
Jack 1: Pattern and Shape in Music Generation

Eliot Handelman and Andie Sigler
School of Computer Science,

McGill University
Montreal, Canada

Abstract
Jack 1 is an original meta-music piece which randomly
builds a multilevel data structure to generate, extend and
sequence musical shapes. Jack 1 is presented as an ex-
periment in generating high-level, engaging music us-
ing simple ideas about pattern, shape and supershape,
growth, and formal zoning.

Motivation
Jack 1 a musical meta-artwork which doubles as an exper-
iment in using a (specific) small set of ideas for generating
music, while excluding other ideas.1 Jack 1 grew out of a an-
alytical theory, which raised the question: if we know what
kinds of things a given computational analyzer will look for,
then why not try generating the right sort of output by using
the analytical system backwards?

Jack 1 is an algorithmic system that produces music with
an engaging animated quality, with motives, developments,
formal thrust, sections and climaxes. Pieces of 90 – 300 sec-
onds can hold together, presenting a coherent whole.2 The
pieces are not entirely “finished,” coming out with flat ve-
locity, but this is addressed in later work on automatic or-
chestration through automatic analysis.3 Sample output of
Jack 1 can be found at http://www.computingmusic.com.

In evaluating any system, it is a challenge to understand
the interaction of different components. In a system with
fewer (and less complex) components, it is easier to explore
their individual contributions. The strength of a simple sys-
tem may predict that well-performing, more complex sys-
tems could be simplified and therefore better understood.
The shortcomings of a simple system may demonstrate the
efficacy of excluded concepts, directing the addition of new
modules.

In Jack 1, music data is completely excluded: no statistics
or recombination of snippets from existing music are used.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Jack 1 was written by Eliot Handelman in 2009 and revived by
both authors in 2013; this paper is the first public explanation of its
functioning.

2There is no technological barrier to longer pieces; short pieces
are an arbitrary choice for ease of listening.

3Handelman et al. ”Automatic Orchestration for Automatic
Composition.” MUME at AIIDE, 2012.

Jack 1 uses no explicit rules nor constraints about musical
situations that must or may not occur. It has no analysis fa-
cilities at all, and therefore cannot recognize any musical
situations. It does not perceive, remember, or learn. It uses
no templates to delineate forms, phrases or other musical
schemata. It has no theories or data about harmony, chords
or chord progressions, keys, cadences, or voiceleading, nor
about information theory or human expectations.

Part of what we can learn from Jack 1 is the degree to
which many of the above facilities, though they may be
desirable in a more complex musical experiment or meta-
piece, may be unnecessary even for a high level of music-
making – and that some of them may be generated through
process, without explicit modelling. The only traditional
music theoretic concept used is the diatonic major scale: not
treated functionally with tonic, leading tone, and so on, but
simply as a set of pitches (which, nonetheless, do have a
structure and a history).

At a basic level, the functioning of any computational sys-
tem can be divided into decisions that are made determinis-
tically (given inputs, variable settings, and program state)
and those that are made randomly (i.e. using a pseudoran-
dom number generator). Decisions that are made randomly
are, in fact, partially constrained, as when a random integer
is called for within a given range. The role of randomness
in a music generation system is essential for experimenta-
tion. Leaving some decisions open to randomness allows us
to check the effect of other, deterministic decisions under a
variety of conditions.

By aiming for a high degree of randomness, we can try to
find a minimum set of conditions under which a score func-
tions as music. This is parallel to Harold Cohen’s question,
“What is the minimum set of conditions under which a set
of marks functions as an image?” 4 We note that Cohen uses
the word image, perhaps as opposed to work of art – since
art, and musical art, are radically open. But “image,” for Co-
hen, is related to human perception (in particular, of objects,
which may nonetheless be abstract in their identity). The
artistic question posed by Jack 1’s author is parallel in that
the interest is not in making the most minimal possible mu-
sic, but in exploring minimal parameters and concepts under

4In “The further exploits of Aaron, painter.” Stanford Humani-
ties Review 4(2), 1995.

Musical Metacreation: Papers from the 2013 AIIDE Workshop (WS-13-22)

55



which a kind of music emerges that evokes specifically mu-
sical responses – in the narrower sense of music, as opposed
to expanded musical or sound art.

Jack 1 requires no run-time human intervention. There-
fore, an analysis of patterning functions with respect to their
musical consequences is possible. In this paper, we describe
a small set of concepts and their realization in a musical
meta-piece.

Cyclers: extensible shapes
The fundamental mechanism of Jack 1 is the cycler. In ef-
fect, cyclers are machines for randomly generating patterns
with different kinds of interacting regularities.

In particular there are four ways that cyclers are used in
the meta-piece: cyclers that generate small musical shapes
(one might say “motives,” but this has historical connota-
tions that we do not wish to defend), cyclers that cause small
shapes to exibit grow behavior as they recur throughout a
piece (as a stand-in for other concepts of variation or de-
velopment), cyclers that create zoned dispositions of these
small, growing musical shapes (as a means of formal orga-
nization), and cycler-patterned supershape, which organizes
the pitch relations of the (growing, zoned) small shapes.

Here we describe three increasingly complex types of cy-
clers: the recycler, the aN-cycler, and the X-cycler.

The recycler is the simplest cycler.5 It consists of a se-
quence of length r of terms, and a pointer keeping track of
which term is currently addressed. Terms are symbols that
can be used to refer to any object – in Jack 1, they can rep-
resent musical intervals, shapes (i.e. segments of music), or
even other cyclers. Abstractly, we can represent these terms
by letters of the alphabet. In a run of Jack 1, the term se-
quences for all recyclers is randomly generated (from a lim-
ited superset of options).

A recycler can be queried by sending it an integer i; it
responds by emitting a sequence of i terms. The recycler
simply starts from the term addressed by the pointer, and
steps along its sequence emitting each term in order until
i terms have been emmitted. In “loop” mode, the pointer
loops back to the beginning of its sequence when it hits the
end; in “sweep” mode it travels back and forth through the
sequence. There are a few more simple commands to influ-
ence the recycler: a “reset” button which moves the pointer
back to the beginning of the sequence; and a “reverse” mode,
reversing the sequence.

More complex cyclers are built out of simple recyclers.
The aN-cycler has a base recycler, and a second recycler
where the terms act as counters for how many times to repeat
each term in of the base recycler. “aN” refers to each term a
of a sequence being repeated some number N times.

For example, if we had a base sequence [a; b; c; d] and
a counter sequence [4;3;2;1], then the default emitted se-
quence would begin [a; a; a; a; b; b; b; c; c; d...]. When the
base sequence and the counter sequence have different
cardinalities, this can result in the emitted sequence not
repeating for a longer time. For example, the base se-

5A similar idea occurs in Rick Taube’s CM program.

quence [a; b; c; d] and the counter sequence [3;2;1] gives
[a; a; a; b; b; c; d; d; d; a; a; b; c; c; c; d; d; a...].

The X-cycler is significantly more complex, and hasn’t
been used to its full potential in Jack 1, but we explain it
here to give a sense of what could be possible with cyclers.
It remains to be explored to what complexity cyclers can be
musically useful – this could be developed into a systematic
psychological program exploring the limits of perceptible
pattern complexity.

An X-cycler is composed of an aN-cycler and a group of
recyclers. Recall that the aN-cycler consists of a base se-
quence and a counter sequence. Here, the terms of the base
sequence refer to recyclers in the recycler group. The X-
cycler runs by using the aN-cycler to address the recyclers:
the base sequence chooses which recycler to address and the
counter decides how many terms should be emitted from that
recycler.

For example, suppose we are given an X-cycler: its aN-
cycler has base terms [0;1;1] and counter [3;2], and its re-
cycler group consists of recycler 0 with terms [a;b;c] and
recycler 1 with terms [x;y;z]. Then if the X-cycler is queried
to emit fifteen elements, the aN-cycler tells it to emit three
elements from recycler 0, two from recycler 1, three from
recycler 1, two from recycler 0, three from recycler 1 and
two from recycler 1. Supposing the recyclers are set to start
over from the beginning of their sequences when addressed,
we get [a;b;c;x;y;x;y;z;a;b;x;y;z;x;y].

As we have seen, cyclers can control other cyclers, since
the output of one cycler can be the input to another. The Jack
1 meta-piece consists of a structure of interacting cyclers.
At runtime, each cycler in the structure is randomly instan-
tiated. This means that its term sequence is randomly gener-
ated, some settings (e.g. loop mode or sweep mode) may be
randomly set, and, in some cases, there is a randomized de-
cision of which kind of cycler to use. Subsequent sections of
this paper describe the meta-piece, and how it uses cyclers
to produce grow behavior, zoned form, and supershape.

Once instantiated, each cycler has deterministic behavior.
Therefore, all that all that is needed to (deterministically)
generate a musical piece is to query the top-level cycler
with an integer (which indirectly determines the length of
the piece, since it determines how many musical shapes are
ultimately generated). It’s possible to save the cycler struc-
ture of a musical piece in order to determine precisely how it
was generated; as well (although we haven’t done this with
any of the random Jack 1 pieces presented online), it would
be possible to edit a structure of cyclers (e.g. by hand, or by
randomly perturbing specific parts of it) to obtain variations
of a randomly generated piece.

Shape and Super-Shape
In this section we discuss the lowest level cyclers, which
generate local material, melodic “shapes” and chords. The
atom here is the (diatonic) interval: the terms of the cyclers
at this level represent intervals or chords (sets of intervals).

Jack 1 constructs random chords by randomly choosing
how many intervals to use (e.g. between 0 and 5) and then
randomly choosing intervals within (for example) one or two
octaves of an initial pitch.

56



Jack 1 also constructs interval term sequences (i.e.
melodic fragments) randomly; the cycler’s generating pro-
cess may constrain intervals to the set [-2;-1;0;1;2], or allow
larger leaps. The sequences are generally four to eight terms
long.

Eight to ten random cyclers emitting basic melodic shapes
and chords are generated, and will be queried by higher level
cyclers to form this basic material into a piece of music.

Jumping ahead to the end of the generation process – sup-
pose we have generated a fixed sequence of small shapes,
where each shape is a sequence of notes and/or chords ex-
pressed as intervals. The final step in the generation process
is to assign each shape to a pitch level, in relation to the other
shapes around it.

To do this, we use another cycler with interval terms to
generate a supershape. After we choose an arbitrary pitch
for the first shape, we use the intervals emitted by the su-
pershape cycler to determine the relative pitch levels for the
rest of the shapes in the sequence. In particular, we could
take the top note in each shape, and assign these to the inter-
vals in the supershape. We could also take the bottom note,
the first note, or the last note, or some pattern of these op-
tions – where the pattern, of course, is emitted by another
cycler whose terms represent the options top, bottom, first,
last.

Growth
Querying a cycler (e.g. of intervals) in different ways can re-
sult in different, related shapes. In place of a theory of vari-
ation or development, we use cyclers to create sequences of
related shapes that grow.

Suppose we have a cycler that emits a sequence of inter-
vals. Now all we have to do is query it to emit 3, then 4,
then 5, then 6, then 7, and so on, and we will have a grow-
ing shape. Most often, this is done with interval cyclers set
to restart at each query, since this makes the relation most
evident. It’s easy to see how to make a shrinking shape, or
a shape that shrinks for a while and then jumps back up in
size and starts growing.

The “grow” cyclers that query the interval cyclers don’t
have a completely randomized sequence of terms, since we
want growth to be at least somewhat linear. The terms of
the grow cyclers are generated by taking an ordered se-
ries of intervals (i.e. [3;4;5;6;7;8;9]) and randomly select-
ing one or more varying functions on this, including ran-
dom rotation (e.g. [7;8;9;3;4;5;6]) and partial reversal (e.g.
[5;4;3;6;7;8;9]).

Jack 1 also uses the growth effect to produce flexible
rhythm. Often, it will set each cycler query to take up the
same amount of time, so that 3, then 4, then 5 events are fit
into the same duration, giving an accelerando.

There are also more complex grow cyclers that have query
access to more than one basic cycler, creating flexible com-
pound shapes. In figure 1, we see the output of a grow cy-
cler querying three cyclers, always in the same order. The
basic cyclers respectively produce a chain of rising chords,
a chain of decending intervals, and ascending chains of re-
peated notes. At each iteration, each one of the basic shapes

Figure 1: A compound shape with independently growing
subshapes.

is (randomly) either a little longer, a little shorter, or the
same length as in the previous version of the shape, while
the duration of the whole remains constant.

Zones
Now that we have created a set of grow cyclers that (by quer-
ing interval and chord cyclers) emit growing shapes, it’s time
to use another cycler to sequence these growing shapes into
a final piece. Here we introduce a new kind of cycler called
the zone cycler, which is designed to produce flexible larger
scale forms which have continuity and recurrence, yet which
tend to reserve some surprises for later points in the piece.

The zone cycler consists of a relatively long sequence
of terms (representing the grow cyclers) and a sequence
of zones. Each zone is a subset of the terms in the term
sequence. When cycling through the sequence, only terms
included in the current zone will be emitted, and other
terms will be ignored. For example, if the term sequence
is [a;b;c;b;c;d;b;a;c] and the current zone is [a;b], then the
emitted sequence will be [a;b;b;b;a...]. Another cycler deter-
mines which zone is currently active, and for how long.

We can bias the creation of random zones to privilege
some continuity between adjacent zones, so that if the first
zone contains some term x, the second zone is somewhat
more likely to contain x. We can also reserve some terms to
only appear in the last half or last third of the sequence of
zones.

The zone sequence [{c, a}; {c, b}; {d, b, a}; {f, e}; {e, d, a}]
has some continuity, some surprises, and some
returns after a break. Given the basic term se-
quence [f ; a; c; c; e; f ; c; d; a; f ;c; f ; f ; d; a; c; b; d],
if we stay in each zone until we have emit-
ted six shapes, then the emitted sequence is
[a; c; c; c; a; c; c; b; c; c; c; c; d; a; b; d; a; d; f ; f ; f ; f ; e; f ; d;
a; d; a; d]. With the presence of a at the beginning, middle
and end, the repetition of the d; a; d; a; d sections (once with
an intervening b), and the definite difference between the
first half of the piece with a focus on c, and the second half
of the piece, with e and f , this has a chance of being an
engaging musical form.

The sequence above refers to six shapes: the final piece
is put together by querying six grow cyclers emitting the
shapes in this sequence – since these are growing shapes,
they are different each time they recur.

Figure 2 shows and excerpt of a piece by Jack 1 (“Proud
Buzzy”). Zoning is in evidence, as is growth – especially
dramatically in shape B.

57



Extending Jack 1
All of the Jack 1 music from 2009-2013 was generated by
the described meta-piece (with some slight meta-piece vari-
ations), with no runtime human interaction.

However, human intervention is theoretically possible
wherever randomness occurs: instead of randomly generat-
ing cycler terms and settings, they could be set or modified
by hand. Hard-coding some of the cyclers could allow more
thorough and controlled exploration and mapping of smaller
spaces of musical possibility.

It would also be possible to use the cycler concept to cre-
ate different meta-pieces, preserving a high degree of ran-
domness in each instantiation, but allowing experimenta-
tion with different structures of interacting cyclers. Certainly
other concepts of variation, development, and formal struc-
turing could be developed, perhaps with deeper levels of cy-
cler interaction. A “meta-meta-piece” might have a greater
degree of randomness in the connections and interactions
between cyclers.

Though we are presenting one meta-piece as a musical
meta-artwork, we also offer a modular, extensible concept
for the random creation of musical material with controlled
complexity of structure and pattern at several levels.

The Jack 1 meta-piece described in this paper is fairly
conservative with regard to the complexity of structured pat-
tern that can be generated using cyclers. To some degree this
was an aesthetic choice, but there may be a cognitive limi-
tation on what kind of pattern complexity can be musically
useful.6

The cycler concept admits of generating musical samples
of controlled pattern complexity, which could be used to de-
velop a testable hypotheses for psychological studies exam-
ining auditory-musical cognition of pattern (without refer-
ence to learned or enculturated musical styles).

We might start by testing whether a formal model of pat-
tern complexity based on the complexity of the generating
cycler-system seems to correlate well with cognitive com-
plexity. To see whether the structure of a pattern is apprehen-
sible as such, we might be tempted to try prediction games,
but we suspect that the game quickly becomes too hard. De-
tecting when a pattern has changed (i.e. switched from one
cycler system to another) might be easier.

Conclusion
Jack 1 is an original meta-music piece which emits quirky,
animated output. It works by constructing a random multi-
level cycler structure as a virtual generating engine.

There are many features not included in Jack 1, such as
a theory of harmony or polyphony, an ability to analyse its
own output, and broader facilities for variation and develop-
ment.

The system presents a fairly small set of operators and
combinative structures that can generate compositions of 1-
3 minutes that unfold in characteristically musical manners,

6Lerdahl, Fred. ”Cognitive constraints on compositional sys-
tems.” Contemporary Music Review 6.2 (1992): 97-121.

with themes, developments, climaxes, and contrasting sec-
ondary material. It does so without access to existing mu-
sic, music theory, or statistical weighting of note distribu-
tions. One conclusion is that many of the conventional cate-
gories can be produced indirectly, as process, rather than as
a model of existing music. Another bears on the nature of
music. Simple concepts like shape, pattern, zone and grow
can interact to yield a sense of purpose, even agency: es-
sentially this interaction is a game, a complexification of of
the simple patterns and shapes present in children’s games.
The experiment provides a glimpse into a new ontogeny of
music.

Figure 2: Jack 1 excerpt, “Proud Buzzy.”

58




