
Implementation Cost and Efficiency for AI Experience Managers

David Thue1,2 and Vadim Bulitko1 and Howard J. Hamilton2

1Department of Computing Science
University of Alberta

Edmonton, AB, T6G 2E8, Canada
dthue | bulitko @ ualberta.ca

2Department of Computer Science
University of Regina

Regina, SK, S4S 0A2, Canada
hamilton@cs.uregina.ca

Abstract

The study of Artificial Intelligence (AI) experience managers
seeks to create software agents that can support compelling,
interactive user experiences without needing any online guid-
ance from human experts. Evaluating the utility of such AI
managers is important in both academia and industry, both
for measuring our progress in the field and for estimating a
given manager’s practical viability. While several methods
have been studied that evaluate a manager’s effectiveness, rel-
atively few have explored the question of how costly a man-
ager might be to implement in practice. We explore the latter
question in this paper, presenting a formal way to estimate the
cost of implementing an AI experience manager at scale.

1 Introduction
In an interactive story, one or more players are given the op-
portunity to act as characters in an unfolding narrative expe-
rience. Each experience occurs in the context of an interac-
tive environment, where players alternately perceive states
and perform actions as the experience proceeds. Through
their actions, each player exercises agency – the ability to
influence the course of their experience in an interactive en-
vironment by performing actions therein. Agency is gener-
ally considered to be beneficial in daily life (Larson 1989),
but its presence in interactive stories makes it difficult for
the designer of the story’s environment to guarantee that any
particular experience will be had. Instead, the designer pro-
vides content for a variety of possible experiences, each of
which could occur as the result of different player actions.

To help ensure that each player will be affected as the de-
signer intended given any valid sequence of their actions,
an experience manager can alter the course of an interac-
tive experience whenever multiple viable continuations ex-
ist (Riedl et al. 2008). When treated as an Artificial Intel-
ligence (AI) agent, an experience manager works to maxi-
mize an objective function provided by the designer, toward
ensuring that each player is affected by their experience
in the way that the designer intended (Weyhrauch 1997).
For example, the AI experience manager in Façade dy-
namically builds a sequence of dramatic interactions (called
“beats”) among two virtual characters and the player, and
each beat is associated with the designer’s estimate of
how much tension it will add to the story (Mateas 2002;
Mateas and Stern 2003). The designer provides the man-

ager with a desired curve of tension versus time, and the
manager works to maximize an objective function defined
as one over the absolute value of the difference between two
values of tension: the amount currently in the story (which it
estimates online) and the amount that the designer specified
for that time. The assumption underlying this design is that
the more closely the estimated tension curve in each player’s
story matches the desired curve, the more likely the player
will be affected by their experience as the designer intended
(e.g., feeling catharsis). In general, after each player action,
the state of the environment changes to a new state that of-
fers one or more actions for the player to perform. When-
ever more than one state can occur following a given player
action (e.g., the first states of different beats in Façade), an
experience manager can select the one that maximizes its ob-
jective function, and thereby try to ensure that each player’s
experience will affect them in the intended way.

To accelerate progress toward creating AI experience
managers, it is important to build and critically evaluate
complete, working prototypes (Mateas and Stern 2003). Un-
fortunately, evaluating such managers is a challenging prob-
lem (Rowe et al. 2009). Comparing the effectiveness of
two managers through controlled play-testing can be time-
consuming, and due to their complex nature, it can be dif-
ficult to attribute a manager’s effectiveness to only one of
its components (Billings and Kan 2006). Furthermore, even
when a manager appears to be effective during testing, it
can be unclear whether or not the cost of implementing that
manager would be acceptable for a larger interactive envi-
ronment. These concerns suggest two complementary fam-
ilies of evaluations: those which assess a manager’s effec-
tiveness (i.e., how successful it was in producing the result
that was intended by its designer) and those which assess
its efficiency (i.e., its effectiveness relative to the amounts
of designer effort and computation that it requires). We re-
fer readers to Rowe et al.’s (2009) work on the StoryEval
framework for an overview of prior work on evaluating man-
ager effectiveness, and note that recent research has explored
this area as well (Thue et al. 2011; Ontañón and Zhu 2011;
Ramirez and Bulitko 2012; Fendt et al. 2012).

Compared to the recent interest in evaluating manager ef-
fectiveness, evaluating manager efficiency has received less
attention. Chen et al. (2009) proposed measuring “authorial
leverage” as a way to evaluate different methods of imple-

Intelligent Narrative Technologies: Papers from the 2013 AIIDE Workshop (WS-13-21)

97

menting a given manager. By their definition, one method
gives more authorial leverage than another when, for a given
amount of designer effort, it allows the designer to (i) create
a more complex policy for the manager, (ii) change an exist-
ing manager’s policy in a more complex way, or (iii) provide
players with a wider variety of experiences in the interac-
tive environment. Although three types of authorial leverage
were defined, recent research efforts have tended to focus
on the third type (variability of experience) (Sullivan 2012;
Li et al. 2013) without addressing the other two. As the
variability of players’ experiences increases, however, hav-
ing ways to estimate the cost of creating or changing a man-
ager’s policy will become increasingly important, because
the effort required to support a manager’s operation is in-
herently tied to the so-called “authoring bottleneck” prob-
lem (Csinger, Booth, and Poole 1994).

In this paper, we present a method for estimating the cost
of implementing or modifying the policy of an AI man-
ager. We describe a framework for experience management
as the foundation for our approach, and consider a related
approach by Chen et al. We then present our cost estima-
tion method, and summarize how we used it to compare two
ways of implementing an existing manager’s policy. We
conclude by discussing the benefits and limitations of our
approach, and offer ideas for future work.

2 Problem Formulation
Following Thue & Bulitko (2012), an interactive environ-
ment can be thought of as a graph where each node (s ∈ S)
is a state of the environment and each edge (a ∈ A) is an
action that the player can perform. The dynamics of the en-
vironment (i.e., how each action causes the environment to
transition from one state to another) are governed by a tran-
sition function (τ : S × A → S). We refer to an interactive
environment generally as a “game” henceforth.

2.1 Experience Management
We adopt Thue & Bulitko’s (2012) definition of experience
management as a process that changes a game’s transition
function during gameplay; doing so allows us to treat ex-
perience managers that change the game’s state (e.g., some
drama managers (Weyhrauch 1997; Mateas and Stern 2003;
Nelson et al. 2006)) and those that change the game’s rules
(e.g., dynamic difficulty adjustment (Hunicke and Chap-
man 2004)) in a unified way. However, instead of using
Thue & Bulitko’s definition of an experience manager’s ob-
jective (which was to maximize the long-term sum of the
player’s rewards derived from playing), we borrow from
Weyhrauch’s (1997) and Nelson et al.’s (2006) work on
optimization-based drama management to define it more
generally: an experience manager’s objective is to maximize
a designer-provided objective function.

We assume that the game’s designer wishes for each
player to be affected by their experience in some particular
way. To achieve this goal using an experience manager, the
designer specifies three key components. First, they specify
a set of state/action pairs (D ⊆ S×A), where each pair indi-
cates a point in the experience at which the manager should
consider changing the transition function. We refer to each

such pair as a decision point. Second, they specify a set
of transition functions (T) whose elements are all designer-
approved alternatives to the game’s current transition func-
tion. Whenever a decision point is reached, the manager will
change the game’s transition function to one that it chooses
from T . Third, they specify an objective function (φ), which
maps from a decision point 〈s, a〉 and a transition function τ
to a real number (φ : D×T → R). Generally speaking, this
function estimates the likelihood of the current player being
affected by their experience in the designer’s intended way,
if the manager were to change the game’s transition function
to τ after point 〈s, a〉 occurred during gameplay.

Given these components, a manager’s policy is a function
χ which, given a decision point 〈s, a〉 and a set of transition
functions T , selects a transition function from the given set
in a way that maximizes its objective function (Equation 1).

χ(〈s, a〉, T) = argmax
τ∈T

φ(〈s, a〉, τ) (1)

Although not required for a general experience manager,
prior specifications of objective functions for experience
managers have tended to depend on a particular extra com-
ponent. Specifically, a vector of n features (f) is used map
any alternating sequence of states and actions that can occur
in an experience (i.e., a player history, h ∈ H) to a vector
of n real numbers (f : H → Rn). By changing the total
number of features or the range of each feature, the designer
can set the amount of abstraction with which each feature
vector represents its associated state/action history.

2.2 Implementation Cost
At a high level, our goal in this paper is to evaluate the effi-
ciency of a given manager in terms of the cost of implement-
ing its policy. Since specifying the sets of decision points
and transition functions (D and T) in Equation 1 is part of
creating the manager’s domain (i.e., the inputs to the man-
ager’s policy), we focus on the cost of specifying the ob-
jective function (φ) henceforth. Furthermore, whenever two
objective functions are such that the manager’s policy would
be the same regardless of which function it used, we say that
both functions result in the same manager policy.

In general, the cost of specifying an objective function
might depend on the parameters of its components (e.g., the
number of features in the feature vector, n). For example, a
given method of specifying an objective function might re-
quire 10 units of designer effort per feature for each state
in the environment, resulting in a cost of 10n units. Since
some parameters might be more important than others (to
the designer) in terms of how changing them affects imple-
mentation cost, we seek a solution that allows the designer to
focus their analysis on a particular subset of its parameters.

The problem that we aim to solve is as follows. Given
(a) an experience manager’s policy, (b) two or more meth-
ods for specifying objective functions that result in that pol-
icy, and (c) a subset of the functions’ parameters to analyze,
characterize the relative efficiency of the given methods in
terms of the indicated parameters of interest. For example,
suppose that we have two methods (M1 and M2) for speci-
fying objective functions that both result in a given manager

98

policy. Suppose further that both methods use a feature vec-
tor as one of their components, and that we wish to analyze
their efficiency with respect to increasing the number of fea-
tures that are used (n). Our goal would then be to determine
whether M1 is more efficient than M2 (in terms of designer
effort) over the different possible values of n.

3 Related Work
Chen et al. (2009) measured the efficiency of Declarative
Optimization-based Drama Management (DODM) using an
empirical approach. Specifically, they used DODM to man-
age the experiences of a group of players in an interactive
story, and then induced a decision tree from this data to
mimic the DODM manager’s policy. Because the tree con-
tained a large number of nodes (70), they deemed it to be
too complex to implement by hand, and thus concluded that
DODM provides authorial leverage. This claim implies that
the DODM objective function in Chen et al.’s testbed can
be specified with less designer effort than a decision tree
with 70 nodes, but no direct comparisons were made. Fur-
thermore, there seems to be no way to focus Chen et al.’s
approach on particular parameters of a manager’s objective
function (as we wish to do; recall Section 2.2). The approach
that we present in this paper overcomes these limitations by
relying more on theory than on empirical analysis.

4 Proposed Approach
To characterize the efficiency of a method for specifying a
manager’s objective function in a way that promotes com-
parisons and focused analyses, we developed a formal ap-
proach based on the theory of run-time analysis. Given an
algorithm to perform a certain task, run-time analysis char-
acterizes its efficiency by estimating its computational cost.
Similarly, given a way to specify a manager’s objective func-
tion, we characterize its efficiency by estimating its imple-
mentation cost. Furthermore, just as computational cost is
estimated as a function of the given task’s parameters (e.g.,
the size of its input), we estimate implementation cost as a
function of the parameters of a given specification method
(e.g., the total number of features, n).

Our approach proceeds through five steps. First, for each
given method of specifying an objective function, we explic-
itly describe the required steps of the method in terms of the
sets and functions that we presented in Section 2.1. Second,
we treat the steps as an algorithm, and use standard run-
time analysis techniques to derive a cost function for each
method; while doing so, we introduce any constants that are
needed to represent particular amounts of designer effort.
Continuing our earlier example (Section 2.2), method M1
might require e1 units of designer effort per feature for each
state in the environment (i.e., costM1(n, S) = e1n|S|), while
M2 might require e2 units of effort for every pair of features,
for each state (i.e., costM2(n, S) = e2n

2|S|). Third, given a
set of parameters of interest (e.g., the number of features, n),
we classify each function according to its asymptotic growth
rate over each parameter in the set. In the example, the cost
of M1 increases linearly with n, and the cost of M2 increases
quadratically with n. Fourth, for each parameter of interest,
we characterize the relative efficiency of each specification

method as a piecewise function of that parameter (e.g., for
small values of n, M2 is more efficient than M1, but for
larger values of n, M1 is more efficient). As an optional
fifth step, when the values of the designer effort constants
(i.e., e1, e2, etc.) are known, we calculate the intersection
points between the cost functions of the given methods and
use them to specify the ranges of our piecewise characteriza-
tion more accurately. In our example, knowing that e1 = 10
and e2 = 3 is enough to learn that M2 is more efficient when
n ≤ 3 and M1 is more efficient when n > 3, because the
cost functions intersect when n ≈ 3.2.

5 Results, Discussion & Future Work
We used our approach to analyze two different methods of
implementing the policy of PaSSAGE, an AI experience
manager by Thue et al. (2007). Our goal with this analysis
was to characterize the relative efficiencies of the methods
(in terms of designer effort) with respect to the number of
features that they use. Although lack of space precludes the
full presentation of our results, we summarize them briefly
here. We found that the cost of using Thue et al.’s origi-
nal implementation method for PaSSAGE (which uses fea-
tures to represent both a player model and annotations on
story content quality) increases linearly with the number of
features used. Meanwhile, if PaSSAGE’s policy were imple-
mented using a decision tree at each decision point (in a sim-
ilar spirit as Chen et al.’s “decision tree equivalents” (2009)),
the implementation cost would increase exponentially with
the number of features used. Given known values from PaS-
SAGE’s testbed domain (e.g., the total number of decision
points, |D|) and estimates for the relative sizes of the rel-
evant designer effort constants, we found that Thue et al.’s
method appears to be more efficient than the decision tree
approach for all positive values of n.

Our approach characterizes the relative efficiencies of dif-
ferent methods for implementing a manager’s policy, and
supports the comparison of competing methods with respect
to particular parameters of interest. Although it can be diffi-
cult to estimate the constants in a given cost function when
analyzing managers in retrospect, we suspect that fairly ac-
curate estimates could be obtained for new managers if de-
signer designer effort was tracked during development.

In the future, testing our approach on managers that use
different components in their objective functions (e.g., a pre-
diction function as in Weyhrauch’s work (1997)) will be an
important next step. Applying our approach to other meth-
ods of specifying objective functions (e.g., Roberts et al.’s
TTD-MDPs (2006) or Nelson et al.’s Reinforcement Learn-
ing approach (2006b)) might also be fruitful.

Conclusion
In this paper, we presented a method for characterizing the
efficiency of a manager’s policy with respect to the amount
of designer effort that it requires to implement. By drawing
on the theory of run-time analysis, our method supports di-
rect comparisons between competing methods and also al-
lows designers to analyze how particular parameters of a
policy’s objective function can influence its implementation.

99

References
Billings, D., and Kan, M. 2006. A tool for the direct assess-
ment of poker decisions. ICGA Journal 29(3):119–142.
Chen, S.; Nelson, M. J.; and Mateas, M. 2009. Evaluating
the authorial leverage of drama management. In The Fifth
Artificial Intelligence and Interactive Digital Entertainment
Conf. (AIIDE), 136–141. Menlo Park, CA: AAAI Press.
Csinger, A.; Booth, K. S.; and Poole, D. 1994. AI meets
authoring: User models for intelligent multimedia. Artificial
Intelligence Review 8(5):447–468.
Fendt, M. W.; Harrison, B. E.; Ware, S. G.; Cardona-Rivera,
R.; and Roberts, D. L. 2012. Achieving the illusion of
agency. In The Fifth International Conf. on Interactive Dig-
ital Storytelling (ICIDS), 114–125. Springer Verlag.
Hunicke, R., and Chapman, V. 2004. AI for dynamic diffi-
cult adjustment in games. In Challenges in Game AI Work-
shop, Nineteenth National Conf. on Artificial Intelligence.
Larson, R. 1989. Is feeling “in control” related to happiness
in daily life? Psychological Reports 64(3 Pt 1):75–84.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. O. 2013.
Story generation with crowdsourced plot graphs. In Pro-
ceedings of the 27th AAAI Conference on Artificial Intelli-
gence, 598–604. Bellevue, WA: AAAI Press.
Mateas, M., and Stern, A. 2003. Façade: An experiment in
building a fully-realized interactive drama. Game Develop-
ers Conference (GDC 03). San Jose, California.
Mateas, M. 2002. Interactive Drama, Art, and Artificial In-
telligence. Ph.D. Dissertation, School of Computer Science,
Computer Science Department, Carnegie Mellon University.
Nelson, M. J.; Mateas, M.; Roberts, D. L.; and Isbell, C. L.
2006. Declarative optimization-based drama management
in interactive fiction. IEEE Computer Graphics and Appli-
cations 26(3):33–41.
Nelson, M. J.; Roberts, D. L.; Isbell, Jr., C. L.; and
Mateas, M. 2006b. Reinforcement learning for declara-
tive optimization-based drama management. In Proceedings
of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’06, 775–782.
New York, NY, USA: ACM.
Ontañón, S., and Zhu, J. 2011. On the role of domain knowl-
edge in analogy-based story generation. In Proceedings of
the Twenty-Second International Joint Conferences on Arti-
cial Intelligence (IJCAI), 1717–1722.
Ramirez, A. J., and Bulitko, V. 2012. Telling interactive
player-specific stories and planning for it: ASD + PaSSAGE
= PAST. In The Eighth Artificial Intelligence and Inter-
active Digital Entertainment Conference (AIIDE), 173–178.
Menlo Park, CA: AAAI Press.
Riedl, M. O.; Stern, A.; Dini, D.; and Alderman, J. 2008.
Dynamic experience management in virtual worlds for en-
tertainment, education, and training. In Tianfield, H., ed.,
International Transactions on Systems Science and Appli-
cations, Special Issue on Agent Based Systems for Human
Learning, volume 3, 23–42. Glasgow: SWIN Press.

Roberts, D. L.; Nelson, M. J.; Isbell, C. L.; Mateas, M.; and
Littman, M. L. 2006. Targeting specific distributions of tra-
jectories in MDPs. In Proceedings of the Twenty-First Na-
tional Conference on Artificial Intelligence (AAAI), 1213–
1218. Menlo Park, CA: AAAI Press.
Rowe, J. P.; McQuiggan, S. W.; Robison, J. L.; Marcey,
D. R.; and Lester, J. C. 2009. StoryEval: An empirical eval-
uation framework for narrative generation. In AAAI Spring
Symposium on Intelligent Narrative Technologies II, 103–
110. Menlo Park, CA: AAAI Press.
Sullivan, A. M. 2012. The Grail Framework: Making Sto-
ries Playable on Three Levels in CRPGs. Ph.D. Dissertation,
UC Santa Cruz: Computer Science.
Thue, D., and Bulitko, V. 2012. Procedural game adapta-
tion: Framing experience management as changing an mdp.
In Proceedings of the 5th Workshop in Intelligent Narrative
Technologies. Menlo Park, CA: AAAI Press.
Thue, D.; Bulitko, V.; Spetch, M.; and Wasylishen, E. 2007.
Interactive storytelling: A player modelling approach. In 3rd
Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE), 43–48. Menlo Park, CA: AAAI Press.
Thue, D.; Bulitko, V.; Spetch, M.; and Romanuik, T. 2011.
A computational model of perceived agency in video games.
In Proceedings of the Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE). Stanford, CA,
USA., 91–96. Menlo Park, CA: AAAI Press.
Weyhrauch, P. 1997. Guiding Interactive Drama. Ph.D.
Dissertation, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA.

100

