective general as-
sumptions based on chunks of information (Gobet and Si-
mon 1998). Research with airplane pilots and athletes shows
that experts see related cues faster, make fewer mistakes, and
pay less attention to unrelated cues than novices (Schriver et
al. 2008; Chaddock et al. 2011).

To examine how the differences between Starcraft II play-
ers of different skill levels affect gameplay, we created a
player model focused on skills (van den Herik, Donkers,
and Spronck 2005). Our goal is to accurately distinguish,
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during gameplay, the leagues to which Starcraft II players
are assigned. We are particularly interested in determining
the player’s league as early in the game as possible, to al-
low an Al opponent to adapt its tactics and strategies to the
player’s level before in-game confrontations with the player
have taken place.

Background

We discuss being an expert in chess playing, and compare
this to being an expert in video games. We then discuss
player modeling in general, and describe Starcraft II and our
reasons for choosing the game for the present research.

Expertise in chess playing

With respect to the thought processes of chess players,
research shows no difference in depth of search between
chess masters and grandmasters, although the latter pro-
duce move of higher quality and are better at remembering
non-random board configurations (Campitelli et al. 2007;
Reingold et al. 2001).

Chase and Simon (1973) found that expert chess play-
ers were better at remembering meaningful board configura-
tions, while there was no difference in performance between
experts and novices concerning meaningless configurations.
Experts were also better at reproducing the position of a
chess piece after viewing it for five seconds. This research
lead to the chunking theory: the idea that experts make de-
cisions based on a large number of chunks of information
that are stored in their long term memory, helping them to
recognize patterns and make quicker decisions.

Gobet and Simon (1998) extended this theory into the
template theory where a set of chunks forms a complex
structure in memory, which allows grandmasters to mem-
orize relevant information, recognize board positions, and
consequently make fast decisions. Gobet and Simon (1996)
also studied grandmasters playing six opponents simultan-
eously. They found that grandmasters reduce the search
space by using recognition patterns, based on their extensive
knowledge of the game and their opponents. Campitelli and
Gobet (2004) confirmed their findings.

Expertise in video games

An important difference between chess and modern video
games is ‘pacing’ (the number of actions per time unit),



which generally is much higher and frantic for video games.
Green and Bavelier (2006; 2007) examined the difference in
the allocation of attention between video gamers and non-
gamers. They conducted a functional field-of-view task to
measure how well a person can locate a central task whilst
being distracted by a number of visible elements and one
other central task. The gamers were better able to enumerate
and track several simultaneously-moving stimuli over time.
They also had better visuospatial attention, allowing them to
effectively localize one or two central tasks among a num-
ber of distractions (Green and Bavelier 2007). When non-
gamers were asked to play an action game for 10 hours, they
showed significant improvement in attentional resources and
visuospatial attention. In other words, experience with a
game seems to improve the players’ ability to multi-task.
Dye, Green, and Bavelier (2009) examined the allocation of
attention to a number of alerting cues. They found that ac-
tion gamers responded quicker to such events and attended
to them more accurately than non-gamers.

Player modeling

Bakkes, Spronck, and van Lankveld (2012) define a player
model as an abstracted description of a player in a game en-
vironment. A player model may encompass characteristics
such as preferences, strategies, strengths, weaknesses, and
skills (van den Herik, Donkers, and Spronck 2005).

Research into player models for classic board games ori-
ginated with Carmel and Markovitch (1993) and Iida et al.
(1993). The main goal is to create strong game-playing arti-
ficial intelligence (AI). Such research provides information
on how to model expert opponents in games, and to create
Al that imitates experts. van der Werf et al. (2002) focused
on predicting moves in the game of Go by observing human
expert play. Kocsis et al. (2002) used a neural network to
predict the best moves in Go from patterns in training data
consisting of expert human play.

In video games, research into player modeling also fo-
cuses on increasing the effectiveness of artificial players. In
this case ‘effectiveness’ does not necessarily refer to ‘being a
strong player’; rather, it often concerns raising the entertain-
ment value of the game by providing the human player with
an opponent which is a good match for their skills (van den
Herik, Donkers, and Spronck 2005). Schadd, Bakkes, and
Spronck (2007) examined player modeling in the real-time
strategy game Spring. They were able to successfully clas-
sify the strategy of a player using hierarchical opponent
models. Drachen, Canossa, and Yannakakis (2009) collec-
ted data from 1365 Tomb Raider: Underworld players. They
used a self-organizing map as an unsupervised learning tech-
nique to categorize players into four types, and showed that
it is possible to cluster player data based on patterns in game-
play. Weber and Mateas (2009) investigated the use of data
mining techniques to model player strategies in the original
Starcraft game.

Recently, researchers have attempted to construct player
models based on psychological theories, looking into a
player’s profile rather than their in-game behavior. We give
four examples. Yee (2006) modeled the motivational as-
pects of player behavior. Canossa (2009) modeled differ-

ent playstyles as so-called “play-personas”. Van Lankveld
et al. (2011) correlated the results of the NEO-PI-R test with
the gameplay behavior of 80 players of a Neverwinter Nights
module. And recently, Tekofsky et al. (2013) sought to build
a psychological profile of 13,000 Battlefield 3 players based
on their playstyle.

Starcraft I1

The game used in this research is Starcraft 1l: Wings of
Liberty (from hereon referred to as Starcraft I). It is a real-
time strategy game where the players’ goal is to destroy their
enemy’s base by developing their own base and an army.
Players can choose from three different races to play, each
of which plays very differently. To construct buildings and
produce army units, a player needs minerals and gas. Dur-
ing the game, players unlock new options by constructing
particular buildings.

To play the game well, the player must engage in both
macro and micro-management. Macro management determ-
ines the economic strength of a player, represented by the
construction of buildings, the gathering of resources and the
composition of units. Micro-management determines how
well a player is able to control small groups and individual
units, including movements and attacks. A player’s success
depends heavily on the strategy followed. Strategic choices
include finding a balance between building a strong eco-
nomy and building a strong fighting force.

Using Blizzard’s multiplayer system Battle.net, Starcraft
II players compete against each other. There are four re-
gions, each with their own ladder: Europe and Russia, North
and Latin America, Korea and Taiwan, and South-East Asia.
Games played on the ladder are ranked, and the Battle.net
system automatically matches players of similar skill with
each other. The average skill levels of the players in the
four regions tend to differ, e.g., a player needs substantially
stronger skills to gain a place on the top rung of the South-
East Asian ladder than of the European ladder.

A ladder is divided into 7 leagues, which are (in order
of increasing skill levels): bronze, silver, gold, platinum,
diamond, master, and grandmaster. The bronze to platinum
leagues each contain 20% of the population of players on
the ladder. The diamond level contains 18%, and the master
level contains almost 2%. The grandmaster level consists of
the top 200 players of the ladder. Players always start out
in the bronze league, and may be moved to one of the four
bottom leagues after playing at least five placement matches.
From that point on, they can gain or lose a rank on the ladder
by winning or losing matches.

We have three reasons for choosing Starcraft II as our re-
search environment: (i) there is a great degree of skill in-
volved in playing the game; (ii) the ladder system provides
areliable and objective grouping of players who are roughly
evenly skilled; and (iii) it is relatively easy to gather game-
play data as replays are available in large numbers via the
Internet.

Experimental Setup

Our experimental setup consists of two parts. The first is
construction of the dataset, i.e., the collection of data from



Table 1: General features.

Feature Description

Player Player ID

League League in which the player is classified
Server Server on which the game was played

Player race Terran, Protoss, or Zerg

Opponent race ~ Terran, Protoss, or Zerg

Winner Indicates whether the player won the game

Minute Minute of game time, the first minute starts
90 seconds in the game

game replays and the extraction of relevant features. The
second is the selection of the classifier that is used to build a
player model from our dataset.

Data collection

For two months we collected game replay data from multiple
websites!. The data collected was originally uploaded by
players who posted their own games, or by tournament or-
ganizers. We stored data per player, only for 2-player games
using version 1.4.2.20141 of Starcraft 1I. Therefore, every
replay gave us access to information on two players, a win-
ner and a loser. In total, we collected data on 1297 games,
played between November 25, 2011, and February 13, 2012.
We estimate that they comprise about 0.03% of all games
played in that period (Avontuur 2012).

We only used games played on the American (63.3%) and
European (36.7%) servers, as we assume that the skill levels
of players in these regions are comparable (this assump-
tion is based on personal experience rather than hard data).
The data covered results from 1590 different players. We
created a dataset of 49,908 instances, each describing one
player’s behavior during a time slice of one minute of game
time. The instances were distributed over the leagues as fol-
lows: bronze 4082, silver 3979, gold 5195, platinum 8066,
diamond 10,088, master 12,747, and grandmaster 5751 in-
stances (Avontuur 2012). From this distribution it is clear
that our dataset is skewed in favor of more experienced play-
ers. This is not unexpected, as experienced players are more
likely to be involved with the Starcraft I community, and
their games are of more interest to others. We used the
sc2reader Python library and the sc2gears program
to extract game and player information from the replay files.
They provided us with an identification of the player, and a
list of in-game actions that the players performed.

The feature set that was stored for each instance in the
dataset contains three parts. The first part consists of gen-
eral information on the game and the player, as described in
Table 1. The second part is ‘per-minute’ data on the minute
of game time that is represented by the instance. The third
part is ‘over-all’ data on the whole game up to and includ-
ing the represented minute. The second and third part are
described in Tables 2, 3, 4, and 5 (further detailed below).
From the feature set we excluded all actions that happened
during the first 90 seconds of game time, as those concern
the starting-up phase in which not much happens.

!'samereplays.org, drop.sc, and sc2rep.com.

Table 2: Visuospatial attention and motor skills.

Feature Feature Description

per-minute over-all

Macro Avg. macro Macro actions

Micro Avg. micro Micro actions

Actions-per-minute ~ Avg. APM Sum of macro and

(APM) micro actions

Effective APM Avg. EAPM Effective actions

(EAPM)

n/a Redundancy Ratio of ineffective

actions

Hotkeys used Total hotkeys Number of times
used hotkeys are used

Hotkeys set Total hotkeys Total of hotkeys set
set

Hotkeys added Total hotkeys Number of times
added new hotkeys are

assigned

n/a Different Total number of
hotkeys different hotkeys

n/a Hotkey use Ratio of hotkeys

used per hotkeys set

We have four groups of per-minute and over-all data:

1. Visuospatial attention and motor skills (Table 2) encom-

pass mainly the total number of effective actions. We as-
sume that expert players will make faster decisions, and
will perform fewer redundant actions than novice play-
ers; they will also use hotkeys more effectively. To decide
whether an action is macro, micro, and/or effective, we
used the rules given by the sc2gears program. Typic-
ally, an action is considered ‘macro’ if it costs minerals or
gas, otherwise it is a ‘micro’ action. Effectiveness of an
action is decided by rules derived from expert knowledge.
An example is that an action that gets canceled within one
second after being performed, is not effective.

2. Economy (Table 3) encompasses the delicate balance that

a Starcraft Il player must find between collecting re-
sources and building an army. The features that we meas-
ure to assess a player’s economy encompass bases, work-
ers, and resources spent.

3. Technology (Table 4) encompasses a player’s technolo-

gical development; in Starcraft Il a player must main-
tain an effective balance between gaining technological
advancements and defending his position. Besides count-
ing technologies, the technological features that we use
also encompass a player’s ‘tier’, which is a general as-
sessment of his overall technological development.

4. Strategy (Table 5) encompasses playstyle, consisting of a

balance between offensive and defensive play.

Classifier selection

To select a suitable classifier to determine a player’s league
from their gameplay behavior, we performed a pretest in
which we compared the performance of four classifiers us-
ing the Weka environment (Witten and Hall 2011): SMO
(Sequential Minimal Optimization, a Support Vector Ma-
chine method), J48 (an Open Source implementation of the



Table 3: Economy features.

Feature Feature Description
per-minute  over-all
n/a Bases total Number of bases
Workers Workers total Number of workers built
Resources Resources Sum of minerals and gas
total spent
Minerals Minerals total Minerals spent
Gas Gas total Gas spent
n/a Workers per Ratio of number of workers
collection and number of gas
collection buildings
n/a Minerals per Ratio of minerals spent and
worker workers built
Table 4: Technology features.
Feature Feature Description
per-minute  over-all
n/a Upgrades Total number of upgrades
researched
n/a Abilities Total number of special
abilities acquired
n/a Tier Level of technological

advancement

C4.5 algorithm), IBk (k-Nearest Neighbor), and Random-
Forest (an ensemble learner). We found that SMO outper-
formed all the other classifiers in accuracy by a good margin
(see Figure 1), in particular for the bronze, platinum, and
grandmaster leagues (Avontuur 2012).

Note that classifying instances to the master and grand-
master leagues is a relatively easy task for all classifiers. We
assume that this is because those contain the best players,
who have a consistent, easily recognizable play style. Also
note that all classifiers have a hard time placing players in
the silver and gold leagues. A possible explanation is that
the classifiers assign a wide range of behaviors to the bronze
league, even behaviors normally associated with players that
belong to the silver and gold leagues. This happens because
even relatively strong players start their career in the bronze
league; thus, the classifiers are trained to assign silver and
gold league behaviors to the bronze league. As accuracy is
based on correctly classified instances, for the bronze league
it remains high even if silver and gold league players get
misclassified to the bronze league; however, this explains
the low performance for the silver and gold leagues.

Results

Based on the results of the pretest, we used the SMO clas-
sifier to build a player model, that predicts which league a
player belongs to based on their behavior as described by
our feature set (Tables 2, 3, 4, and 5). We tested the perform-
ance of the player model using 5-fold cross validation. To
examine which features contribute the most to league clas-
sification, we used InfoGain. Finally, we investigated how
long a player must be observed before a correct prediction
of their league can be made. A detailed description of all
results is given by Avontuur (2012).

Table 5: Strategy features.

Feature Feature Description
per-minute  over-all
Supplies Supplies total Supplies used
n/a Supplies Supplies gained by
gained total constructing supply
buildings
n/a Different units ~ Number of different unit
types built
n/a Fighting units ~ Number of units built that
can fight
n/a Defensive Number of structures built
structures that can deal damage

Hsmo

mj48
ibk

randomforest

Figure 1: Comparison of accuracy of four classifiers on the
dataset.

Player model performance

Table 6 gives an overview of the performance of the SMO-
built player model expressed as the accuracy on each of the
classes after 5-fold cross validation, including the average
of the accuracies, the weighted average of the accuracies
(i.e., with the contribution of each class in proportion to the
number of instances in the corresponding league), and the
majority-class baseline accuracy (which, in this case, is the
percentage of instances belonging to the master league). The
standard deviation is given between parenthesis.

The player model outperforms the frequency baseline by
a large margin. A paired t-test shows that the accuracy of the
player model with ¢(4) = 14.35, p < .001, and the weighted
accuracy with ¢(4) = 32.10, p < .001, are significantly
higher than the baseline, with an effect size r = .99 for
both.

As the leagues are ordinal, a misclassification of an in-
stance in a neighboring class can be considered less of a
problem than a misclassification in more distant classes.
Since there is overlap of player quality on the borders of the
classes, such misclassifications into neighboring classes are
actually to be expected. The confusion table (Table 7) shows
that on average 67.0% of misclassifications are assigning an
instance to a neighboring class.

We can estimate the distance of the misclassification as
follows. First, we multiply the number of misclassified in-
stances by the distance of their misclassification (e.g., the



Table 6: Player model performance.

League Accuracy
bronze 69.6%
silver 25.8%
gold 10.6%
platinum 40.2%
diamond 42.9%
master 63.3%
grandmaster 62.1%
average 49% (2.7)
weighted average 473% (2.2)
majority-class baseline 255% (1.1)

Table 7: Confusion table for player model.
bron. silv. gold plat. diam. mast. grm.

567 135 39 57 16 2 0 | bron.
206 202 127 185 63 12 1| silv.
80 195 109 394 178 69 14 | gold
60 99 130 649 391 262 23 | plat.

16 28 77 319 865 609 102 | diam.

9 17 24 196 471 1615 217 | mast.

0 0 2 9 95 331 713 | grm.

number of gold instances classified to gold gets multiplied
by zero, the number of gold instances classified to silver or
platinum gets multiplied by 1, the number of gold instances
classified to bronze or diamond gets multiplied by 2, etc.).
For each league, we add up these numbers, and divide the
total by the number of instances in the class. This is the av-
erage distance of the misclassification, which is displayed in
the second column of Table 8. The closer the number is to
zero, the better the classifications are; since a value of 1 is
a placement in a directly neighboring class, everything be-
low 1 means that the classifications are quite accurate. The
third column of Table 8 is calculated in a similar way, but
only takes into account incorrectly-classified instances, i.e.,
it indicates the average distance of the misclassification. The
closer this number is to 1, the more likely it is that misclas-
sifications put an instance into a neighboring class.

We can see that on average, the distance of the misclas-
sification is 1.55. This means that most instances were
placed in a neighboring class. This is also true for each in-
dividual class, as the average distances are lower than 2 for
all classes.

Contribution of features

InfoGain assigns a score to the features according to the in-
formation they provide in solving the classification problem.
We applied InfoGain to all five training sets used in the 5-
fold cross validation. The top 8 features were ranked the
same for each of the five folds, namely, in order: (1) aver-
age micro (over-all), (2) average APM (over-all), (3) EAPM
(over-all), (4) micro (per-minute), (5) EAPM (per-minute),
(6) hotkeys used (per-minute), (7) APM (per-minute), and
(8) total hotkeys used (over-all). Figure 2 plots the average
weights of the features according to their rank. It shows a
sharp drop in InfoGain after the eighth ranked feature (from
0.42 to 0.26).

Table 8: Average misclassification distance.

League Avg. Avg. distance of

classification misclassifications
bronze 0.75 1.95
silver 1.34 1.75
gold 1.47 1.61
platinum 1.11 1.67
diamond 0.92 1.35
master 0.60 1.35
grandmaster 0.38 1.19
average 0.94 1.55
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Figure 2: Average weight of features according to InfoGain.

If we remove the 20 lowest-ranked features from our
training set and build the model on the remainder, we find
that the weighted accuracy of the resulting model drops from
47.3% (2.2) to 43.8% (1.1). A paired t-test shows that this
is a significant difference (¢(4) = 2.93,p < .05,r = 0.88).
However, the time needed to build the model is also reduced
by a factor of almost 50 (from 2400 to 49 seconds).

Time dependence

As about half the features of the player model are calculated
as averages over gameplay time, we may expect that the per-
formance of the player model improves the longer the game
is played. To test this, we calculated the model’s weighted
accuracy using a 5-fold cross validation over ten different
sets: one set with all the gameplay features up to and includ-
ing the first recorded minute (i.e., up to the first 2.5 minutes
of gameplay), one up to and including the second gameplay
minute, etc. The results are shown in Figure 3, where the up-
per line indicates the weighted accuracy of the player model,
and the lower line indicates the weighted accuracy of the
baseline, progressing through time.

It is clear from the figure that the accuracy of the player
model does not change much over time. To determine
whether the observed small increase in accuracy is signific-
ant, we performed a series of tests. Applying an ANOVA
shows that time has no significant effect on the accuracy of
the player model (F'(8) = .082, p > .05). We may therefore
conclude that the player model’s classification is as accur-
ate as it can be after the first recorded minute of gameplay
(2.5 minutes into the game). This is, in general, before any
substantial confrontations with the enemy have taken place.
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Figure 3: Weighted accuracy (percentage) of the player
model for different periods.

Discussion

In this section we make some observations on the player
model’s performance, the model’s features, and the possib-
ilities to use the player model to create a game-playing Al.

Player model performance

Our results show that our player model is able to classify
players according to their league significantly better than
the baseline, and that misclassifications on average place
a player in a neighboring class. We argue that most mis-
classifications can be attributed to the nature of the data set.
The classes are the leagues to which players are assigned by
Blizzard’s ladder system. This system incorporates meas-
ures to ensure that players whose skills are on the border
of two leagues, do not switch leagues too often. For in-
stance, if a player of the silver league defeats the lower-
performing players of the gold league, but not those of aver-
age performance, he will not be promoted to the gold league.
Also, a silver-league player who consistently defeats gold-
league players but does not play often, will not be promoted
quickly. Therefore, we must assume that the borders of two
neighboring leagues overlap quite a bit.

To build a player model of higher accuracy than we
achieved, we would need to have access to more specific
rankings of a player, e.g., like an ELO-rating that assigns a
player an individual rank in comparison with all his fellow
players. Blizzard actually calculates such a rank, which is
one of the elements used to determine when they allow a
player to switch leagues. However, at present these ‘hidden
rankings’ are invisible to the outside world. Our data set is
not sufficiently large to calculate a reliable ELO-rating of
our own.

Features

We used InfoGain to determine which features of the model
contribute most to the classification of players. The three
highest ranked features are (i) average micro, (ii) average
APM, and (iii) average EAPM. All three features describe
player behavior over the game until the moment of measure-
ment. This indicates that the game history is an important
factor in determining the skill of a player.

The top-eight features all measure motor skills. They
show that a gamer must have excellent control over his
mouse and keyboard to issue a large number of commands

and use a large number of hotkeys in a short period of
time. Moreover, the two highly-ranked features which
involve hotkeys show that strong players need excellent
visuospatial attention. These observations coincide with the
conclusions drawn by previous researchers on the strength
of video game players (Green and Bavelier 2006; 2007;
Dye, Green, and Bavelier 2009).

Al implementation

Now we have acquired some understanding of how to recog-
nize the skill levels of human players in Starcraft 1, we dis-
cuss two potential venues to apply this knowledge: (1) using
it to create stronger Al by imitating the behavior of strong
human players, and (2) creating an adaptive Al that scales to
the observed strength of the opposing human player.

Our findings do not provide much help in following the
first venue: learning from the model to create a more effect-
ive Al InfoGain ranked micro-management of units through
a high number of actions (and effective actions in particular)
as the most important features of the player model. That
only tells us that a strong Al should have effective micro-
management. It does not, however, indicate what ‘effective
micro-management’ entails. Moreover, while strong human
players distinguish themselves from the weaker ones by the
speed by which they can give commands, such speed is not
an issue for a computer, and thus not for an Al. Finally, some
of the high-ranked features, such as the use of hotkeys, are
only meaningful to describe human players, not Al players.

However, our findings do provide help in following the
second venue: the creation of an Al that adapts its difficulty
level to the observed strength of the human player. Since
the player model offers us the ability to recognize the hu-
man opponent’s strength with high accuracy already early
in a game, there is sufficient game-time left to make simple
changes to, for instance, the AI’s economy or tactics. Down-
grading the effectiveness of an Al is not hard, by squander-
ing resources or building less effective units.

Conclusion

We used the SMO classification algorithm to build a player
model that recognizes the league that Starcraft Il players
are assigned to. The model achieves a weighted accur-
acy of 47.3%, which is significantly and substantially over
the majority-class baseline. Moreover, 67.0% of misclas-
sifications assign a player to a neighboring league. Taking
into consideration how players are assigned to and switch
between leagues, players being positioned one league lower
or higher than their skill level is actually common, and thus
such misclassifications are only to be expected. We con-
clude that we have been able to create a player model that
recognizes a player’s league with high accuracy.

We found that the most distinguishing features of our
player model are based on visuospatial and motor skills of
players. It is particularly effective at recognizing novices
and high-level players. Our findings show that we can de-
tect a player’s league already in the first minutes of a game,
which indicates that an Al can use this information to adapt
its difficulty to the human player’s observed skill level.
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