Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

Modular Computational Critics for Games

Joseph C. Osborn and April Grow and Michael Mateas
University of California, Santa Cruz
{jcosborn,agrow,michaelm} @soe.ucsc.edu

Abstract

Formal game modeling tools could support the auto-
mated analysis of game rules and rapid automated play-
testing, but are not widely used. Furthermore, existing
game design support tools are often limited to very spe-
cific classes of game, require significant programming
expertise to use or customize, or are fully-automatic
tools with limited affordances for human designers.

We therefore propose a framework for authoring com-
putational game design critics and a new game defini-
tion language (Gamelan) grounded in the conventions
of board game rules. We show how a set of these critics
could have detected specific, attested design problems
in the development of Donald X. Vaccarino’s influen-
tial card game Dominion. We also illustrate an exten-
sion of this approach to other collectible card games,
turn-taking games, and games in general.

Introduction

Game design is a complex domain with few objective qual-
ity metrics. This complexity comes both from the emergent
behavior of games and the strategies of their players: given
a set of rules and a starting state, it can be difficult to pre-
dict what could happen (in terms of what the rules enable) as
well as what players will cause to happen. Additional com-
plexity arises in the implementation of a game design: even
if the design is flawless, a program which implements it may
have bugs, and working backwards from an implementation
to a design is not possible in general. Since it is easier to pro-
duce an executable program from a model than vice versa,
we propose a new modeling language for defining games.

Automated design support for games is an established re-
search tradition, seeking “regression test[s] for design” (Nel-
son and Mateas 2009). This paper contributes to this body
of work by proposing new formalisms for describing games
and design issues; we believe these will be more amenable
to non-programmer designers than prior approaches.

Game definition languages
For specific games or constrained genres, purpose-built tools
can be written by programmers to explore the consequences

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

163

of specific design decisions. Representative examples in-
clude visualizing the mobility of a player character (Bauer
and Popovi¢ 2012) or synthesizing puzzles (Smith, Butler,
and Popovi¢ 2013). The design decisions in question are
not necessarily ones made by human designers—Browne
and Maire’s Ludi (2010) defined an extensive set of aes-
thetic criteria for a class of combinatorial games, success-
fully employing these judgments in an evolutionary algo-
rithm to generate new games. These approaches do not gen-
eralize beyond their target classes.

More abstract tools for game modeling have also been
invented to address the problem of design understand-
ing and validation. The Machinations framework (Dormans
2009) models and visualizes feedback loops and resource
economies. Machinations is excellent for modeling these dy-
namic systems, but it has little to say about the interactions
between the larger game and the feedback loop. Unfortu-
nately, modeling tools duplicate information about the game
design and produce opportunities for desynchronization be-
tween the system and the model. Tools which do not produce
playable games are prone to this issue; game systems inter-
act in intricate ways, and the borders of their integration are
likely to require patches and special-case rules which can
only be partially represented in the modeling tool.

Game definition languages attempt to generalize the for-
mal modeling of games by encoding particular design spaces
in special-purpose programming languages. From the gen-
eral game playing literature, GDL-II (Game Definition Lan-
guage with Incomplete Information) extends its predecessor
GDL with support for games of partial information and non-
deterministic outcomes (Thielscher 2010). General game
playing has not interacted much with the game design sup-
port community, but Mahlmann, Togelius, and Yannakakis
used GDL as a starting point for a design language for strat-
egy games to support the automated playtesting, appraisal,
and evolution of sets of strategy game units (2011).

The prototyping tool BIPED (Smith, Nelson, and Mateas
2009) takes a more direct approach to game modeling, em-
phasizing search over possible sequences of game actions
rather than amenability to Al play. BIPED “game sketches”
are defined with an abbreviated event calculus representa-
tion (for the logical game engine LUDOCORE) which can
be turned into playable prototypes or translated into a for-
mal logic system which acts as a searchable play-trace gen-

erator. Unlike Machinations, BIPED and GDL-II can repre-
sent complete games rather than just particular subsystems.
A BIPED game definition is not just a model of a system in
a game, it is (through translation) a game in and of itself.

Unfortunately, the event calculus representations of LU-
DOCORE and GDL-II bear little resemblance to the ways
people naturally describe games. Board game rules are gen-
erally explained in a procedural style (do this, then do that),
not as successor-state functions (if this happens, this bit of
game state changes); furthermore, the event calculus has dif-
ficulty with hypothetical situations and with actions that in-
volve complex sequencing of side effects.

Computational critics

Among the systems above that make judgments about the
quality of game design artifacts, neither Ludi nor the unit
evolution system offers a role for a human designer be-
yond reweighting predefined metrics. This is fundamentally
a communication problem between human designers and au-
tomated reasoning systems: these systems require a lot of
instruction and then have trouble describing their reasoning.
We believe that computational critics (Fischer et al. 1993)
offer a simple and powerful solution to this communication
breakdown, and are a significant step towards integrating
formal modeling with game design practice.

Computational critics have two main attributes: First, crit-
ics do not make any changes on their own: they are a support
tool for human designers, not independent designing agents.
Second, critics can be prioritized and superseded by more
relevant critics based on the designer’s current perspective.

To emphasize the difference between fully-automated de-
sign tools and computational critics, consider a game de-
signer (Alice) working on a Chess variant intended for par-
ents to play with young children. If Alice implemented a
rule where the captures are determined by a coin flip, poor
Iuck could lead the stronger player to lose. The “Competi-
tive games reward skill” critic would therefore report a po-
tential issue, but for cross-generational games like Alice’s,
that critic is superseded by another: if the weaker player is
not able to win regularly, Alice must find ways to shift the
balance of the game in favor of the child.

Another designer (Bob) working on a Chess variant may
find through conventional human playtesting or by visualiz-
ing Al behavior that his rules lead to only a small portion
of the board being used in most games. If this were unde-
sirable, Bob could invent a new critic: “each match should
involve most of the board’s spaces.” Using this critic could
help avoid regressions as the game evolves; Bob could even
promote this critic to concern all “territorial games,” apply-
ing not just to his particular game or to Chess variants, but
to any game which features territory control.

Computational critics operationalize domain knowledge
in a modular and reusable way which keeps humans in the
loop (Fig. 1 summarizes this mode of interaction). As the
library of critics grows, more and more concrete knowledge
will be added to the design science of games.

164

N
I
L

T Y
| —— Defines a new game rule —)

| - . -

| g <— Delivers reports from critics —— g\

|| @ —— Modifies gamerule 4} 3

1| g 2

I a (— Interactive play —) g

I Notices new problem)

I\ & adds critic

Figure 1: A designer’s interactions with Gamelan.

Game modeling in practice

With the exception of Ludi, none of the non-game-specific
systems described above has been used to describe com-
plete, publishable games. Games in GDL-II, where they are
complex, are generally designed to challenge general game
playing programs rather than to afford enjoyable experi-
ences to humans. Here, we propose a game definition lan-
guage called Gamelan which mirrors the definitional style
of board and card games while maintaining generality.

The two main advantages of our Gamelan language over
previous game definition formalisms are ease of use and
composability. Gamelan describes games in terms of pro-
cedures, rules, and state. Using board and card games as
a foundation for modeling ties into game designers’ exist-
ing practice of paper prototyping, in which designers build
board game versions of a design in advance of a digital im-
plementation. Gamelan is therefore more compatible with
human designers’ existing mental models than an event cal-
culus representation. Gamelan’s procedural semantics also
make the composition of side effects easier than in event
calculus representations. Our target class of games com-
prises single- and multi-player nondeterministic games of
incomplete information over discrete domains—e.g. board,
card, puzzle, and strategy games—and therefore Gamelan is
as expressive as GDL-II (Gamelan is also Turing-complete,
though there are readily identifiable fragments of lower com-
plexity). Even central concerns like turn structure are de-
fined in pure Gamelan; once defined, these concepts can be
easily reused in new games.

Gamelan

In designing our modeling language, we tried to duplicate
the methods used by practicing game designers to explain
their games to players. Board and card game rule book-
lets have a fairly uniform structure and vocabulary, and the
class of games they describe is quite broad. These specifica-
tions are precise and unambiguous enough that strangers can
agree on the rules of play, although some prior knowledge of
games is assumed—moving pieces on a board, shuffling and
dealing from decks of cards, et cetera.

We closely read the rule texts of twenty board and card
games which were known to the authors and whose rules
were readily available online. All but one began with a cat-
alogue of the game’s pieces and some basic definitions in

a declarative style (including the game’s termination con-
dition); we call these “rules.” This was generally followed
by an overview of the game’s turn structure phrased as a
sequence of steps (“procedures”) to be taken by specific
players. Each step is then explained in a roughly depth-first
traversal; this makes up the main body of the rule text. Spe-
cial cases and exceptions to previous definitions are given
as needed, and sometimes a larger set of special cases is col-
lected following the main body. The exception to this textual
format, Stratego, was a numbered list of mixed rules and
procedures. Each procedural rule either extended the imme-
diately preceding item in the list or began with a “when...”
clause denoting its position in the game flow.

Semantics

A Gamelan game is therefore described as a set of rules
(in a relational language) and a set of procedures. Proce-
dures may await specific user inputs, make random choices,
modify the game’s state, and execute other procedures (pos-
sibly concurrently). Rules are side-effect-free relations and
logical functions (Lifschitz 2012) defined over the game’s
current state. Logical functions differ from relations in that
a function has exactly one value for a given set of inputs,
whereas relations have no value; they can only succeed or
fail. The term 1ogical indicates that these functions (like
logic programming relations) can be run with any combina-
tion of bound and unbound arguments (or return value), and
in modes where not all input arguments are bound the query
may succeed multiple times with different satisfying inputs.

The game’s previous states are not forgotten, and rules can
also be written which make queries in the context of previ-
ous game states. Rules may also refer to hypothetical sit-
uations arising from executing a particular procedure, with
those effects being unwound after the query is made. This
is a substantial improvement in convenience over GDL-II
or LUDOCORE which require bookkeeping to track prior
activity and often duplicate state transitions as speculative
rules in order to make hypothetical queries. Hypothetical
evaluation is useful in games like Chess, where a move is
invalid if it would put the moving player’s king in check.

Every rule and procedure has a name, and each name can
be defined in multiple places. Definitions are ordered with
respect to a particular name, and higher-priority definitions
may take precedence over, nullify, or delegate their work to
lower-priority ones. By default, earlier definitions supersede
later ones. These semantics are derived from Nute’s defeasi-
ble logic (2001).

In this paper, we consider a primitive version of Gamelan
called Core Gamelan, which only includes the features de-
scribed above along with some control flow statements for
procedures and some aggregation operators for rules. Core
Gamelan is currently implemented in XSB Prolog, with the
limitations that the file-ordering precedence mechanism is
not supported (all priorities must be defined explicitly) and
that there is no parser for the concrete syntax.

Dominion

Dominion is a so-called deck-building game in which play-
ers collect cards during play that provide resources and ac-

165

tions, and each player’s deck of cards is distinct. It is a
turn-taking, adversarial, nondeterministic multiplayer game
of incomplete information. On each turn, a player has the
option to play exactly one of the cards in their hand, then
use any Treasure cards remaining in hand to purchase a sin-
gle additional card (from the Supply) whose cost is less than
the sum of the value of these Treasure cards. At the end of
each turn, the player’s hand is discarded and a new hand of
five cards is drawn from that player’s deck. Each card may
also provide its own rules and procedures on top of the base
game: for example, a card might give its user additional pur-
chasing power on top of the player’s Treasure cards; or let
the player play extra cards before proceeding to the card-
buying phase; or force each other player to draw a Curse
card. The game ends when three of the card piles in the Sup-
ply are empty. The player with the most Victory Points (de-
termined by the possession of Victory cards and reduced by
that player’s number of Curses) wins.

The representational and computational complexity of
Dominion would be a challenge for any modeling tool. Core
Gamelan can express the game in 675 lines of code (with
385 for core rules and 290 for the game’s special cards),
given about 220 lines of code for background knowledge
like decks and turn-taking. One C++ implementation of the
same rules required more than 3000 lines of code, with over
700 lines for the special cards alone (Fisher 2012).

Syntax

In this section, some rules and procedures from Dominion
will be used to illustrate Core Gamelan’s syntax. Domin-
ion is a turn-taking game, with control cycling between the
game’s players. Each turn procedure comprises three phases:
action, purchasing, and cleanup. In Gamelan, the former is
a piece of background knowledge (a predefined procedure)
about turn-taking games, and the latter is Dominion-specific.
The first listing defines the game procedure, which has
no extra parameters (the keyword proc indicates that a pro-
cedure is being defined). In turn-taking games, game cycles
through each active player with the for each player
Player looping construct (any term beginning with a cap-
ital letter or underscore is a variable; an underscore by it-
self is an anonymous “don’t-care” variable). game then calls
the turn procedure with its sole parameter setto Player.
If the rule game_over is satisfied after that player’s turn,
the game procedure immediately succeeds (pass); oth-
erwise, play proceeds with the next player in the game-
defined turn order. Once all players have had a turn, the
game procedure repeats itself from the top. game itself
is called by the pre-defined root procedure after calling
setup_game (PlayerCount).turn (P1) iseven sim-
pler than game; it could be read as “A player’s turn com-
prises an action phase, a buy phase, and a cleanup phase.”

proc game
for each player Player
run turn(Player)
if game_over()
pass
repeat

proc turn(Player)
run act(Player)
run buy(Player)
run cleanup(Player)

The game_over rule is a logical relation. That means
it may succeed or fail, but does not evaluate to anything.
Rules are called simply by naming them along with their
parameters in parentheses; if the rule has no parameters, the
parentheses are not optional.

The first query in this listing passes the atom
province as an argument to the logical function
card_supply (Type) = HowMany, and succeeds if
the result is 0. Atoms like province begin with a
lowercase letter (or are enclosed in single quotes) and
have no parameters. An atom is a value which is dis-
tinct from all other atoms; in Gamelan encodings, atoms
tend to name things like areas of a board, enumerated
types, distinguished values, et cetera. Logical functions
like card_supply (Type) = HowMany, unlike rela-
tions, have a value: in this case, the number of cards
of the given type in the Supply. This listing also shows
logical disjunction (;) and the count aggregator, which
counts the number of satisfying bindings to Type such that
card_supply (Type) = 0 (the curly braces and verti-
cal bar amount to a set-building notation).

rule game_over()
card_supply(province) = 0
scount{ Type | card_supply(Type) =0} >3

Periods can be used to put multiple top-level definitions
on a single line, and commas permit multiple queries or
statements on a single line. Queries can also be made on
the right hand side of logical functions.

rule card_type(estate). rule card_subtype(estate, victory).
rule cost(estate) = 2. rule vps(estate) = 1.
rule victory_points(Player) =
sum{victory_points(CardType) |
owner(Card) = Player, card_type(Card, CardType) }

Interactivity is the defining feature of games, and Core
Gamelan has easy-to-use primitives for requesting user in-
put. A select statement takes a query defining which play-
ers may make the choice in question, followed by a series
of options. Each option is either a single value or a set of
valid choices along with a series of steps to perform when
that choice is made. In this case, an action phase consists
of either skipping the phase or selecting an action card in
the player’s hand and playing it. The atom base followed
by the symbol : : explicitly gives a precedence level to this
definition of act (Player).

base :: proc act(Player)
select Player
{card_in_hand(Player, Card) |
card_type(Card, Type), card_subtype(Type, action) }
run play_card(Player, Card)
true
skip

Next, the base definition of act (Player) is made
inferior to the bonus level (which we are about to de-
fine) with the >: operator. This statement implements the

game mechanic where players may take extra actions on
their turn if they have played cards which grant bonus
actions. The number of extra actions is tracked in the
bonus_actions (Player) logical function, which is
only backed by state and modified by the set statement.
The after keyword causes this sequence of steps to occur
anytime the named procedure would otherwise finish. Note
that repeat causes the whole act procedure to repeat, not
just this block.

bonus >: base
bonus :: after act(Player)
if bonus_actions(Player) = BonusActions, BonusActions > 0
set bonus_actions(Player) = BonusActions — 1
repeat

Finally, we will show the definition of a complex card,
Thief. It begins with some logical functions establishing
Thief as a card type, setting its cost, and describing it as
both an Action card and an Attack card (Action cards are
implicitly Kingdom cards). Thief’s play_card procedure
is simple: it only executes the thief’s attack procedure.

card_type(thief). cost(thief) = 4.
card_subtype(thief, action). card_subtype(thief, attack).
proc play_card(Pl, thief)

run attack_all(Pl, thief)

In Dominion, attacks are untargeted and apply to ev-
ery other player; the core rules manage this and call
attack_player once for each victim. To attack, the
Thief first draws two cards from the victim’s deck and puts
them in a designated area. Next, the attacking player selects
a single Treasure card (if any) out of the two set-aside cards
and sends it to the common Trash pile. The remaining card
(or both cards, if neither was a Treasure) is sent to the own-
ing player’s discard pile.

proc attack_player(Pl, thief, P12)
run draw_cards(P12, 2, set_aside),
TreasureCards = {C | position(C) = set_aside
card_type(C,CT), card_subtype(CT,treasure) }
select P1
{C | member(C, TreasureCards) }
run(trash_card(C))
empty(TreasureCards)
skip
for each {C | position(C) = set_aside}
run push_card(C, player_discard(P12))

The Thief’s effects do not end there, however. After each
enemy’s cards have been examined and possibly trashed, the
attacking player may select some subset (using a range no-
tation with select) of the cards trashed by this particu-
lar attack (in other words, those trashed since the attack be-
gan). since[ProcA] [ProcB] is a query which exam-
ines the game’s history; it succeeds if at any time since the
last time a procedure matching ProcA was invoked, a pro-
cedure matching ProcB has also been invoked.

after attack_all(Pl, thief)
select P10..all
{C | since[attack(Pl,thief)][trash_card(C)] }
run push_card(C, player_discard(P1))

Other so-called time travel queries include
as_of[Proc]{Query} (as of the last time a pro-
cedure matching Proc was called, was Query true?)
and next [Proc] {Query} (when a procedure matching
Proc will next be called, will Query be true?). It goes
without saying that next will always fail if the current
time point (from the perspective of the query) is not in the
past. Time-travel queries can be combined in various ways
to achieve complex and powerful effects.

Hidden information and random choice, while not shown
in the examples above, are implemented in Gamelan. Visi-
bility uses a designated visible (Rule,Player) rela-
tion, and visibility is enforced by the player agents. For non-
deterministic outcomes, the select statement may take the
atom random as its player filter.

Modular computational critics

Critics are defined in a superset of Gamelan with access to
a library of static and dynamic analysis tools. Static analy-
sis considers Gamelan games as data structures and exam-
ines them directly. A simple symbolic execution mechanism
is currently used to statically approximate a game’s behav-
ior. For dynamic analysis, we provide three player models:
one which acts randomly, one which attempts to win using
ensemble-determinized Monte Carlo tree search (MCTYS),
and a third which prolongs games for as long as possible.

Our use of MCTS for general game-playing Al is based
on promising results in the related game Magic: The Gather-
ing (Cowling, Ward, and Powley 2012). MCTS is not, how-
ever, a privileged method in Gamelan; any technique which
generates play traces would suffice for dynamic analysis.
These play trace generators are not even required to share the
same host language or OS process as Gamelan; the system
could call out to purpose-built Als, general game-playing
programs, or recorded games from human play.

A critic’s definition includes a query which deter-
mines whether the critique applies along with a term
describing the conclusion (e.g. game_too_short or
procedure_unused (attack)). When Gamelan eval-
uates a critic, it also keeps a record of the analysis so that its
reasoning can be inspected later. Examples of game design
critics might include:

e No rule or procedure should go unused in a game.
e Turn-taking games should give every player equal turns.
e Repeating similar actions should be a losing strategy.

e The relative ranking of the players should shift frequently
over the course of the game.

Since these critics are composable—and integrated into
the same formalism designers build games from—we can
give designers valuable feedback on their games with a min-
imum of annotation overhead.

Critiquing Dominion

Another reason we selected Dominion is that its designer
has published extensive design histories of particular rules
and cards that appear in the game (Vaccarino 2011); all of

167

the quotations in this section are due to this record. It is
easy to criticize game analysis tools by arguing that they
operate on toy games or identify problems which would be
obvious to human designers; thanks to this design history,
we have specific cases of flaws reaching human playtesters
(or even publication) that we believe Gamelan could have
detected at design time. Even if the critics are Dominion-
specific and could not have been devised in advance, once
defined they could prevent future design bugs from creeping
into the game as the rules are changed, new cards are added,
or derivative games are designed.

Every game evolves and changes when it comes into con-
tact with human players. Dominion is not unique for having
had design issues, but its documentation affords us an op-
portunity to observe acknowledged design bugs in the wild.

Unplayed cards

A common concern in collectible card games is that no card
should be useless: every card in the game should be there
for a reason. Sometimes, a card can go unused because one
card is always preferred to it in the same situations. This
phenomenon is called shadowing in CCG parlance.

Some cases of shadowing can be detected via static anal-
ysis. In any game with custom cards, if one card type has
greater benefits than another, it must have a greater cost or
else the better card type shadows the worse one. In the exam-
ple below, we assume that a designer has annotated certain
game happenings with a value of a particular category and
numeric level (for a particular player; the same move may
be a benefit to one player and a cost to another). For now,
we assume that values of different types are incomparable.

This gives designers a way to integrate some domain
knowledge (things that are expected to be good or bad) with-
out requiring too many annotations. Symbolic execution can
determine which procedures might be triggered or which
values might be changed when a specific top-level procedure
is executed. This only gives an estimate of the card’s value,
but if enough real play traces were obtained through metrics
or dynamic analysis, the behavior of those traces could be
used instead of the static approximation.

value(Player, cost, proc(play_card(Player, C))) = —cost(C)
value(Player, actions, proc(get_actions(Player,N))) = N
value(Player, buys, proc(get_buys(Player,N))) = N
value(Player, money, proc(get_-money(Player,N))) = N
value(Player, vp, proc(gain_card(Player,curse))) = —1
value(Player, vp, proc(gain_card(Player,Card))) = vps(Card)
card_subtype(Card, Victory)
value(Player, deck, proc(gain_card(Player,C))) = 1
C #curse

While this does place a burden on game designers, that
burden is lesser for designers working in established genres
than it is for designers working in brand new ones, and lesser
still for designers who are only adding content to a game.

In the shadows critic, the function values infers the
set of all values for the given procedure with respect to a
particular player. Then, an all aggregator ensures that for
all members of C1Values (each of which is a compound
term value (Type, Value)), either there is no value of

that type in C2Values or the corresponding value is lower
than the one in C1Values.

critic(shadows(C1, C2))
card_type(C1, action), card_type(C2, action), C1£C2
player(Player)
C1Values = values(Player, proc(play_card(Player, C1))),
C2Values = values(Player, proc(play_card(Player, C2))),
all{member(value(V1Type, V1Value), C1Values) |
(not member(value(V1Type, _), C2Values)
;member(value(V1Type, V2Value), C2Values)
V2Value <= V1Value
)
}

It is easy for a human to tell that one card shadows an-
other, but human analysis does not scale to hundreds of
cards. Although detecting an individual occurrence of card
shadowing is a small victory, these detection events can also
be meaningful in the aggregate. If a designer notices that
one card is shadowed by many others, he might improve
or reduce the cost of the shadowed card; if one card shad-
ows many others, the shadowing card should be worse or
the shadowed cards better. Tracking which cards shadow
and which cards are shadowed is also helpful aid during
long-running design repairs which could leave the game in a
partially-broken state for some time.

As another justification for this simple shadowing critic,
consider a designer who sees shadowing issues pop up re-
peatedly over the course of a game’s design. Generally,
the cards being shadowed are simple—a single benefit or
a special ability that originally was unique to that card—
but reducing their cost is not justifiable in the larger game.
Through the difficulty of pricing variations on earlier cards,
Vaccarino developed a particular design aesthetic: “If your
basic version of a concept includes a bonus, you can vary
the bonus and keep the cost the same. Only when you do the
bonus-less version are you stuck with increasing the cost.”

This is a complaint against “vanilla” cards which have
only one bonus of any type or whose bonuses are only “ba-
sic” (for a game’s definition of “basic” bonuses). Defining
such a critic (e.g. calling out cards with only one or two types
of value) could help future designers make new cards for
Dominion. This critic might even generalize to all games that
feature asymmetric choices and cost-benefit analysis.

Game speed

Game speed was another significant concern in the design
history of Dominion. Many cards in the game involve ac-
tions, but not all actions require an equal number of player
choices. The domain of each choice is also an important fac-
tor (“There was an attack that could steal any type of card...
it slowed the game down way too much.”), and this can be
approximated statically.

The symbolic execution system described earlier could
give estimates on the number of choices and their domain;
in general, this problem is undecidable, but it could give
a fast first approximation while waiting for a representa-
tive sample of play traces. This assumes annotations for
decision_duration, desired_game_time, and
desired_turn_count. The too_slow critic employs

168

duration, a special predicate available to critics; here, it
guesses the duration of a call to turn, given that a particular
card was played sometime during that turn.

critic(too_slow(Card))
card_type(Card, action)
Time = duration[turn(P1)]{
since[turn(Pl)][play_card(Pl, Card)]

DesiredTurnTime = desired_game_time() / desired_turn_count()
not between(Time % 0.8, DesiredTurnTime, Time * 1.2)

If a designer sees this critic come up frequently, he can
find the common thread and write a more game-specific rule
which is less likely to produce false positives. In Dominion:
“Spy is slow to resolve... ideally Spy-type attacks don’t have
+1 action, or don’t involve a decision, or both.”

Conclusion

In this paper, we introduced our game definition lan-
guage Gamelan along with sophisticated tools for analyzing
games. These analyses use the framework of computational
critics to provide useful context: a perspective, and a justifi-
cation in terms of game elements and events. We have also
shown how these critics could have detected design issues
in the development of the card game Dominion. Combining
an expressive game definition language grounded in game
design idiom with modular computational critics is a major
step forward for automated game design support.

Future Work

Our immediate goal is to improve the ease of use of Gamelan
with a parser, modules, metaprogramming, and a graphical
user interface. Following this, we plan to package Gamelan
and its support tools for public release. This will require ex-
panding the library of game mechanic modules and adding
more built-in critics. As a source of inspiration, we would
also like to see which of Ludi’s aesthetic judgments could
generalize beyond that tool’s constrained class.

Gamelan’s performance for large games must also be im-
proved in order to validate our dynamic analyses on games
of that scale; this may involve replacing our current player
models with general-game-playing programs. We also hope
to improve our static analysis, potentially by incorporating
existing symbolic execution systems. For games as large as
Dominion, it is likely that a combination of static and dy-
namic analysis will be required, with each feeding informa-
tion to the other; the complexity of such games is too large
for real-time feedback using only one technique or the other.

Acknowledgements

Special thanks to Donald X. Vaccarino for designing Domin-
ion and for freely sharing the game’s design history. Thanks
also to Adam Smith and Peter and John Mawhorter for feed-
back on Gamelan’s semantics.

References

Bauer, A., and Popovi¢, Z. 2012. RRT-Based Game Level
Analysis, Visualization, and Visual Refinement.

Browne, C., and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and Al in
Games 2(1):1-16.

Cowling, P. I.; Ward, C. D.; and Powley, E. J. 2012. En-
semble Determinization in Monte Carlo Tree Search for the
Imperfect Information Card Game Magic: The Gathering.
IEEE Transactions on Computational Intelligence and Al in
Games 4(4):241-257.

Dormans, J. 2009. Machinations: Elemental feedback struc-
tures for game design. In Proceedings of the GAMEON-NA
Conference.

Fischer, G.; Nakakoji, K.; Ostwald, J.; Stahl, G.; and Sum-
ner, T. 1993. Embedding computer-based critics in the con-
texts of design. In Proceedings of the INTERACT 93 and
CHI’93 Conference on Human Factors in Computing Sys-
tems, 157-164. ACM.

Fisher, M. 2012. Provincial: An Al for Dominion.

Lifschitz, V. 2012. Logic programs with intensional func-
tions. In Proceedings of the Thirteenth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning.

Mahlmann, T.; Togelius, J.; and Yannakakis, G. 2011. To-
wards procedural strategy game generation: Evolving com-
plementary unit types. Applications of Evolutionary Com-
putation 93—-102.

Nelson, M., and Mateas, M. 2009. A requirements analy-
sis for videogame design support tools. Proceedings of the
International Conference on Foundations of Digital Games
137-144.

Nute, D. 2001. Defeasible logic. Web Knowledge Manage-
ment and Decision Support 151-169.

Smith, A. M.; Butler, E.; and Popovié¢, Z. 2013. Quantify-
ing over Play: Constraining Undesirable Solutions in Puzzle
Design. In Proceedings of the International Conference on
the Foundations of Digital Games. Center for Game Sci-
ence, Dept. of Computer Science & Engineering, University
of Washington.

Smith, A.; Nelson, M.; and Mateas, M. 2009. Computa-
tional support for play testing game sketches. 5th Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence 1-6.

Thielscher, M. 2010. A general game description language
for incomplete information games. In Proceedings of AAAI,
994-999.

Vaccarino, D. X. 2011. The Bible of Donald X.

169

