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Abstract
Game tree search in games with large branching fac-
tors is a notoriously hard problem. In this paper, we
address this problem with a new sampling strategy for
Monte Carlo Tree Search (MCTS) algorithms, called
Naı̈ve Sampling, based on a variant of the Multi-armed
Bandit problem called the Combinatorial Multi-armed
Bandit (CMAB) problem. We present a new MCTS al-
gorithm based on Naı̈ve Sampling called Naı̈veMCTS,
and evaluate it in the context of real-time strategy (RTS)
games. Our results show that as the branching factor
grows, Naı̈veMCTS performs significantly better than
other algorithms.

Introduction
How to apply game tree search techniques to games with
large branching factors is a well-known difficult problem
with significant applications to complex planning prob-
lems. So far, Monte Carlo Tree Search (MCTS) algorithms
(Browne et al. 2012), such as UCT (Kocsis and Szepesvri
2006), are the most successful approaches for this problem.
The key to the success of these algorithms is to sample the
search space, rather than exploring it systematically. How-
ever, algorithms like UCT quickly reach their limit when the
branching factor grows. To illustrate this, consider Real-
Time Strategy (RTS) games, where each player controls a
collection of units, all of which can be controlled simulta-
neously, leading to a combinatorial branching factor. For
example, just 10 units with 5 actions each results in a po-
tential branching factor of 510 ≈ 10 million, beyond what
algorithms like UCT can handle.

This paper focuses on a new sampling strategy to increase
the scale of the problems MCTS algorithms can be applied
to. UCT, the most popular MCTS algorithm, frames the
sampling policy as a Multi-armed Bandit (MAB) problem.
In this paper, we will consider domains whose branching
factors that are too large for this approach. Instead, we will
show that by considering a variant of the MAB problem
called the Combinatorial Multi-armed Bandit (CMAB), it
is possible to handle larger branching factors.

The main contribution of this paper is the formulation of
games with combinatorial branching factors as CMABs, and
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a new sampling strategy for the CMAB problem that we call
Naı̈ve Sampling. We evaluate Naı̈veMCTS, the result of us-
ing Naı̈ve Sampling in a MCTS framework in multiple sce-
narios of a RTS game. The results indicate that for scenar-
ios with small branching factors Naı̈veMCTS performs sim-
ilar to other algorithms, such as alpha-beta search and UCT.
However, as the branching factor grows, the performance of
Naı̈veMCTS gets significantly better than that of the other
methods. All the domains in our experiments where deter-
ministic and fully observable.

The remainder of this paper is organized as follows.
First, we introduce the challenges posed by RTS games and
some background on MCTS. Then we introduce the CMAB
problem, and present Naı̈ve Sampling. We then present
Naı̈veMCTS. After that, we present experimental results of
our algorithm in an RTS game. The paper concludes with re-
lated work, conclusions, and directions for future research.

Real-Time Strategy Games
Real-time Strategy (RTS) games are complex adversarial do-
mains, typically simulating battles between a large number
of military units, that pose a significant challenge to both
human and artificial intelligence (Buro 2003). Designing AI
techniques for RTS games is challenging because they have
huge decision and state spaces and are real-time. In this con-
text, “real-time” means that: 1) RTS games typically execute
at 10 to 50 decision cycles per second, leaving players with
just a fraction of a second to decide the next move, 2) play-
ers do not take turns (like in Chess), but can issue actions si-
multaneously (i.e. two players can issue actions at the same
instant of time, and to as many units as they want), and 3)
actions are durative. Additionally, some RTS games are also
partially observable and non-deterministic, but we will not
deal with those two problems in this paper.

While some of these problems have been addressed,
like durative actions (Churchill, Saffidine, and Buro 2012)
or simultaneous moves (Kovarsky and Buro 2005; Saffi-
dine, Finnsson, and Buro 2012), the branching factor in
RTS games is too large for current state-of-the-art tech-
niques. To see why, we should distinguish what we call unit-
actions (actions that a unit executes) from player-actions.
A player-action is the set of all unit-actions issued by a
given player at a given decision cycle. The number of
possible player-actions corresponds to the branching fac-
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Figure 1: A screenshot of the µRTS simulator.

tor. Thus, the branching factor in a RTS game grows ex-
ponentially with the number of units each player controls
(since a player can issue actions to an arbitrary subset of
units in each decision cycle). As a consequence, existing
game tree search algorithms for RTS games resort to using
abstraction to simplify the problem (Balla and Fern 2009;
Chung, Buro, and Schaeffer 2005).

To illustrate the size of the branching factor in RTS games,
consider the situation from the µRTS game (used in our ex-
periments) shown in Figure 1. Two players (blue, on the top-
left, and red, on the bottom-right) control 9 units each: the
square units correspond to “bases” (that can produce work-
ers), “barracks” (that can produce military units), and “re-
sources mines” (from where workers can extract resources to
produce more units), the circular units correspond to work-
ers and military units. Consider the bottom-most circular
unit in Figure 1 (a worker). This unit can execute 8 actions:
stand still, move left or up, harvest the resource mine, or
build a barracks or a base in any of the two adjacent cells.

The blue player in Figure 1 can issue 1008288 different
player-actions, and the red player can issue 1680550 differ-
ent player-actions. Thus, even in relatively simple scenarios,
the branching factor in these games is very large.

Many ideas have been explored to improve UCT in do-
mains with large branching factors. For example, first play
urgency (FPU) (Gelly and Wang 2006) allows the bandit
policy of UCT (UCB) to exploit nodes early, instead of hav-
ing to visit all of them before it starts exploiting. However,
FPU still does not address the problem of which of the un-
explored nodes to explore first (which is key in our domains
of interest). Another idea is to try to better exploit the in-
formation obtained from each simulation, like performed by
AMAF (Gelly and Silver 2007), however, again, this doesn’t
solve the problem in the context of RTS games, where the
branching factor might be many orders of magnitude larger
than the number of simulation we can perform.

Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a family of planning
algorithms based on sampling the decision space rather than

exploring it systematically (Browne et al. 2012). MCTS al-
gorithms maintain a partial game tree. Each node in the tree
corresponds to a game state, and the children of that node
correspond to the result of one particular player executing
actions. Additionally, each node stores the number of times
it has been explored, and the average reward obtained when
exploring it. Initially, the tree contains a single root node
with the initial state s0. Then, assuming the existence of
a reward function R, at each iteration of the algorithm the
following three processes are executed:
• SelectAndExpandNode: Starting from the root node of

the tree, we choose one of the current node’s children ac-
cording to a tree policy, until we reach a node n that was
not in the tree before. The new node n is added to the tree.

• Simulation: Then, a Monte Carlo simulation is executed
starting from n using a default policy (e.g. random) to se-
lect actions for all the players in the game until a terminal
state or a maximum simulation time is reached. Then the
reward r obtained at the end of the simulation is returned.

• Backup: Then, r is propagated up the tree, starting from
the node n, and continuing through all the ancestors of n
in the tree (updating their average reward, and increment-
ing by one the number of times they have been explored).

When time is over, the action that leads to the “best” children
of the root node, n0, is returned. Here, “best” can be defined
as the one with highest average reward, the most visited one,
or some other criteria (depending on the tree policy).

Different MCTS algorithms typically differ just in the tree
policy. In particular, UCT frames the tree policy as a Multi-
arm Bandit (MAB) problem. MAB problems are a class
of sequential decision problems, where at each iteration an
agent needs to choose amongst K actions (or arms), in or-
der to maximize the cumulative reward obtained by those
actions. A MAB problem with K arms is defined by a set
of unknown real reward distributions B = {R1, ..., RK},
associated with each of the K arms. Therefore, the agent
needs to estimate the potential rewards of each action based
on past observations balancing exploration and exploitation.

Solutions to a MAB problem are typically formulated as
minimizing the regret, i.e. the difference between the ob-
tained accumulated reward and the accumulated reward that
would be obtained if we knew beforehand which is the arm
with the highest expected reward and always selected it.

UCT uses a specific sampling strategy called UCB1
(Auer, Cesa-Bianchi, and Fischer 2002) that addresses the
MAB problem, and balances exploration and exploitation of
the different nodes in the tree. It can be shown that, when the
number of iterations executed by UCT approaches infinity,
the probability of selecting a suboptimal action approaches
zero (Kocsis and Szepesvri 2006).

Combinatorial Multi-armed Bandits
In this paper, we introduce a variation of the MAB problem,
that we call the Combinatorial Multi-armed Bandit (CMAB)
problem1. Specifically, a CMAB is defined by:

1The version described in this paper is a generalization a the
formulation considered by Gai, Krishnamachari, and Jain (2010).
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• A set of n variables X = {X1, ..., Xn}, where variable
Xi can take Ki different values Xi = {v1i , ..., v

Ki
i }.

• A reward distributionR : X1× ...×Xn → R that depends
on the value of each of the variables.

• A function V : X1 × ... × Xn → {true, false} that de-
termines which variable value combinations are legal.

The problem is to find a legal combination of values of those
variables that maximizes the obtained rewards. Assuming
that v∗1 , ..., v

∗
n are the values for which the expected reward

µ∗ = E(R(v∗1 , ..., v
∗
n)) is maximized, the regret ρT of a

sampling strategy for a CMAB problem after having exe-
cuted T iterations is defined as:

ρT = Tµ∗ −
T∑

t=1

R(xt1, ..., x
t
n)

where xt1, ..., x
t
n are the values selected by the sampling

strategy at time t.
Notice that the difference between a MAB and a CMAB is

that in a MAB there is a single variable, whereas in a CMAB,
there are n variables. A CMAB can be translated to a MAB,
by considering that each possible legal value combination
is a different arm. However, in doing so, we would lose
the structure (i.e., the fact that each legal value combination
is made up of the values of different variables). In some
domains, such as RTS games, this internal structure can be
exploited, as shown below.

Naı̈ve Sampling for CMAB
Naı̈ve Sampling is a sampling strategy for CMAB, based
on decomposing the reward distribution as: R(x1, ..., xn) =∑

i=1...nRi(xi) (we call this the naı̈ve assumption). Thanks
to the naı̈ve assumption, we can break the CMAB problem
into a collection of n+ 1 MAB problems:

• MABg , that considers the whole CMAB problem as a
MAB where each legal variable combination that has been
sampled so far is one of the arms. We call this the global
MAB. Initially, the global MAB contains no arms at all,
and in subsequent iterations, all the value combinations
that have been sampled, are added to this MAB.

• For each variableXi ∈ X , we also define a MAB, MAB i,
that only considers Xi. We call these the local MABs.

Thus, at each iteration, the global MAB will take into ac-
count the following values:

• T t(vk1
1 , ..., v

kn
n ) is the number of times that the combina-

tion of values vk1
1 , ..., v

kn
n was selected up to time t.

• Rt
(vk1

1 , ..., v
kn
n ) is the average reward obtained when se-

lecting values vk1
1 , ..., v

kn
n up to time t.

The local MAB for a given variable Xi will take into ac-
count the following values:

• Rt

i(v
k
i ) is the marginalized average reward obtained when

selecting value vki for variable Xi up to time t.

• T t
i (vki ) is the number of times that value vki was selected

for variable Xi up to time t.

Intuitively, Naı̈ve Sampling uses the local MABs to ex-
plore different value combinations that are likely to result
on a high reward (via the naı̈ve assumption), and then uses
the global MAB to exploit the value combinations that ob-
tained the best reward so far. Specifically, the Naı̈ve Sam-
pling strategy works as follows. At each round t:

1. Use a policy π0 to determine whether to explore (via de
local MABs) or exploit (via the global MAB).

• If explore was selected: xt1, ..., x
t
n is sampled by using

a policy πl to select a value for each Xi ∈ X indepen-
dently. As a side effect, the resulting value combination
is added to the global MAB.
• If exploit was selected: xt1, ..., x

t
n is sampled by using

a policy πg to select a value combination using MABg .

In our experiments, π0 was an ε-greedy strategy (ε prob-
ability of selecting explore and 1 − ε of selecting exploit),
πl was also an ε-greedy strategy, and πg was a pure greedy
strategy (i.e. an ε-greedy with ε = 0). However, other MAB
policies, such as UCB-based ones can be used.

Intuitively, when exploring, the naı̈ve assumption is used
to select values for each variable, assuming that this can
be done independently using the estimated R

t

i expected re-
wards. At each iteration, the selected value combination is
added to the global MAB, MABg . Then, when exploiting,
the global MAB is used to sample amongst the explored
value combinations, and find the one with the expected max-
imum reward. Thus, we can see that the naı̈ve assumption
is used to explore the combinatorial space of possible value
combinations, and then a regular MAB strategy is used over
the global MAB to select the optimal action.

If the policy πl is selected such that each value has a non-
zero probability of being selected, then each possible value
combination also has a non-zero probability. Thus, the error
in the estimation of R

t
constantly decreases. As a conse-

quence, the optimal value combination will eventually have
the highest estimated reward. This will happen, even for re-
ward functions where the naı̈ve assumption is not satisfied.

For the particular case that all π0, πl and πg are ε-greedy
policies (with parameters ε0, εl and εg respectively), it is
easy to see that Naı̈ve Sampling has a linear growth in regret.
If the reward function R satisfies the naı̈ve assumption, and
πl is selected such that each value has a non-zero probability,
in the limit, the probability of selecting the optimal action in
a given iteration is:

p = (1− ε0)
[
(1− εg) +

εg
N

]
+ ε0

∏
i=1...n

[
(1− εl) +

εl
Ki

]
Where N is the total number of legal value combinations.
For example, if ε0 = εl = εg = 0.1, and we have 10 vari-
ables, with 5 values each, then p ' 0.8534. In case the
naı̈ve assumption is not satisfied, then, the only thing we
can say is that p ≥ ε0εg . Thus, the regret grows linearly as:
ρT = O(T (1−p)∆), where ∆ is the difference between the
expected reward of the optimal action µ∗ and the expected
average reward of all the other value combinations. Using
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other policies, such as variable epsilon, or UCB, better, log-
arithmic, bounds on the regret can be achieved2. However,
as we will show below, even having a linear growth in re-
gret Naı̈ve Sampling can handle domains with combinatorial
branching factors better than other sampling policies.

In order to illustrate the advantage of Naı̈ve Sampling
over standard ε-greedy or UCB1, let us use the CMAB cor-
responding to the situation depicted in Figure 1 from the
perspective of the blue player (top-left). There are 9 vari-
ables (corresponding to the 9 units controlled by the player),
and the unit-actions for each of those units are the values
that each variable can take. The V function is used to avoid
those combinations of actions that are illegal (like sending
two units to move to the same cell). Let us now consider
three sampling strategies: UCB1, ε-greedy with ε = 0.1,
and Naı̈ve Sampling with π0 = πl = πg = ε-greedy with
ε = 0.1. As the reward function, we will use the result of
running a Monte Carlo simulation of the game during 100
cycles (using a random action selection policy), and then us-
ing the same evaluation function as used in our experiments
(described below) to the resulting game state.

Figure 2 shows the average reward of the player-action
considered as the best one so far by each strategy at each
point in time (this corresponds to the expected reward of the
player-action that would be selected). We run 10000 itera-
tions of each sampling policy, and the plot shows the aver-
age of repeating this experiment 100 times. As can be seen,
Naı̈ve Sampling clearly outperforms the other strategies,
since the bias introduced by the naı̈ve assumption helps in
quickly selecting good player-actions. UCB1 basically did a
random selection, since it requires exploring each action at
least once, and there are 1008288 legal player-actions. We
also tested UCB1, augmented with first play urgency (FPU)
(Gelly and Wang 2006), to allow UCB1 to exploit some ac-
tions before it has finished exploring all the available ac-
tions at least once, however, it still performed much worse
than Naı̈ve Sampling. For FPU, we experimented with ini-
tial values for unvisited nodes between 4.0 and up to 6.0 in
intervals of 0.1 (anything below or above results in a pure
random, or pure exploitation), and found 4.9 to be the best.

Intuitively, the main advantage from Naı̈ve Sampling
comes from the fact that if a unit-action v for a given unit is
found to obtain a high reward in average, then other player-
actions that contain such unit-action are likely to be sam-
pled. Thus, it exploits the fact that player-actions with sim-
ilar unit-actions might have similar expected rewards. We
would like to note that there are existing sampling strate-
gies, such as HOO (Bubeck et al. 2008), designed for con-
tinuous actions, that can exploit the structure of the action
space, as long as it can be formulated as a topological space.
Attempting such formulation, and comparing with HOO is
part of our future work.

Naı̈ve Monte Carlo Tree Search in RTS Games
This section presents the Naı̈veMCTS (Naı̈ve Monte Carlo
Tree Search) algorithm, a MCTS algorithm designed for

2Note, however, that minimizing regret is related, but not equiv-
alent to the problem of finding the best arm.
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Figure 2: Average expected reward of the best action found
so far using four different sampling strategies in a CMAB.

Algorithm 1 SelectAndExpandNode(n0)

1: if canMove(max, n0.state) then
2: player = max
3: else
4: player = min
5: end if
6: a = Naı̈veSampling(n0.state, player)
7: if a ∈ n0.children then
8: return Naı̈veSelectAndExpandNode(n0.child(a))
9: else

10: n1 = newTreeNode(fastForward(s0, a))
11: n0.addChild(n1, a)
12: return n1
13: end if

RTS games by exploiting Naı̈ve Sampling.
Unit-actions issued in an RTS game are durative (they

might take several game cycles to complete). For example,
in µRTS, a worker takes 10 cycles to move one square in
any of the 4 directions, and 200 cycles to build a barracks.
This means that if a player issues a move action to a worker,
no action can be issued to that worker for another 10 cycles.
Thus, there might be cycles in which one or both players
cannot issue any actions, since all the units are busy execut-
ing previously issued actions. The game tree generated by
Naı̈veMCTS takes this into account, using the same idea as
the ABCD algorithm (Churchill, Saffidine, and Buro 2012).

Additionally, RTS games are simultaneous-action do-
mains, where more than one player can issue actions at the
same instant of time. Algorithms like minimax might result
in under or overestimating the value of positions, and sev-
eral solutions have been proposed (Kovarsky and Buro 2005;
Saffidine, Finnsson, and Buro 2012). However, we noticed
that this had a very small effect on the practical performance
of our algorithm in RTS games, so we have not incorporated
any of these techniques into Naı̈veMCTS.

Naı̈veMCTS is designed for deterministic two-player zero
sum games, where one player, max, attempts to maximize
the reward function R, and the other player, min, attempts
to minimize it. Naı̈veMCTS differs from other MCTS al-
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Table 1: Properties of the different maps used in our experi-
ments: size in cells, maximum number of units observed in
our experiments per player, average and maximum branch-
ing factor, and average and maximum number of player- and
unit-actions that a player executed to win the game.

Melee2vs3 Melee6vs6 FullGame8x8
Size 4x4 8x8 8x8
Units 2 6 15

Branch. 8.37 / 23 116.07 / 8265 7922.13 / 623700
Actions 12.75 / 18.92 75.17 / 148.00 146.25 / 513.08

gorithms in the way in which the SelectAndExpandNode
process is defined (which, as explained before, determines
which nodes in the game tree are selected to be expanded).

The SelectAndExpandNode process for Naı̈veMCTS is
shown in Algorithm 1. The process receives a game tree
node n0 as the input parameter, and lines 1-5 determine
whether this node n0 is a min or a max node (i.e. whether the
children of this node correspond to moves of player min or
of player max). Then, line 6 uses Naı̈ve Sampling to select
one of the possible player-actions of the selected player in
the current state. If the selected player-action corresponds to
a node already in the tree (line 8), then we recursively apply
SelectAndExpandNode from that node (i.e. we go down the
tree). Otherwise (lines 10-12), a new node is created by exe-
cuting the effect of player-action a in the current game state
using the fastForward function. fastForward simulates the
evolution of the game until reaching a decision point (when
any of the two players can issue an action, or until a terminal
state has been reached). This new node is then returned as
the node from where to perform the next simulation.

Therefore, as shown in Algorithm 1, the two key differ-
ences of Naı̈veMCTS with respect to other MCTS algo-
rithms is the use of Naı̈ve Sampling, and accounting for du-
rative actions (through the fastForward function, and by not
assuming that players alternate in executing actions).

Experimental Results
In order to evaluate the performance of Naı̈veMCTS, we
used the open-source µRTS3. We ran experiments in differ-
ent two-player µRTS maps, as shown in Table 1: two melee
maps (with only military units in the map), and one standard
game map (where each player starts with one base and one
worker). As we can see, the selected domains vary in com-
plexity, Melee2vs2 is the simplest, with a maximum branch-
ing factor of 24, and requiring an average 12.75 player-
actions to complete a game. FullGame8x8 is the most com-
plex, with branching factors reaching 623700.

In our experiments, we used the following AIs:

• RandomBiased: selects one of the possible player-actions
at random, but with 5 times more probability of selecting
an attack or a harvest action than any other action.

• LightRush: A hard-coded strategy. Builds a barracks, and
then constantly produces ”Light” military units to attack
the nearest target (it uses one worker to mine resources).

3https://code.google.com/p/microrts/

• ABCD: The ABCD algorithm (Churchill, Saffidine, and
Buro 2012), an alpha-beta algorithm that takes into ac-
count durative actions, implements a tree alteration tech-
nique to deal with simultaneous actions, and uses a play-
out policy. We used a WorkerRush strategy, producing
workers rather than military units, as the playout policy
(which obtained the best results in our experiments).

• Monte Carlo: A standard Monte Carlo search algorithm:
for each legal player-action, it runs as many simulations
as possible to estimate their expected reward.

• ε-Greedy Monte Carlo: Monte Carlo search, but us-
ing an ε-greedy sampling strategy (we tested ε ∈
{0.1, 0.15, 0.2, 0.25, 0.33} and chose 0.25 as the best).

• Naı̈ve Monte Carlo: Standard Monte Carlo search, but
using Naı̈ve Sampling. We used ε-greedy policies for π0,
πl and πg , with ε0 = 0.75, εg = 0, and εl = 0.33 re-
spectively, (selected experimentally, after evaluating all
the combinations of ε0 ∈ {0.25, 0.33, 0.5, 0.75}, εg ∈
{0.0, 0.1, 0.25, 0.33}, and εl ∈ {0.0, 0.1, 0.25, 0.33}).
• UCT: standard UCT, using a UCB1 sampling policy.
• ε-Greedy MCTS: Like Naı̈veMCTS, but using an ε-greedy

sampling strategy (ε = 0.25) instead of Naı̈ve Sampling.
• Naı̈veMCTS: we used ε-greedy policies for π0, πl and πg ,

with ε0 = 0.75, εg = 0, and εl = 0.33 respectively,
selected experimentally.
All the AIs that required a policy for Monte Carlo sim-

ulations used the RandomBiased AI limited to simulating
100 game cycles (except ABCD, which works better with
a deterministic policy). Also, all the AIs that required an
evaluation function used the following one: sum the cost in
resources of all the player units in the board weighted by the
square root of the fraction of hit-points left, then subtract the
same sum for the opponent player.

For each pair of AIs, we ran 20 games per map. We lim-
ited each game to 3000 cycles (5 minutes), after which we
considered the game a tie. Experiments were run in an Intel
Core i5-2400 machine at 3.1GHz, on which our implemen-
tation of the Monte Carlo-based algorithms had time to run
an average of 26326.38, 8871.08 and 5508.99 simulations
per decision in each of the maps respectively (simulations in
more complex maps required more CPU time).

Figure 3 shows the summarized results of our experi-
ments. For each scenario and for each AI, we show a
“score”, calculated as wins + 0.5ties . We can clearly ob-
serve that in the simple Melee2vs2 scenario, all AIs per-
form almost identical (except for RandomBiased). In the
more complex Melee6vs6, we see that ABCD can still de-
feat hard-coded strategies like LightRush, but cannot com-
pete with Monte Carlo-based approaches. UCT still per-
forms well in this scenario, but not as well as Naı̈veMCTS.
Finally, in the more complex FullGame8x8 map, only the
ε-greedy and Naı̈ve Sampling-based approaches performed
well (the UCB1 sampling strategy of UCT is not suited for
such large branching factors). Again Naı̈veMCTS was the
best performing AI overall.

Finally, Table 2 shows a detailed account of the results
we obtained in the FullGame8x8 scenario. We can see, for
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Figure 3: Accumulated score obtained by each AI in each of the different maps: wins plus 0.5 times the number of ties.

Table 2: Wins/ties/loses of the column AI against the row AI in the FullGame8x8 map.
RND LRush ABCD MC ε-MC Naı̈veMC UCT ε-MCTS Naı̈veMCTS

RND 9/2/9 14/0/6 19/1/0 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0
LRush 6/0/14 0/20/0 10/10/0 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0
ABCD 0/1/19 0/10/10 3/14/3 19/1/0 20/0/0 20/0/0 18/2/0 20/0/0 20/0/0
MC 0/0/20 0/0/20 0/1/19 8/4/8 14/1/5 17/1/2 10/2/8 15/1/4 19/0/1
ε-MC 0/0/20 0/0/20 0/0/20 5/1/14 10/0/10 10/2/8 4/0/16 12/2/6 11/0/9
Naı̈veMC 0/0/20 0/0/20 0/0/20 2/1/17 8/2/10 10/0/10 4/0/16 9/0/11 13/0/7
UCT 0/0/20 0/0/20 0/2/18 8/2/10 16/0/4 16/0/4 8/4/8 11/2/7 16/1/3
ε-MCTS 0/0/20 0/0/20 0/0/20 4/1/15 6/2/12 11/0/9 7/2/11 9/2/9 10/5/5
Naı̈veMCTS 0/0/20 0/0/20 0/0/20 1/0/19 9/0/11 7/0/13 3/1/16 5/5/10 8/4/8
Total 15/3/162 14/30/136 32/28/120 87/10/83 123/5/52 131/3/46 94/11/75 121/12/47 137/10/33

example, that Naı̈veMCTS defeated ε-MCTS 10 times, los-
ing only 5 times, and that it defeated UCT 16 times, losing
only 3 times. We evaluated many other AIs, such as ran-
domized alpha-beta (Kovarsky and Buro 2005) (which per-
formed worse than ABCD), two other hard-coded AIs and
many different parameter settings of the MCTS strategies,
but lack of space prevents us from showing their results.

Related Work
Concerning the application of Monte Carlo algorithms to
RTS games, Chung et al. (2005) proposed the MCPlan algo-
rithm. MCPlan uses high-level plans, where a plan consists
of a collection of destinations for each of the units controlled
by the AI. At the end of each simulation, an evaluation func-
tion is used, and the plan that performed better overall is
selected. The idea was continued by Sailer et al. (Sailer,
Buro, and Lanctot 2007) where they studied the application
of game theory concepts to MCPlan.

A more closely related work to Naı̈veMCTS is that of
Balla and Fern (2009), who study the application of UCT
(Kocsis and Szepesvri 2006) to the particular problem of tac-
tical battles in RTS games. In their work, they use abstract
actions that cause groups of units to merge or attack differ-
ent enemy groups. Another application of UCT to real-time
games is that of Samothrakis et al. (2011), in the game Ms.
Pac-Man, where they first re-represent Ms. Pac-Man as a
turn-based game, and then apply UCT.

Many other approaches have been explored to deal with
RTS games, such as case-based reasoning (Ontañón et al.
2010; Aha, Molineaux, and Ponsen 2005) or reinforce-

ment learning (Jaidee and Muñoz-Avila 2012). A common
approach is to decompose the problem into smaller sub-
problems (scouting, micro-management, resource gathering,
etc.) and solving each one individually, as done in most bots
in the StarCraft AI competition (Uriarte and Ontañón 2012;
Churchill and Buro 2011; Synnaeve and Bessiere 2011;
Weber, Mateas, and Jhala 2011).

Conclusions
This paper has presented Naı̈veMCTS, a Monte Carlo Tree
Search algorithm designed for games with a combinatorial
branching factor, such as RTS games, where the magnitude
of the branching factor comes from the fact that multiple
units can be issued actions simultaneously. At the core of
Naı̈veMCTS, is Naı̈ve Sampling, a strategy to address the
Combinatorial Multi-armed Bandit problem.

Experimental results indicate that Naı̈veMCTS performs
similar to other algorithms, like ABCD or UCT, in scenar-
ios with small branching factors. However, as the branch-
ing factor grows, Naı̈veMCTS gains a significant advantage.
The main reason for this is that Naı̈ve Sampling can guide
the exploration of the space of possible player-actions, nar-
rowing down the search on the most promising ones.

As part of our future work, we plan to explore the per-
formance of Naı̈veMCTS in even larger scenarios (we are
currently working on applying it to the commercial RTS
game Starcraft), which will require the use of abstraction.
We would also like to design better sampling strategies for
the CMAB problem, and evaluate their performance versus
Naı̈ve Sampling in the context of RTS games.
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